TAIWANESE JOURNAL OF MATHEMATICS Vol. 10, No. 6, pp. 1515-1522, December 2006 This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON THE DIRICHLET PROBLEM FOR THE EQUATION $-\Delta u = g(x, u) + \lambda f(x, u)$ WITH NO GROWTH CONDITIONS ON f

Giovanni Anello

Abstract. In this paper we establish some results concerning the existence of nonzero nonnegative and nonzero nonpositive solutions for a Dirichlet problem via variational methods. In particular, a general variational principle of B.Ricceri is applied.

1. INTRODUCTION

In this paper we study the following Dirichlet problem

$$(P_{\lambda}) \qquad \begin{cases} -\Delta u = g(x, u) + \lambda f(x, u) & \text{in} \quad \Omega\\ u = 0 & \text{on} \quad \partial \Omega \end{cases}$$

where $\lambda \in \mathbb{R}$, $\Omega \subset \mathbb{R}^N$, $N \geq 3$, is a bounded open set with boundary $\partial\Omega$ of class C^2 , $f,g: \Omega \times \mathbb{R} \to \mathbb{R}$ are two Carathéodory functions, and $\Delta(\cdot) = \operatorname{div}(\nabla(\cdot))$ is the Laplacian operator. Precisely, we establish a result concerning the existence of nonzero nonnegative and nonzero nonpositive strong solutions for problem (P_{λ}) for each λ belonging to an open real interval containing 0. We recall that a strong solution of problem (P_{λ}) is any $u \in W_0^{1,1}(\Omega) \cap W^{2,1}(\Omega)$ such that $-\Delta u(x) = g(x, u(x)) + \lambda f(x, u(x))$ for almost all $x \in \Omega$. While a weak solution of problem (P_{λ}) is any $u \in W_0^{1,2}(\Omega)$ such that

$$\int_{\Omega} \nabla u(x) \nabla v(x) dx - \int_{\Omega} (g(x, u(x)) + \lambda f(x, u(x))) v(x) dx = 0$$

Received Apri,l 25, 2005; accepted July 7, 2005.

Communicated by Man-Hsiang Shih.

2000 Mathematics Subject Classification: 35J20.

Key words and phrases: Variational methods, Dirichlet problem, Laplacian operator, Nonnegative solution, Nonpositive solution.

for all $v \in W_0^{1,2}(\Omega)$. Hence, the weak solutions of problem (P_{λ}) are exactly the critical points of the energy functional

$$(P_{\lambda}) \qquad J_{\lambda}(u) = \frac{1}{2} \|u\|^2 - \int_{\Omega} \left(G(x, u(x)) + \lambda F(x, u(x)) \right) dx$$

where

$$||u|| = \left(\int_{\Omega} |\nabla u(x)|^2 dx\right)^{\frac{1}{2}}$$

is the usual norm in $W_0^{1,2}(\Omega)$ and

$$F(x,\xi) = \int_0^{\xi} f(x,t)dt, \quad G(x,\xi) = \int_0^{\xi} g(x,t)dt$$

for all $(x,\xi) \in \Omega \times \mathbb{R}$.

To prove our results, we use variational methods and, in particular, we make use of a critical point theorem obtained by B. Ricceri in [5] which is already been used by the author in [2] to establish a multiplicity theorem of weak solutions for an equation of the type $-\Delta u = g(x, u) + \lambda f(x, u)$ with Neumann boundary condition. Recently, problem (P_{λ}) was studied in [4] by means of quite different arguments and two multiplicity results was obtained. There the nonlinearities f, gare supposed continuous on $\overline{\Omega} \times \mathbb{R}$ and, in particular, this is the only assumption on f. Nevertheless, to obtain the multiplicity of the solutions, in [4] it is essential to require that the nonlinearity g is odd with respect to the second variable. In the present paper, we want to study problem (P_{λ}) where, as in [4], no growth conditions on f are assumed and q is not supposed to be odd with respect to the second variable. We proceed to establish, at first, a theorem concerning the existence of a nonzero nonnegative strong solution for problem (P_{λ}) . Successively, with a straightforward change of the hypotheses, we establish a theorem concerning the existence of a nonzero nonpositive strong solution for problem (P_{λ}) . Hence, combining the previous two results, we obtain a multiplicity theorem.

