WARPED PRODUCT SUBMANIFOLDS IN KENMOTSU SPACE FORMS

C. Murathan, K. Arslan, R. Ezentas and I. Mihai

Abstract

Recently, Chen established a general sharp inequality for warped products in real space forms. As applications, he obtained obstructions to minimal isometric immersions of warped products into real space forms. Afterwards, Matsumoto and one of the present authors proved the Sasakian version of this inequality.

In the present paper, we obtain sharp estimates for the warping function in terms of the mean curvature for warped products isometrically immersed in Kenmotsu space forms. Some applications are derived.

1. Introduction

Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two Riemannian manifolds and f a positive differentiable function on M_{1}. The warped product of M_{1} and M_{2} is the Riemannian manifold

$$
M_{1} \times_{f} M_{2}=\left(M_{1} \times M_{2}, g\right),
$$

where $g=g_{1}+f^{2} g_{2}$ (see, for instance, [5]).
It is well-known that the notion of warped products plays some important role in Differential Geometry as well as in Physics. For a recent survey on warped products as Riemannian submanifolds, we refer to [4].

Let $x: M_{1} \times_{f} M_{2} \rightarrow \widetilde{M}(c)$ be an isometric immersion of a warped product $M_{1} \times_{f} M_{2}$ into a Riemannian manifold $\widetilde{M}(c)$ with constant sectional curvature c. We denote by h the second fundamental form of x and $H_{i}=\frac{1}{n_{i}}$ trace h_{i}, where

[^0]trace h_{i} is the trace of h restricted to M_{i} and $n_{i}=\operatorname{dim} M_{i}(i=1,2)$. We call H_{i} ($i=1,2$) the partial mean curvature vectors.

The immersion x is said to be mixed totally geodesic if $h(X, Z)=0$, for any vector fields X and Z tangent to M_{1} and M_{2} respectively.

In [5], Chen established the following sharp relationship between the warping function f of a warped product $M_{1} \times{ }_{f} M_{2}$ isometrically immersed in a real space form $\widetilde{M}(c)$ and the squared mean curvature $\|H\|^{2}$.

Theorem 1.1. Let $x: M_{1} \times_{f} M_{2}$ be an isometric immersion of an n dimensional warped product into an m-dimensional Riemannian manifold $\widetilde{M}(c)$ of constant sectional curvature c. Then:

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} c \tag{1.1}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}, i=1,2$, and Δ is the Laplacian operator of M_{1}.
Moreover, the equality case of (1.1) holds if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}, i=1,2$, are the partial mean curvature vectors.

As applications, the author obtained necessary conditions for a warped product to admit a minimal isometric immersion in a Euclidean space or in a real space form (see [5]). Examples of submanifolds satisfying the equality case of (1.1) are given.

In the present paper, we establish corresponding inequalities for warped product submanifolds tangent to the structure vector field ξ into Kenmotsu space forms. Certain applications are derived.

2. Kenmotsu Manifolds and Their Submanifolds

Tanno [10] has classified, into 3 classes, the connected almost contact Riemannian manifolds whose automorphisms groups have the maximum dimensions:
(1) homogeneous normal contact Riemannian manifolds with constant ϕ-holomorphic sectional curvature;
(2) global Riemannian products of a line or circle and a Kaehlerian space form;
(3) warped product spaces $L \times{ }_{f} F$, where L is a line and F a Kaehlerian manifold.

Kenmotsu [6] studied the third class and characterized it by tensor equations. Later, such a manifold was called a Kenmotsu manifold.

A $(2 m+1)$-dimensional Riemannian manifold (\tilde{M}, g) is said to be a Kenmotsu manifold if it admits an endomorphism ϕ of its tangent bundle $T \tilde{M}$, a vector field ξ and a 1 -form η, which satisfy:

$$
\left\{\begin{array}{l}
\phi^{2}=-I d+\eta \otimes \xi, \quad \eta(\xi)=1, \quad \phi \xi=0, \quad \eta \circ \phi=0, \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \quad \eta(X)=g(X, \xi), \\
\left(\widetilde{\nabla}_{X} \phi\right) Y=-g(X, \phi Y) \xi-\eta(Y) \phi X, \\
\widetilde{\nabla}_{X} \xi=X-\eta(X) \xi,
\end{array}\right.
$$

for any vector fields X, Y on \tilde{M}, where $\tilde{\nabla}$ denotes the Riemannian connection with respect to g.

