TAIWANESE JOURNAL OF MATHEMATICS
Vol. 10, No. 6, pp. 1465-1483, December 2006
This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON STUDY OF A MODIFIED LOCAL CONSTANT AM-SMOOTHER

Jung-Huei Lin, Tzu-Kuei Chang and Chih-Kang Chu

Abstract. In the case of the equally spaced fixed design nonparametric regres-
sion, the local constant M -smoother (I.CM) with local maximizing is proposed
by Chu, Glad, Godtliebsen, and Marron (1998) to correct for the effect of dis-
continuity on the kernel regression estimator. It has the interesting property
of jump-preserving. However, in the jump region, it is inconsistent when the
magnitude of the noise is larger than the size of the jump in the regression.
To adjust for this drawback to the ordinary LCM, we propose to construct
the LCM with global maximizing instead of local maximizing as well as with
binned data instead of original data. Our proposed estimator is analyzed by the
asymptotic mean square error. Both binning and global maximizing have no
effect on the asymptotic mean square error of the ordinary LCM in the smooth
region, but have an effect on improving the inconsistency of the ordinary LCM
in the jump region. Simulation studies demonstrate that the regression function
estimate produced by our modified LCM is better than those by alternatives,
in the sense of yielding smaller sample mean integrated square error, showing
more accurately the location of jump point, and having smoother appearance.

1. INTRODUCTION

Nonparametric regression is a smoothing method for recovering the regression
function from noisy data. Due to simplicity of computation and explanation, the
kernel regression estimator is one of the most widely used smoothers. For a detailed
introduction and asymptotic properties of the kernel regression estimator, see, for
example, the monographs by Eubank (1988), Muller (1988), Hardle (1990, 1991),
Scott (1992), Wand and Jones (19953), Fan and Gijbels (1996), and Simonoff (1996).

However, in application of the kernel regression estimator, the underlying re-
gression function may or may not have discontinuity points. For example, consider
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the cases of studying the impact of advertising, the effect of medicine, and the in-
fluence of sudden changes in government policies and international relationships.
If the regression function is affected instantly by such actions, then the resulting
regression function has discontinuity points; otherwise it does not. See, for exam-
ple, Shiau (1985) for many interesting examples where the regression functions are
discontinuous. If the regression function has discontinuity points, then the kernel
regression estimator is inadvisable, because smoothing tends to blur the jumps. For
a detailed introduction of the effect of discontinuity points on the kernel regression
estimator, see, for example, Wu and Chu (1993a, 1993b) and the references therein.

To improve the adverse effect of discontinuity points on the kernel regression
estimator, several remedies are available. For example, it can be improved by using
locally varying bandwidths (Fan and Gijbels 1995), by employing robust kernel
estimators (Hardle and Gasser 1984; Tsybakov 1986; Besl, Birch, and Watson 1989;
Fan, Hu, and Truong 1994; Fan and Jiang 1999), and by applying diagnostic kernel
regression estimators (McDonald and Owen 1986; Hall and Titterington 1992; Qiu
2003). To perform these kernel regression estimators dealing with discontinuity,
we do not need to know in advance that the regression function under study is
discontinuous. However, due to the essence of local average and the possibility that
the magnitude of the noise is large relative to the jump size of the regression function,
estimators corresponding to the first two remedies still might be inconsistent in the
jump region. Also, by the randomness of the diagnostic result, regression function
estimates produced by estimators associated to the third remedy always have rough
appearance. For these facts, see, for example, Figures 2-5 in Section 4. On the other
hand, when the regression function is known to be discontinuous, kernel smoothing
methods that produce discontinuous output have been proposed by Miller (1992)
and Wu and Chu (1993b) for the one dimensional regression function, and by
Qiu (1998) for the two dimensional regression function. To perform these kernel
smoothing methods, the numbers of jump points and jump curves of the one and
the two dimensional regression functions, respectively, need further to be known.
However, in practice, it is not easy to obtain the correct information about these
numbers.