Before closing this section we introduce the following notations: for each $q \in [1, +\infty]$ we denote by $||u||_q$ and $||\cdot||_{W^{2,q}(\Omega)}$ the usual norms of $L^p(\Omega)$ and $W^{2,q}(\Omega)$ respectively. Further, by $\langle \cdot, \cdot \rangle$ we denote the scalar product in $W_0^{1,2}(\Omega)$ which induces the norm, that is

$$< u, v > \stackrel{def}{=} \int_{\Omega} \nabla u \nabla v \, dx$$

for all $u, v \in W_0^{1,2}(\Omega)$.

2. The Results

In this section we state and proof the main results. Theorem 2.1 below gives the existence of a nonzero nonnegative solution to the problem (P_{λ}) .

Theorem 2.1. Let $s \in (1,2)$ $q > \frac{N}{2}$ and a > 0. Let $f, g : \Omega \times \mathbb{R} \to \mathbb{R}$ be two Carathéodory functions satisfying the following conditions

- (i) $\sup_{0 \le \xi \le r} |f(\cdot,\xi)| \in L^q(\Omega)$ for all r > 0;
- (ii) f(x,0) = 0 for a.e. $x \in \Omega$;
- (iii) $|g(x,t)| \leq at^{s-1}$ for all $t \geq 0$ and a.e $x \in \Omega$.
- (iv) there exists a non empty open set $D \subseteq \Omega$ such that

$$\liminf_{\xi \to 0^+} \frac{\inf_{x \in D} \int_0^{\xi} g(x, t) dt}{\xi^2} = +\infty$$

Then, there exist $\sigma, \overline{\lambda} > 0$ such that, for every $\lambda \in [-\overline{\lambda}, \overline{\lambda}]$, there exists a strong nonzero nonnegative solution $u_{\lambda} \in W_0^{1,2}(\Omega) \cap W^{2,q}(\Omega)$ of problem (P_{λ}) with $\|u_{\lambda}\|_{W^{2,q}(\Omega)} \leq \sigma$.

Proof. Define

$$g_0(x,t) = \begin{cases} 0 & \text{if } (x,t) \in \Omega \times (-\infty,0) \\ g(x,t) & \text{if } (x,t) \in \Omega \times [0,\infty) \end{cases}$$

From condition iii) g_0 turns out to be a Carathéodory function. Moreover, put

$$\Psi(u) = \frac{1}{2} ||u||^2 - \int_{\Omega} \left(\int_0^{u(x)} g_0(x, t) dt \right) dx.$$

By Rellich-Kondrachov Theorem and condition iii) it easily seen that Ψ is coercive, sequentially weakly semicontinuous and (strongly) continuous. Moreover, from Proposition 41.10 of [7], Ψ is Gâteuaux differentiable on $W_0^{1,2}(\Omega)$. We want to prove that

(2.1)
$$\inf_{W_0^{1,2}(\Omega)} \Psi < 0.$$

To this end, choose a nonzero nonnegative function $v \in C_0^{\infty}(\Omega)$ with $\inf_B v > 0$ where B is a closed ball contained in D. Fixed $K > \frac{\|v\|^2}{2\int_{\Omega} v(x)^2 dx}$, by condition iv), we find $\overline{\xi} > 0$ such that, for all $\xi \in (0, \overline{\xi}]$ one has

(2.2)
$$\inf_{x \in D} \int_0^{\xi} g_0(x, t) dt > K\xi^2.$$

Choose $\varepsilon > 0$ such that $\varepsilon \sup_{\Omega} v < \overline{\xi}$ and put $u_{\varepsilon} = \varepsilon v$. Then, we obtain

$$\Psi(u_{\varepsilon}) = \frac{\varepsilon^2}{2} \|v\|^2 - \int_{\Omega} \left(\int_0^{\varepsilon v(x)} g_0(x, t) dt \right) dx$$
$$\leq \varepsilon^2 \left(\frac{1}{2} \|v\|^2 - K \int_{\Omega} v(x)^2 dx \right) < 0$$