We denote by ω the fundamental 2-form of \tilde{M}, i.e. $\omega(X, Y)=g(\phi X, Y)$, $\forall X, Y \in \Gamma(T \tilde{M})$. It was proved that the pairing (ω, η) defines a locally conformal cosymplectic structure, i.e.

$$
d \omega=2 \omega \wedge \eta, \quad d \eta=0 .
$$

A Kenmotsu manifold with constant ϕ-holomorphic sectional curvature c is called a Kenmotsu space form and is denoted by $\tilde{M}(c)$. Then its curvature tensor \tilde{R} is expressed by [6]

$$
\begin{align*}
4 \tilde{R}(X, Y) Z= & (c-3)\{g(Y, Z) X-g(X, Z) Y\}+(c+1)[\{\eta(X) Y \\
& -\eta(Y) X\} \eta(Z)+\{g(X, Z) \eta(Y)-g(Y, Z) \eta(X)\} \xi \tag{2.2}\\
& +\omega(Y, Z) \phi X-\omega(X, Z) \phi Y-2 \omega(X, Y) \phi Z] .
\end{align*}
$$

Let \tilde{M} be a Kenmotsu manifold and M an n-dimensional submanifold tangent to ξ.

For any vector field X tangent to M, we put

$$
\begin{equation*}
\phi X=P X+F X, \tag{2.3}
\end{equation*}
$$

where $P X$ (resp. $F X$) denotes the tangential (resp. normal) component of ϕX. Then P is an endomorphism of tangent bundle $T M$ and F is a normal bundle valued 1-form on $T M$.

The equation of Gauss is given by

$$
\begin{align*}
\tilde{R}(X, Y, Z, W)= & R(X, Y, Z, W) \\
& +g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W)), \tag{2.4}
\end{align*}
$$

for any vectors X, Y, Z, W tangent to M.

We denote by H the mean curvature vector, i.e.

$$
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right)
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis of the tangent space $T_{p} M, p \in M$.
Also, we set

$$
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), \quad i, j=1, \ldots, n ; r=n+1, \ldots, 2 m+1
$$

and

$$
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right)
$$

We denote by

$$
\|P\|^{2}=\sum_{i, j=1}^{n} g^{2}\left(P e_{i}, e_{j}\right)
$$

By analogy with submanifolds in a Kaehler manifold, different classes of submanifolds in a Kenmotsu manifold were considered (see, for example, [11]).

A submanifold M tangent to ξ is said to be invariant (resp. anti-invariant) if $\phi\left(T_{p} M\right) \subset T_{p} M, \forall p \in M$ (resp. $\left.\phi\left(T_{p} M\right) \subset T_{p}^{\perp} M, \forall p \in M\right)$.

A submanifold M tangent to ξ is called a contact $C R$-submanifold [11] if there exists a pair of orthogonal differentiable distributions \mathcal{D} and \mathcal{D}^{\perp} on M, such that:
(i) $T M=\mathcal{D} \oplus \mathcal{D}^{\perp} \oplus\{\xi\}$, where $\{\xi\}$ is the 1-dimensional distribution spanned by ξ;
(ii) \mathcal{D} is invariant by ϕ, i.e. $\phi\left(\mathcal{D}_{p}\right) \subset \mathcal{D}_{p}, \forall p \in M$;
(iii) \mathcal{D}^{\perp} is anti-invariant by ϕ, i.e. $\phi\left(\mathcal{D}_{p}^{\perp}\right) \subset T_{p}^{\perp} M, \forall p \in M$.

In particular, if $\mathcal{D}^{\perp}=\{0\}$ (resp. $\mathcal{D}=\{0\}$), M is an invariant (resp. antiinvariant) submanifold.

We recall the following result of Chen for later use.
Lemma [3]. Let $n \geq 2$ and a_{1}, \ldots, a_{n}, b real numbers such that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right)
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if

$$
a_{1}+a_{2}=a_{3}=\ldots=a_{n}
$$

3. Warped Product Submanifolds

Chen established a sharp relationship between the warping function f of a warped product $M_{1} \times_{f} M_{2}$ isometrically immersed in a real space form $\widetilde{M}(c)$ and the squared mean curvature $\|H\|^{2}$ (see [5]). For other results on warped product submanifolds in complex space forms we refer to [8]. Similar inequalities for warped product submanifolds of a Sasakian space form were proved in [7].

In the present paper, we establish corresponding inequalities for warped product submanifolds in Kenmotsu space forms. We investigate warped product submanifolds tangent to the structure vector field ξ in a Kenmotsu space form $\widetilde{M}(c)$.