Without assuming the discontinuity of the regression function, Chu, Glad, God-
tliebsen, and Marron (1998) propose the local constant AJ-smoother (LCM). It is
constructed by applying the idea of redescending M -estimation to local constant
fits, and by exploiting the controversial local maximizer. For introduction of robust
M -estimation, see, for example, the monographs by Huber (1981) and Hampel,
Ronchetti, Rousseeuw, and Stahel (1986). Such LCM has the interesting property
of jump-preserving. But it is weak in terms of efficiency of noise reduction, and
suffers from inconsistency in the jump region when the magnitude of the noise is
larger than the size of the jump in the regression. There are twofold distinctions
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between the LCM and the robust kernel estimator. Firstly, the former method is
constructed by choosing the local maximizer; but the latter approach is developed
by finding the global maximizer. Secondly, the redescending function employed
by the former method is usually taken as the Gaussian function with mean 0 and
standard deviation g = g,, depending on the sample size n (see for example, Chapter
4 of Silverman 1986 for discussion and references concerning such choice); but that
used by the latter approach is the Gaussian function with mean 0 and standard
deviation 1 not depending on the sample size n.

The purpose of this article is to propose a modified LCM to improve the incon-
sistency of the ordinary LCM in the jump region. Our modified LCM is constructed
by two stages. In the first stage, in order to reduce the magnitude of the noise of
the data to deal with, the original data are transformed into the binned data (Hardle
1990). In the second stage, the LCM with global maximizing instead of local max-
imizing is applied to smooth the binned data obtained in the first stage. It is shown
that both binning and global maximizing have no effect on the asymptotic mean
square error (AMSE) of the ordinary LCM in the smooth region, but has an ef-
fect on improving the inconsistency of the ordinary LCM in the jump region. The
latter effect is caused by the fact that the relative magnitude of the noise to the
jump size in the binned data decreases as the bin size increases. Simulation studies
demonstrate that the regression function estimate produced by our modified LCM
is better than those by alternatives, in the sense of yielding smaller sample mean
integrated square error, showing more accurately the location of jump point, and
having smoother appearance.

This article is organized as follows. Section 2 describes the regression settings
and the precise formulation of the modified LCM. The asymptotic behavior of our
suggested estimator is studied in Section 3. Simulation results which show the
finite sample behavior of the proposed estimator are contained in Section 4. Finally,
proofs of the main theoretical results are given in Section 3.

2. REGRESSION SETTINGS AND PROPOSED ESTIMATORS

In this paper, the equally spaced fixed design nonparametric regression model
is considered. The regression model is given by

(2.1) Y = m(z;) + ¢,

for i =1,.--,n. Here m is an unknown regression function defined on the closed
interval [0,1], z; are equally spaced fixed design points, that is, x; = i/n, ¢; are
independent and identically distributed regression errors with mean 0 and variance
02,0 < 0% < oo, and Y; are noisy observations of m at z;.
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The regression function m in (2.1) is defined by

(2.2) m(@) = p(a) +d - I (@),

for « € [0, 1], where & is a continuous function defined on [0,1], ¢ is the location
of jump point, d is the jump size of m at {, and [ is an indicator function. To
avoid confounding the issues studied here with boundary problems, assume that
t € [6,1 —¢]. Here and throughout this paper, ¢ is an arbitrarily small positive
constant. For simplicity of presentation, assume that the number of jump point of
m is 1. An important special case is d = 0, that is, m is a continuous regression
function.

The purpose of this paper is to use the observations Y; to discover the value of
m(z), for € [0, 1]. For this, a modified LCM is considered. It is constructed by
two stages. Firstly, in the pre-binning stage, the original data (z;, Y;) are transformed
into the binned data on equally spaced partitioned points of [0,1]. For this, give the
bin size 2b, where b = b, — 0 with nb — oo as n — oo, and let p; = (25 — 1)b
denote the center of the j-th bin, the interval [p; — b, p; +b). and Y] the binned
data obtained at p; by averaging the observations Y; occurred in the j-th bin, for
each j = 1, -- -, q. Here ¢ = [(2b) !]. The notation [ denotes the integer part of
. Specifically, Y; is defined by

Y= [Z W{(p; — xi)/b}Yi]/[Z WH(p; —2:i)/b}],

where W is the uniform kernel function defined by W(z) = (1/2)1;_1 1)(2). Under
some regularity conditions, the variance of our binned data is roughly equal to
(2nb) o2, and is of smaller order in magnitude than that of the original data.
Hence binning has an effect on reducing the magnitude of noise of the data. If 1 is
not a multiple of 2b, then the observations Y; with design points x; € [0, 2bq]| are
used to construct the binned data, and the rest of the observations are dropped out.
For simplicity of notation, assume that 1 is a multiple of 25.