and so (2.1) holds. At this point, we fix

(2.3)
$$t \in (\inf_{W_0^{1,2}(\Omega)} \Psi, 0).$$

Then, by coercivity of Ψ , the set $\Psi^{-1}((-\infty, 0))$ is contained in a closed ball of $W_0^{1,2}(\Omega)$ and this latter, thanks to the reflexivity of $W_0^{1,2}(\Omega)$, turns out to be a weakly sequentially compact set. By Theorem 8.16 of [3], there exists a constant $C_0 = C_0(N, q, \Omega)$ such that, for each $h \in L^q(\Omega)$ and for each weak solution $u \in W_0^{1,2}(\Omega)$ of the equation $-\Delta u = h$ on Ω , one has $||u||_{\infty} \leq C_0 ||h||_q$. Now, fix $C > (aC_0)^{\frac{1}{2-s}} m(\Omega)^{\frac{1}{q(2-s)}}$, where $m(\Omega)$ is the Lebesgue measure of Ω , define

$$f_0(x,\xi) = \begin{cases} f(x,\xi) & \text{if} \quad (x,\xi) \in \Omega \times [0,C] \\ f(x,C) & \text{if} \quad (x,\xi) \in \Omega \times [C,+\infty) \\ 0 & \text{otherwise} \end{cases}$$

and put $\Phi(u) = -\int_{\Omega} \left(\int_{0}^{u(x)} f_0(x,t) dt \right) dx$ for all $u \in W_0^{1,2}(\Omega)$. From condition ii, f_0 is a Carathéodory function. Hence, by Rellich-Kondrachov Theorem it easily seen that Φ is sequentially weakly continuous and moreover, by condition i) and Proposition 41.10 of [7], Φ turns out to be Gâteuaux differentiable on $W_0^{1,2}(\Omega)$. At this point, we are able to apply Theorem 2.1 of [5] to the functionals Ψ, Φ . Hence, we find a positive real number ρ^* such that, for all $\rho \ge \rho^*$, the restriction of functional the $\rho\Psi + \Phi$ to the set $\Psi^{-1}((-\infty, t))$ has a global minimum $u^{(\rho)}$ which, in turn, is a critical point of $\rho\Psi + \Phi$ belonging to $\Psi^{-1}((-\infty, t))$. Therefore, if we put $\overline{\lambda}_1 = \frac{1}{\rho^*}$, then for each $\lambda \in [0, \overline{\lambda}_1]$ there exists a critical point u_{λ} for the functional $\Psi + \lambda \Phi$ which belongs to the set $\Psi^{-1}((-\infty, t))$. So, in particular one has

(2.3)
$$\Psi(u_{\lambda}) < t < 0$$

and thus u_{λ} is nonzero. Moreover, we have that u_{λ} is a weak solution of the problem

$$\begin{cases} -\Delta u = g_0(x, u) + \lambda f_0(x, u_\lambda) & \text{in} & \Omega\\ u = 0 & \text{on} & \partial \Omega \end{cases}$$

1518

where, thanks to condition *iii*), one has

$$|g_0(x,t) + \lambda f_0(x,u_\lambda(x))| \le \alpha(x)(1+|t|)$$

for all $(x, t) \in \Omega \times \mathbb{R}$, with

$$\alpha(\cdot) := \left(\sup_{t \in \mathbb{R}} \frac{1+|t|^{s-1}}{1+|t|}\right) \left(a + \overline{\lambda}_1 \sup_{0 \le \xi \le C} |f_0(\cdot,\xi)|\right).$$

Observe that, by condition i), $\alpha \in L^q(\Omega)$. Then, by Lemma B.3 of [6], we have $u_{\lambda} \in L^m(\Omega)$ for all $m \in [1, +\infty[$. Now, note that u_{λ} is a weak solution of the following linear Dirichlet problem

$$\begin{cases} -\Delta u = g_0(x, u_\lambda) + \lambda f_0(x, u_\lambda) & \text{in} \quad \Omega\\ u = 0 & \text{in} \quad \partial \Omega \end{cases}$$

where one has $g_0(\cdot, u_\lambda(\cdot)) + \lambda f_0(\cdot, u_\lambda(\cdot)) \in L^q(\Omega)$. Consequently, applying Theorem 8.16 and Theorem 8.30 of [3] we have $u_\lambda \in C^0(\overline{\Omega})$ and

(2.5)
$$\begin{aligned} \|u_{\lambda}\|_{\infty} &\leq C_{0}(\|g_{0}(\cdot, u_{\lambda}(\cdot))\|_{q} + \lambda \|\sup_{0 \leq \xi \leq C} |f(\cdot, \xi)|\|_{q}) \\ &\leq aC_{0}m(\Omega)^{\frac{1}{q}}\|u_{\lambda}\|_{\infty}^{s-1} + \lambda C_{0}\|\sup_{0 \leq \xi \leq C} |f(\cdot, \xi)|\|_{q}). \end{aligned}$$