We distinguish 2 cases:
(a) ξ is tangent to M_{1};
(b) ξ is tangent to M_{2}.

Lemma 3.1. Let $x: M_{1} \times{ }_{f} M_{2}$ be an isometric immersion of an n-dimensional warped product into a $(2 m+1)$-dimensional Kenmotsu space form $\widetilde{M}(c)$, such that ξ is tangent to M_{1}. Then:

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c-3}{4}+\left(\frac{3}{n_{2}} \sum_{j=1}^{n_{1}} \sum_{t=n_{1}+1}^{n} g^{2}\left(P e_{j}, e_{t}\right)-1\right) \frac{c+1}{4} \tag{3.1}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}, i=1,2$, and Δ is the Laplacian operator on M_{1}.
Moreover, the equality case of (3.1) holds if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}, i=1,2$, are the partial mean curvature vectors.

Proof. Let $M_{1} \times_{f} M_{2}$ be a warped product submanifold into a Kenmotsu space form $\widetilde{M}(c)$ of constant ϕ-sectional curvature c, such that ξ is tangent to M_{1}.

Since $M_{1} \times_{f} M_{2}$ is a warped product, it is easily seen that

$$
\begin{equation*}
\nabla_{X} Z=\nabla_{Z} X=\frac{1}{f}(X f) Z \tag{3.2}
\end{equation*}
$$

for any vector fields X, Z tangent to M_{1}, M_{2}, respectively.
If X and Z are unit vector fields, it follows that the sectional curvature $K(X \wedge Z)$ of the plane section spanned by X and Z is given by

$$
\begin{equation*}
K(X \wedge Z)=g\left(\nabla_{Z} \nabla_{X} X-\nabla_{X} \nabla_{Z} X, Z\right)=\frac{1}{f}\left\{\left(\nabla_{X} X\right) f-X^{2} f\right\} \tag{3.3}
\end{equation*}
$$

We choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 m+1}\right\}$, such that $e_{1}, \ldots, e_{n_{1}}$ are tangent to $M_{1}, e_{n_{1}}=\xi, e_{n_{1}+1}, \ldots, e_{n}$ are tangent to M_{2} and e_{n+1} is parallel to the mean curvature vector H.

Then, using (3.3), we get

$$
\begin{equation*}
\frac{\Delta f}{f}=\sum_{j=1}^{n_{1}} K\left(e_{j} \wedge e_{s}\right), \tag{3.4}
\end{equation*}
$$

for each $s \in\left\{n_{1}+1, \ldots, n\right\}$.
From the equation of Gauss, we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau+\|h\|^{2}-n(n-1) \frac{c-3}{4}-\left(3\|P\|^{2}-2 n+2\right) \frac{c+1}{4}, \tag{3.5}
\end{equation*}
$$

where τ denotes the scalar curvature of $M_{1} \times{ }_{f} M_{2}$, that is,

$$
\tau=\sum_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right) .
$$

We set

$$
\begin{equation*}
\delta=2 \tau-n(n-1) \frac{c-3}{4}-\left(3\|P\|^{2}-2 n+2\right) \frac{c+1}{4}-\frac{n^{2}}{2}\|H\|^{2} . \tag{3.6}
\end{equation*}
$$

Then, (3.5) can be written as

$$
\begin{equation*}
n^{2}\|H\|^{2}=2\left(\delta+\|h\|^{2}\right) . \tag{3.7}
\end{equation*}
$$

With respect to the above orthonormal frame, (3.7) takes the following form:

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=2\left\{\delta+\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right\} .
$$

If we put $a_{1}=h_{11}^{n+1}, a_{2}=\sum_{i=2}^{n_{1}} h_{i i}^{n+1}$ and $a_{3}=\sum_{t=n_{1}+1}^{n} h_{t t}^{n+1}$, the above equation becomes

$$
\begin{aligned}
\left(\sum_{i=1}^{3} a_{i}\right)^{2}= & 2\left\{\delta+\sum_{i=1}^{3} a_{i}^{2}+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right. \\
& \left.-\sum_{2 \leq j \neq k \leq n_{1}} h_{j j}^{n+1} h_{k k}^{n+1}-\sum_{n_{1}+1 \leq s \neq t \leq n} h_{s s}^{n+1} h_{t t}^{n+1}\right\} .
\end{aligned}
$$

Thus a_{1}, a_{2}, a_{3} satisfy the Lemma of Chen (for $n=3$), i.e.