Secondly, in the smoothing stage, the modified LCM is employed to smooth
the binned data (p;,Y;). Give the kernel function K as a symmetric probability
density function supported on the interval [-1,1], L as the Gaussian function, and
both bandwidths h = h,, and g = g,, tending to 0 as n — oo, but the bandwidth A
is of larger order than the bin size 2b in magnitude. Our modified LCM 1 prop ()
for m(x) is constructed by applying both the local constant fit for the binned data
to the “inside” of the kernel function /. and the local linear weighting scheme to
the outside” of L, and by taking the global maximizer of the resulting A function

(2.3) Smop(&;x) = ZO‘J’@U)I@/(YJ’ —¢)
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over &, for each @ € [0, 1]. Here L,(-) = g *L(-/g). the Gaussian function with
mean 0 and standard deviation g. For the reason of taking I as the Gaussian
function, see Chu et al. (1998). To avoid boundary effects (Milller 1988) on the
ordinary LCM., the weights o; () in (2.3) are generated by applying the local linear
fit to the “outside” of the kernel function 7., as Hwang (2002) suggests. These
weights «o;(x) are taken as those assigned to the observations by the local linear
smoother in Fan (1992, 1993). Specifically,

aj(x) = {S2(x) — (& — ;) S1(2) }Kn(a — p;)/{So(2)S2(x) — ST(2)},

where Kp(-) = h LK (-/h) and Si(x) = 1 (x — pj)*Kp(z — p;), for k > 0.
The asymptotic behavior of the proposed estimator 1 yop(x) will be studied in
Section 3.

If oj(2). (pj,Y;), and ¢ in (2.3) are replaced respectively with Kj(w; — ;).
(@;,Y;), and n, then the local maximizer of the corresponding M function closest
to the observation Y; is the ordinary LCM for m(z;). Further, if the value of ¢ in
(2.3) is taken as g = 1, then the global maximizer of the corresponding M function
is the robust kernel estimator (Hardle and Gasser 1984) for m(x;). It is known
that these two estimators suffer from boundary effects, and the drawback can be
simply improved by using the local linear weighting scheme as we do in (2.3). Such
resulting estimators free from boundary effects are the boundary modified LCM in
Hwang (2002) and the boundary modified robust kernel estimator, and are denoted
by o () and mpp7(2;), respectively, in each case. They might be inconsistent
in the jump region, and their finite sample performance will be compared with that
of marop(x;) in Section 4. On the other hand, for improving boundary effects on
the ordinary LCM, Rue, Chu, Godtliebsen, and Marron (2002) propose the local
linear M -smoother by applying the local linear fitting inside of the kernel function
L. However, the local linear A/ -smoother still suffers from the inconsistency in the
jump region. Due to the fact of using an extra tuning parameter, it also suffers from
the sensitivity to random fluctuations (Hwang 2002).

The motivation of our modified LCM is now given. It is illustrated in the
following Figure 1. By the formulation of Sy;op(&;2) in (2.3), it is essentially a
kernel density estimate using only the binned data (p;, Y]) occurred in the compact
window [x — h,x + h|. See, for example, the monograph by Silverman (1986) for
a detailed introduction of the kernel density estimator. If « is in the smooth region,
then, by some regularity conditions, the observations Y; employed by Syop(€; @)
have expectations close to m(x). Hence, the corresponding Syrop(&; «) has a single
global maximizer located around m(z), asymptotically. The smaller the magnitude
of the noise in the binned data, the sharper the peak located around m(x) shown
by Syrop(€; ). On the other hand, if = is in the jump region, then, by similar
arguments, Syrop(&; z) is a mixture density estimate having two local maximizers
located around p(x) and p(x) + d, asymptotically. In this case, if @ < ¢, then the
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global maximizer of Syrop(&; ) is located around p(x) since the number of the
binned data used by Spsop(€; ) having expectations approaching p(x) is larger