Since $C > (aC_0)^{\frac{1}{2-s}} m(\Omega)^{\frac{1}{q(2-s)}}$, a simple calculation shows that, in view of from (2.5), there exists $\overline{\lambda} \in (0, \overline{\lambda}_1)$ such that, for all $\lambda \in [0, \overline{\lambda}]$ one has $||u_{\lambda}||_{\infty} < C$. Now, we claim that u_{λ} is nonnegative in Ω . Assume the contrary. Then, being $u_{\lambda} \in C^0(\overline{\Omega})$, the set $A := \{x \in \Omega : u_{\lambda}(x) < 0\}$ is nonempty and open. Further, being u_{λ} a critical point of $\Psi + \lambda \Phi$, for all $v \in C_0^{\infty}(A)$ we have

$$\int_{A} \nabla u_{\lambda}(x) \nabla v(x) dx - \int_{A} g_0(x, v_{\lambda}(x)) + \lambda f_0(x, v_{\lambda}(x))) v(x) dx = 0$$

from which

$$\int_{A} \nabla u_{\lambda}(x) \nabla v(x) dx = 0.$$

Since $u_{\lambda} |_{A} \in W_{0}^{1,2}(\Omega)$ and being $C_{0}^{\infty}(A)$ dense in $W_{0}^{1,2}(\Omega)$, by the previous equality, with $v = u_{\lambda} |_{A}$, we obtain $\int_{A} |\nabla u_{\lambda}(x)|^{2} dx = 0$, which is absurd. The previous argument permits us to conclude that

$$(2.6) 0 \le u_{\lambda}(x) \le C$$

Giovanni Anello

for all $x \in \Omega$. Consequently, for all $\lambda \in [0, \overline{\lambda}]$ we find a weak nonzero nonnegative solution v_{λ} of the Dirichlet problem

$$\left\{ \begin{array}{ll} -\Delta u = g(x,u) + \lambda f(x,u) & \text{ in } & \Omega \\ u = 0 & \text{ on } & \partial \, \Omega \end{array} \right.$$

Repeating the same arguments carried out up to now but considering the functionals Ψ and $-\Phi$ and choosing eventually $\overline{\lambda}$ sufficiently small, we have that the same above conclusion holds for every $\lambda \in [-\overline{\lambda}, 0[$. To conclude the proof, we observe that by Theorem 8.2' of [1], there exists a constant C_1 such that u_{λ} is a strong solution of $(P_{\lambda}), u_{\lambda} \in W^{2,q}(\Omega)$ and

$$\|u_{\lambda}\|_{W^{2,q}(\Omega)} \leq C_1(\|g(\cdot, u_{\lambda}(\cdot)) + \lambda f(\cdot, u_{\lambda}(\cdot))\|_q + \|u_{\lambda}\|_q).$$

Consequently, taking into account of (2.6), we have

$$\|u_{\lambda}\|_{W^{2,q}(\Omega)} \leq \sigma$$

with

$$\sigma = aC_1 m(\Omega)^{\frac{1}{q}} C^{s-1} + \overline{\lambda} C_1 \| \sup_{0 \le \xi \le C} |f(\cdot, \xi)| \|_q + C_1 m(\Omega)^{\frac{1}{q}} C$$

for all $\lambda \in [-\overline{\lambda}, \overline{\lambda}]$.

Theorem 2.2 below gives the existence of a nonzero nonpositive solution to a problem (P_{λ}) .

Theorem 2.2. Let $s \in (1,2)$ $q > \frac{N}{2}$ and a > 0. Let $f, g : \Omega \times \mathbb{R} \to \mathbb{R}$ be two Carathéodory functions satisfying the following conditions

- (i) $\sup_{-r \leq \xi \leq 0} |f(\cdot, \xi)| \in L^q(\Omega)$ for all r > 0;
- (ii) f(x,0) = 0 for a.e. $x \in \Omega$;
- (iii) $|g(x,-t)| \leq a(t)^{s-1}$ for all $t \geq 0$ and a.e $x \in \Omega$.
- (iv) there exists a non empty open set $D \subseteq \Omega$ such that

$$\liminf_{\xi \to 0^-} \frac{\inf_{x \in D} \int_0^{\xi} g(x, t) dt}{\xi^2} = +\infty$$

Then, there exist $\sigma, \overline{\lambda} > 0$ such that, for every $\lambda \in [-\overline{\lambda}, \overline{\lambda}]$, there exists a strong nonzero nonpositive solution $u_{\lambda} \in W_0^{1,2}(\Omega) \cap W^{2,q}(\Omega)$ of problem (P_{λ}) with $||u_{\lambda}||_{W^{2,q}(\Omega)} \leq \sigma$.