$$
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left(b+\sum_{i=1}^{3} a_{i}^{2}\right)
$$

with

$$
\begin{aligned}
b= & \delta+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} \\
& -\sum_{2 \leq j \neq k \leq n_{1}} h_{j j}^{n+1} h_{k k}^{n+1}-\sum_{n_{1}+1 \leq s \neq t \leq n} h_{s s}^{n+1} h_{t t}^{n+1} .
\end{aligned}
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if $a_{1}+a_{2}=a_{3}$. In the case under consideration, this means

$$
\begin{aligned}
& \sum_{1 \leq j<k \leq n_{1}} h_{j j}^{n+1} h_{k k}^{n+1}+\sum_{n_{1}+1 \leq s<t \leq n} h_{s s}^{n+1} h_{t t}^{n+1} \\
\geq & \frac{\delta}{2}+\sum_{1 \leq \alpha<\beta \leq n}\left(h_{\alpha \beta}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{\alpha, \beta=1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2} .
\end{aligned}
$$

Equality holds if and only if

$$
\begin{equation*}
\sum_{i=1}^{n_{1}} h_{i i}^{n+1}=\sum_{t=n_{1}+1}^{n} h_{t t}^{n+1} \tag{3.9}
\end{equation*}
$$

Using again Gauss equation, we have

$$
\begin{aligned}
n_{2} \frac{\Delta f}{f}= & \tau-\sum_{1 \leq j<k \leq n_{1}} K\left(e_{j} \wedge e_{k}\right)-\sum_{n_{1}+1 \leq s<t \leq n} K\left(e_{s} \wedge e_{t}\right) \\
= & \tau-\frac{n_{1}\left(n_{1}-1\right)(c-3)}{8} \\
& -\left[3 \sum_{1 \leq j<k \leq n_{1}-1} g^{2}\left(P e_{j}, e_{k}\right)-n_{1}+1\right] \frac{c+1}{4} \\
& -\sum_{r=n+1}^{2 m+1} \sum_{1 \leq j<k \leq n_{1}}\left(h_{j j}^{r} h_{k k}^{r}-\left(h_{j k}^{r}\right)^{2}\right) \\
& \frac{n_{2}\left(n_{2}-1\right)(c+3)}{8}-\frac{3}{4}(c+1) \sum_{n_{1}+1 \leq s<t \leq n} g^{2}\left(P e_{s}, e_{t}\right) \\
& -\sum_{r=n+1}^{2 m+1} \sum_{n_{1}+1 \leq s<t \leq n}\left(h_{s s}^{r} h_{t t}^{r}-\left(h_{s t}^{r}\right)^{2}\right) .
\end{aligned}
$$

Combining (3.8) and (3.10), we obtain

$$
\begin{align*}
n_{2} \frac{\Delta f}{f} \leq & \tau-\frac{n(n-1)(c-3)}{8}+n_{1} n_{2} \frac{c-3}{4}-\frac{\delta}{2} \\
& -\left[3 \sum_{1 \leq j<k \leq n_{1}-1} g^{2}\left(P e_{j}, e_{k}\right)+3 \sum_{n_{1}+1 \leq s<t \leq n} g^{2}\left(P e_{s}, e_{t}\right)-n_{1}+1\right] \frac{c+1}{4} \\
& -\sum_{r=n+1}^{2 m+1} \sum_{1 \leq j<k \leq n_{1}}\left(h_{j j}^{r} h_{k k}^{r}-\left(h_{j k}^{r}\right)^{2}\right) \tag{3.11}\\
& -\sum_{r=n+1}^{2 m+1} \sum_{n_{1}+1 \leq s<t \leq n}\left(h_{s s}^{r} h_{t t}^{r}-\left(h_{s t}^{r}\right)^{2}\right)
\end{align*}
$$