(1a) —_— (1b)

0.2
[

Fig. 1. An artificial example. (la) One simulated data set of sample size n = 200.
(1b) The true regression function. (1¢) Best performance of rivycops(x) using
bandwidths A = 0.0949 and g = 0.375. (1d) Best performance of mgpr(z)
using i = 0.0720 and g = 1. (le) Best performance of rprop(x) using b =
0.0199, h = 0.157, and g = 0.203. (1f) The M function Spc s (€; x = 0.48) for
mron(0.48) in (1¢). (1g) The M function Sgpr(&; x = 0.48) for mppr(0.48)
in (1d). (1h) The M function Syrop(&; x = 0.48) for marop (0.48) in (le).
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than that converging to u(x) + d. Similar remark can be applied to the case that
x > t. By these arguments, the global maximizer of Syop(&;2) over € is a
reasonable estimator of m(x), for each x € [0, 1].

We now close this section by giving an illustration of our modified LCM. For
this, a simulation study was performed and the results are given in Figure 1. The
simulation settings will be introduced in Section 4. It is difficult to distinguish
visually from the simulated data in Figure la alone that the underlying regression
function (dashed curves) in Figure 1b has a jump point at = = 0.5. Using the data in
Figure la, Figures lc-1e present respectively the best performance of the regression
function estimate (solid curve) produced by each of (), mrpr(x), and
marop(x). The values of the smoothing parameters used by the three estimators
were taken as the minimizers of their sample integrated square errors. Under our
simulation setting, the best performance of our modified LCM is better than that of
the other two estimators, in the sense of yielding smaller sample integrated square
error and showing more accurately the location of the jump point.

Figure 1f shows the disappearance of the bimodal structure of the mixture density
estimate Szop(&; 2 = 0.48) (solid curve), that is, the M function corresponding
to mroar(0.48) in the jump region in Figure lc. Such result explains the poor
performance of 1mrca(0.48), and is due to the large relative magnitude of the
noise in the original data to the jump size. The same remark applies to the mixture
density estimate Sgp7(&; 2 = 0.48) in Figure lg for mppr(0.48) in Figure 1d.
On the other hand. the binned data (p;, Y]) (stars) in Figure l1h produced by using
the original data in Figure la show the small relative magnitude of their noise to
the jump size. Their corresponding mixture density estimate Sy;op(&;x = 0.48)
(solid curve in Figure 1h) for m;0p(0.48) in Figure le shows correctly a bimodal
structure, and its global maximizer coincides to the value of m(0.48). Comparing
Figures 1f-1h, it can be seen that both binning and global maximizing have an effect
on improving the inconsistency of mycps(2) in the jump region. The locations of
the dashed and the solid vertical lines in each of Figures 1f-1h denote respectively
the value of m(0.48) and its corresponding estimate, and that of the dotted vertical
line in Figure 1f stands for the value of Y; in Figure 1a at the design point z; = 0.48.

3. THEORETICAL RESULTS

In this section, we shall study the asymptotic behavior of my;op(z). For this,
in addition to the assumptions given in Section 2, we add the following ones:

(A1) The function p defined on the interval [0,1] has two Lipschitz continuous
derivatives.

(A2) The kernel function K is a symmetric and Lipschitz continuous probability
density function supported on [-1,1], and L is the Gaussian function.
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(A3) The regression errors ¢; are independent and identically distributed random
variables with mean 0 and variance o2, 0 < 0?2 < .

(A4) The values of b, h, and ¢ are selected on the interval [§ - n= 179, §1 .
n~°], where J is an arbitrarily small positive constant. Also, they satisfy the
conditions A2 >> b and g2 >> h +n b1 4 nbh* + n3/2673/2p 2. The
notation o, >> 3, denotes 3,/a, — 0, as n — oo.

(A5) The total number of observations in this regression setting is 7, with n — oco.