Proof. We apply Theorem 2.1 considering the functions -g(x, -t), -f(x, -t). Then, there exist $\sigma, \overline{\lambda} > 0$ such that, for every $\lambda \in [-\overline{\lambda}, \overline{\lambda}]$, there exists a nonzero nonnegative strong solution $v_{\lambda} \in W_0^{1,2}(\Omega) \cap W^{2,q}(\Omega)$ of the problem

$$\left\{ \begin{array}{ll} -\Delta u = -g(x,-u) - \lambda f(x,-u) & \mbox{ in } & \Omega \\ u = 0 & \mbox{ in } & \partial \, \Omega \end{array} \right.$$

with $||u_{\lambda}||_{W^{2,q}\Omega} \leq \sigma$. Hence, it is enough to take $u_{\lambda} = -v_{\lambda}$.

_

Clearly, combining Theorem 2.1 and Theorem 2.2 we obtain the following result

Theorem 2.3. Let $s \in (1,2)$ $q > \frac{N}{2}$ and a > 0. Let $f, g : \Omega \times \mathbb{R} \to \mathbb{R}$ be two Carathéodory functions satisfying the following conditions

- (i) $\sup_{|\xi| \leq r} |f(\cdot, \xi)| \in L^q(\Omega)$ for all r > 0;
- (ii) f(x,0) = 0 for a.e. $x \in \Omega$;
- (iii) $|g(x,t)| \leq a|t|^{s-1}$ for all $t \in \mathbb{R}$ and a.e $x \in \Omega$.
- (iv) there exists a non empty open set $D \subseteq \Omega$ such that

$$\liminf_{\xi \to 0} \frac{\inf_{x \in D} \int_0^{\xi} g(x, t) dt}{\xi^2} = +\infty$$

Then, there exist $\sigma, \overline{\lambda} > 0$ such that, for every $\lambda \in [-\overline{\lambda}, \overline{\lambda}]$, there exist a strong nonzero nonnegative solution $u_{\lambda} \in W_0^{1,2}(\Omega) \cap W^{2,q}(\Omega)$ and a strong nonzero nonpositive solution $v_{\lambda} \in W_0^{1,2}(\Omega) \cap W^{2,q}(\Omega)$ of problem (P_{λ}) with $\max\{\|u_{\lambda}\|_{W^{2,q}(\Omega)}, \|v_{\lambda}\|_{W^{2,q}(\Omega)}\} \leq \sigma$.

Among the existing results which give the same conclusion of Theorem 2.3 we stress Theorem 6.2 of [6]. We note that in the latter a subcritical growth condition is imposed on the nonlinearity. In our case, condition i) permits us to consider nonlinearities without such a condition. In particular we see that condition i) is less restrictive than assuming $f \in C^0(\overline{\Omega} \times \mathbb{R})$ (observe that, as previously said, this latter condition is required in [4]).

REFERENCES

- S. Agmon, The L_p approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 405-448.
- G. Anello, A multiplicity theorem for critical points of functionals on reflexive Banach spaces, Arch. Math., 82 (2004), 172-179.
- 3. D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, Springer-Verlag, Berlin Heidelberg New York, 1977.

Giovanni Anello

- 4. S. Li and Z. Liu, Perturbations from symmetric elliptic boundary value problems, *J. Diff. Eqs.*, **185** (2002), 271-280.
- 5. B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math., **113** (2000), 401-410.
- 6. M. Struwe, Variational Methods, Springer, 1996.
- 7. E. Zeidler, Nonlinear functional analysis and its applications, vol III, Springer-Verlag, 1985.

Giovanni Anello Department of Mathematics, University of Messina, 98166 Sant'Agata-Messina, Italy E-mail: anello@dipmat.unime.it