The following Theorem 3.1 gives the asymptotic bias and variance of mprop(z).
Its proof is given in Section 5. To state this theorem, we introduce the following
notation. Decompose the interval [0,1] into the left boundary region R, the right
boundary region F», the region Rs just to the left of the jump point, the region Ry
just to the right of the jump point, and the smooth region F5. Specifically,

Ri={{z:2=Xn,A€[0,1]}, Re={z:2z=1+XIr,Ae[-1,0]},

Rs={z:z=t+Ar, A€ [-1,0)}, Ry={z:xz=1t+Ar,\€][0,1]},
Rs={x:xe(h,t—h)U({+h1—h)}
Set

1 A
K/j/ P K(z)dz, ke /1Z]K<Z)d2’,

1
1 A
L J 2 R J 2
T / P K(z)*dz, T / 2 K(z)%dz,
—1 —1
Dyo = Keokes — K2 Dys = K2, — K1k
62 = Keoke2 — Kiq, 63 = Kio — K(1Ke3,
.2 2
Neo = KioTeo — 2 KepkeaTen + K Te2,

for j > 0. Let x,; and 7, ; be r¢; and 7¢; with the integration interval [—1, ]
replaced by [\, 1], and D, 5, D, 3, and N, 2 be defined similarly to D¢ o, Dy 3. and
Ny 2. respectively, in each case.

Define quantities related to asymptotic biases and variances:

_ | _ -1 | _ -1
bo = ra, bei = Kygker, bz = DyyDes, bri = Kogkr1, bro= D5 Dy 3,
= = Ky = D3N, = K5 = D, 3N,

Vo = To, Vg1 — ’45707—6,07 Vg2 — 42 62, Url — ’irjoTr,Oy Vr2 = r,24Vr2:

Theorem 3.1. Suppose that the regression model (2.1) with d # 0 and the as-
sumptions (A1)-(A5) hold. For xin each Ry, Ro, Rs, Ry, and Rs, the dominant terms
of asymptotic bias and variance of myjop(x) can be expressed respectively by

Bias{myop(@)} = (1/2R2uP @b, (/2R @b, (~Dh® ()b,
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(3.1) (=R (@)bey,  (1/2)R%? ()b,

Var{mMOD(x)}:nflhflaZ’Ug,g, nflhfla%,p,g, n71h7102’ur71,

(3.2) n71h7102’um, n thloy,.

On the other hand, if d = 0, the results in (3.1) and (3.2) still hold by dropping out
the cases Rs and Ry.
We now close this section with the following remarks.

Remark 3.1. {The asymptotic properties of myop(2)} By (3.1) and (3.2),
the bin size 2b, the jump size d, where d # 0, and the Gaussian function . are not
related to the dominant term of AMSE of ry;op(2), for each € [0, 1]. However,
the discontinuity of the regression function has an effect on increasing the order of
asymptotic bias of 7370 p(x), but has no effect on the order of asymptotic variance
of marop(x), for  in the jump region [t — h,¢ + h]. By Theorem 3.1 of this
paper and Theorem 4.1 of Ruppert and Wand (1994), for « ¢ [t — h,{ + k], our
marop(x) has the same AMSE as the local linear smoother in Fan (1992, 1993).
For such « away from jump point, in the sense of having smaller AMSE, using (5.7),
(5.8), and Theorem 8 of Fan, Gasser, Gijbels, Brockmann, and Engel (1993), the
optimal kernel function K satisfying the conditions given in (A2) for constructing
maurop(x) is the Epanechnikov kemel K'(z) = (3/4)(1 — 22)1[_1 1)(2).

Remark 3.2. {Practical choice of the values of b, g, and h for constructing
marop(x)} For constructing mpsop(x), we suggest using the cross-validation cri-
terion to choose the value of (b, k, g). The selected value of (b, h, g) is taken as the
minimizer (b, h, §) of the cross-validation score C'Virop(b, h, g) defined by

CVion(b, h,g) = > {mmop(w:) = Yi¥*;
i—1

see Section 5.1 of Hardle (1990). Here mMOD,i(mi) 1s the “leave-one-out” ver-
sion of myop(x;), that is, the observation (z;,Y;) is left out in constructing
marop(x;). For other automatic bandwidth selection methods, see also Hardle
and Marron (1985), Rice (1984), and Marron (1988).

Remark 3.3. {A direct extension of 7 70p(x) to the random design data} By
the suggestion of the reviewer of the paper, the result of this paper can be applied to
the random design regression model. For this, the random design regression model
is given by Z; = r(U;)+e;, for i = 1, ---,n. Here the regression function r () is the
same as that m(z) in (2.2), for each 2 € [0, 1], the random design data (U;, Z;) are
independent and identically distributed bivariate random vectors, and the regression



1474 Jung-Huei Lin, Tzu-Kuei Chang and Chih-Kang Chu

errors e; are assumed to have mean 0 and variance 02, 0 < 02 < co. The design
points U; are assumed to be independent of the regression errors e;, and are assumed
to have the probability density function supported on the bounded interval [0, 1]. The
modified LCM 7 ;0p(2) for r(z) is similarly defined as 7370 p(x) with the fixed
design data (z;, Y;) replaced by the random design data (U;, Z;). The performance
of #yrop(x), for @ € [0,1], needs further study. In practice, the idea of cross-
validation introduced in Remark 3.2 can be employed to select the values of the
smoothing parameters for constructing 7 yrop(2).

4. SIMULATIONS

In this section, a simulation study was performed to compare the performance of
six kernel regression estimators dealing with discontinuity. These six estimators in-
clude the local linear smoother 17,15 () using locally varying bandwidths (Fan and
Gijbels 1995), the diagnostic kernel regression estimators mpay («) (Hall and Tit-
terington 1992) and mgry(x) (Qiu 2003), the boundary modified LCM mpcar ()
(Hwang 2002), the boundary modified robust kernel estimator 1 pp7(2) (Hardle and
Gasser 1984), and our proposed estimator ;0 p(«). They were computed without
knowing in advance that the regression function under study is discontinuous. The
formulations of "o (), mrpr(x), and myrop(z) have been given in Section
2. The kernel function K used by each discussed estimator was the Epanechnikov
kernel. Two regression functions my (@) = a® + (1/2) Ij 51 (@) with one point
t = 0.5 of discontinuity, and ma(x) = 0.5 Ijg9.5(%) + 0 los0.7)(®) +1 ljg.71()
with two points ¢ = 0.3 and 0.7 of discontinuity were chosen. For each regression
function, two sample sizes n = 200 and 500 were considered. For each regression
function and each sample size, the regression errors ¢; were pseudo independent
normal random variables N (0, 02), where o = 0.25, and 100 independent sets of
observations were generated from the regression model (2.1).

Given each data set, the value of the integrated square error 1S Eyop(b, h, g)
and that of the cross-validation score C'Vi;op(b, h, g) for our proposed estimator
marop(x) were calculated on the equally spaced logarithmic grid of 51 x 51 x 51
values of (b, h,g) in the region [0.01,0.1] x [0.01,0.3] x [0.1,0.5]. See Marron
and Wand (1992) for a discussion that an equally spaced grid of parameters is
typically not a very efficient design for this type of grid search. For the given
value (b, h, g), the value of IS FEy;0p(b, h, g) was empirically approximated by the
quantity (1/u) 3% j{mumop(u;) — m(w;) %, where u; = i/u and uw = 200. After
evaluation on the grid, the global minimizers (b, k, §) of ISEyop(b, h,g) and
(b, h, §) of CVarop(b, h, g) were taken on the grid.

When the values of (l~7, h, g) over the 100 pseudo data sets were obtained, the
sample average and standard deviation of their corresponding IS Fyop (l~7, h, J)
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were calculated. The former quantity measures the best performance of 1o p(2).
The optimal regression function estimate produced by 7 ;0p(2) using the optimal
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Fig. 2. With the sample size n = 200, (2a)-(2f) show the regression function m; ()
(dotted curve), and 10 optimal regression function estiamtes (solid curves) de-
rived respectively by ﬁ’LLLs(x), mDGN(x), ﬁ’LQ[U (ac), ﬁzLCM(:)c), ﬁzRBT(:)c),
and mprop(x), and (2g)-(2h) plot my (z) (dotted curve), and sample averages
and sample mean square errors, respectively, of the 100 optimal regression func-
tion estimates derived by miycar(x) (dashed curve), mppr(x) (short-dashed
curve), and mprop(z) (solid curve). (2i) gives sample mean square errors of
the three estimators in (2h) with n = 200 replaced by n = 500.
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value (b, h, §) of (b, h,g) was computed for each data set. On the other hand,
the sample average and standard deviation of the corresponding 15 Fyro D(?), h, J)
over the 100 pseudo data sets were also computed. The former measures the perfor-
mance of mp;op(2) which can be obtained in practice by using the cross-validated
bandwidth. The obtainable regression function estimate produced by myr0p(2)
employing (b, h, §) was computed for cach data set.

The same procedures for computing both the best and the obtainable performance

Fig. 3. The description of Figure 3 is the same as that of Figure 2 with optimal results
replaced by obtainable results.
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of arop(x) were applied to the other five discussed estimators s (2), mpon ().
mqoru(x), mroy (), and mprpr(x). For doing this, the same grid of values of A
and g used by masop(x) was employed. The best performance of 1y rs(x) was
derived by using a globally constant bandwidth, but its obtainable performance by
employing the locally varying bandwidth (Fan and Gijbels 1995). Let ISE g(h)
and ISE1s(h) be similarly defined for 1y 1g(2), ISEpng(h) and ISEpna(h)
for mDGN<$), ISEQ[U<iL) and ISEQ[UGL) for mQ[U<$), ISELCM<iL,§) and
ISELCMGL,Q) for mL(jM(x‘), andISERBT(iL) andISERBT(iL) for mRBT<$).
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Fig. 4. The description of Figure 4 is the same as that of Figure 2 with the regression
function m4 (z) replaced by ma(x).
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The simulation results are summarized in the following figures and tables.

Given the regression function m; (), the best and the practical performance of
the six discussed estimators are presented respectively in Figures 2 and 3. Given the
sample size n = 200, Figures 2a-2f present 10 optimal regression function estimates
derived from 10 sets of simulated data by the six discussed estimators. It is clear
that the optimal regression function estimates produced by our 170 p(2) show the
location of jump point most accurately, and have the smoothest appearance in the
smooth region. Also, Figures 2g-2h show respectively that, for  in the jump region,

Fig. 5. The description of Figure 5 is the same as that of Figure 3 with the regression
function m4 (z) replaced by ma(x).
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the optimal regression function estimate produced by myop(2) does not suffer
from inconsistency, and has smaller sample mean square error than 1o (2) and
mprpr(x). Given the sample size n = 500, Figure 2i present the same advantage
of myop(x) over oy (x) and mppr(2) as they do in Figure 2h. Under the
simulation setting, the results in Figure 2 show that our modified LCM improves
the inconsistency of the ordinary LCM in the jump region. These remarks made
from Figure 2 for the optimal regression function estimate can be applied to the
obtainable regression function estimate in Figure 3. Similar conclusions drawn
from Figures 2-3 for the regression function mq(z) can be made for the regression
function mo(2) in Figures 4-5. Finally, the regression function estimates produced
by the six discussed estimators with the sample size n = 500 are not reported here
since their performance is the same as that shown in Figures 2-5 for the sample size
n — 200.

Table 1 shows that, for each regression function and each sample size, our
suggested estimator 1mp;op(x) has better both the optimal and the practical per-
formance than the other five discussed estimators, in the sense of yielding smaller
sample mean integrated square error.

Table 1. Values of the sample mean and standard deviation (contained in the paren-
theses) of ISELLS< ) and ISELLS< ) for mLLg( ) ISEDNg< ) and
ISEDNg< ) for mDNg< ) ISEQ[U< ) and ISEQ[U< ) for mQ[U( )
ISELCM<h g) and ISELCM<h g) fOl‘ mLCM< ), ISERBT<h) and
ISERBT< ) for mRBT( ) and ISEMOD<b h g) and ISEMOD<b h g)
for mpop(x). Each of these values has been multiplied by 102,

best performance practical performance
n — 200 n — 500 n — 200 n — 500
regression function mq (x)
mprs(z)  4.82(1.13) 3.06(0.58) 4.94(1.29)  3.20(0.84)
mpyc(z)  3.34(1.53) 1.28(0.58) 4.79(2.08)  1.85(0.84)
mom(x)  7.15(2.74) 3.79(1.51) 8.25(3.44)  4.15(1.67)
mpem(z)  3.83(1.60) 2.22(0.96) 5.04(2.06)  2.79(1.22)
mppr(z)  4.72(1.13) 2.99(0.58) 5.32(1.33)  3.31(0.83)
myop(®)  1.35(0.84) 0.65(0.33) 451(2.94)  1.72(1.21)
regression function ms(x)
mrrs(z)  10.6(1.58) 6.63(0.84) 13.1(2.50)  8.66(2.56)
mpne(x)  5.89(2.37) 2.42(1.08) 8.67(4.38)  3.26(1.45)
mom(x)  9.78(3.37) 5.02(1.46) 10.8(4.24)  5.52(1.70)
mom(e)  4.87(1.73) 2.91(0.91) 6.33(2.28)  3.86(1.38)
mppr(z)  9.81(1.60) 6.11(0.85) 10.3(1.70)  6.47(1.01)
iop(z)  1.19(0.86) 0.56(0.34) 4.75(3.06)  2.14(1.58)
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5. SKETCHES OF THE PROOFS

Proof of Theorem 3.1. The following notation and asymptotic results will be
used in this section. For each x € [0, 1], set

aj(@) LY{Y; — m(x)}/g),

2=
&

I
)<

1

<.
Il

aj(@) LPY; — m(2)}/g),

=
E
I

Il
—

U(x) = myop(x) — m(x).

Using the regression model (2.1) and (A1)-(AS), through a straightforward calcula-
tion, for each € Ry, Ry, Rs, R4, K5, the dominant terms of the asymptotic ex-
pectation and variance of A(z) and those of B(x) can be expressed respectively by

E{A(e)} = (1/2)h g L (0){hut? (@)br, hu? ()b,

(5.1) (=2)u Y (@)rr1, (=2)pM (@)rer, R (@)r2},
(5.2) Var{A(2)} = o2 h g 2 LD (0) {ven, vr2, Tro, Tro, To),
(5.3) E{B(z)} = L&(0) {1, 1, k0, reo, 1},

(5.4)  Var{B(x)} = o*n 2 b g 2L(0)H v, vr2, Tros Teo, To)-

Here the notation k;, ke ;, Ky j, Tj. T j» Trj» be,2. Vo2, by 2, and v, o has been defined
in Section 3.

We now prove (3.1) and (3.2). Taking the first derivative of Sy;op(€; ) in
(2.3) with respect to &, and applying the first order Taylor expansion to the result,
we have

(5.5) 0= (9/98)Smon(& @) e—mpopx) = Alx) —U(z)g ™' B*(2),

where B*(z) is B(z) with Y; —m(=) in B(x) replaced by Y; —m(z) + Q;(x) and
Q;(x) satisty |Q;(x)| < |U(x)| for all 5. Using (5.5), the Lipschitz continuity of
L2 and the fact that >3 1 lej(z)] = O(1), through a straightforward calculation,
we have

(5.6) 0= A(x) —U(x)g 'B(x) + O{g *U(x)?}.
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Using (5.1)-(5.4) and comparing the magnitudes of A(z) and B(x) in both sides of
(5.6), a straightforward calculation leads to

(5.7) U(z) = op(1).

Hence Q;(x) = o,(1). for all j.
By (5.5), we have
Ux) =g Alw)/ B*(w).

Using the result, (5.1)-(5.4), (5.7), (A1)-(A5), and approximation to the standard
errors of functions of random variables given in Section 10.5 of Stuart and Ord
(1987), through a straightforward calculation, (3.1) and (3.2) follow. Hence the
proof of Theorem 3.1 is complete.
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