or equivalently

$$
\begin{aligned}
n_{2} \frac{\Delta f}{f} \leq & \tau-\frac{n(n-1)(c-3)}{8}+n_{1} n_{2} \frac{c-3}{4}-\frac{\delta}{2} \\
& -\left[3 \sum_{1 \leq j<k \leq n_{1}-1} g^{2}\left(P e_{j}, e_{k}\right)+3 \sum_{n_{1}+1 \leq s<t \leq n} g^{2}\left(P e_{s}, e_{t}\right)-n_{1}+1\right] \frac{c+1}{4} \\
& -\sum_{j=1}^{n_{1}} \sum_{t=n_{1}+1}^{n}\left(h_{j t}^{n+1}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{\alpha, \beta=1}^{n}\left(h_{\alpha \beta}^{r}\right)^{2} \\
& +\sum_{r=n+2}^{2 m+1} \sum_{1 \leq j<k \leq n_{1}}\left(\left(h_{j k}^{r}\right)^{2}-h_{j j}^{r} h_{k k}^{r}\right)+\sum_{r=n+2}^{2 m+1} \sum_{n_{1}+1 \leq s<t \leq n}\left(\left(h_{s t}^{r}\right)^{2}-h_{s s}^{r} h_{t t}^{r}\right) \\
= & \left.\tau-\frac{n(n-1)(c-3)}{8}+n_{1} n_{2} \frac{c-3}{4}-\frac{\delta}{2} g^{2}\left(P e_{j}, e_{k}\right)+3 \sum_{n_{1}+1 \leq s<t \leq n} g^{2}\left(P e_{s}, e_{t}\right)-n_{1}+1\right] \frac{c+1}{4} \\
& -\left[\sum_{1 \leq j<k \leq n_{1}-1} \sum_{r=n+1}^{\sum_{j=1}^{n} \sum_{t=n_{1}+1}^{n}\left(h_{j t}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(\sum_{j=1}^{n_{1}} h_{j j}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(\sum_{t=n_{1}+1}^{n} h_{t t}^{r}\right)^{2}}\right. \\
& \tau-\frac{n(n-1)(c-3)}{8}+n_{1} n_{2} \frac{c-3}{4}-\frac{\delta}{2} \\
- & {\left[3 \sum_{1 \leq j<k \leq n_{1}-1} g^{2}\left(P e_{j}, e_{k}\right)+3 \sum_{n_{1}+1 \leq s<t \leq n} g^{2}\left(P e_{s}, e_{t}\right)-n_{1}+1\right] \frac{c+1}{4} . }
\end{aligned}
$$

Taking account of (3.4), one derives

$$
\begin{equation*}
n_{2} \frac{\Delta f}{f} \leq \frac{n^{2}}{4}\|H\|^{2}+n_{1} n_{2} \frac{c-3}{4}+\left(3 \sum_{j=1}^{n_{1}} \sum_{t=n_{1}+1}^{n} g^{2}\left(P e_{j}, e_{t}\right)-n_{2}\right) \frac{c+1}{4} \tag{3.12}
\end{equation*}
$$

which is the inequality to prove.
We see that the equality sign of (3.12) holds if and only if

$$
\begin{equation*}
h_{j t}^{r}=0, \quad 1 \leq j \leq n_{1}, n_{1}+1 \leq t \leq n, n+1 \leq r \leq 2 m, \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n_{1}} h_{i i}^{r}=\sum_{t=n_{1}+1}^{n} h_{t t}^{r}=0, \quad n+2 \leq r \leq 2 m \tag{3.14}
\end{equation*}
$$

Obviously (3.13) is equivalent to the mixed totally geodesy of the warped product $M_{1} \times_{f} M_{2}$ and (3.9) and (3.14) implies $n_{1} H_{1}=n_{2} H_{2}$.

The converse statement is straightforward.
We apply the above Lemma to Kenmotsu space forms having $c<-1, c=-1$ and $c>-1$, respectively.

Proposition 3.2. Let $x: M_{1} \times_{f} M_{2}$ be an isometric immersion of an n dimensional warped product into a $(2 m+1)$-dimensional Kenmotsu space form $\widetilde{M}(c)$, with $c<-1$, such that ξ is tangent to M_{1}. Then:

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c-3}{4}-\frac{c+1}{4} . \tag{3.15}
\end{equation*}
$$

Moreover, the equality case of (3.15) holds if and only if x is a mixed totally geodesic immersion, the partial mean curvature vectors satisfy $n_{1} H_{1}=n_{2} H_{2}$ and $\phi\left(T M_{1}\right)$ and $T M_{2}$ are orthogonal.

Remark. On a contact $C R$-warped product submanifold $M_{1} \times_{f} M_{2}, \phi\left(T M_{1}\right)$ and $T M_{2}$ are orthogonal. The converse statement is not always true.

Proposition 3.3. Let x : $M_{1} \times_{f} M_{2}$ be an isometric immersion of an n dimensional warped product into a $(2 m+1)$-dimensional Kenmotsu space form $\widetilde{M}(-1)$, such that ξ is tangent to M_{1}. Then:

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}-n_{1} . \tag{3.16}
\end{equation*}
$$

Moreover, the equality case of (3.16) holds if and only if x is a mixed totally geodesic immersion and the partial mean curvature vectors satisfy $n_{1} H_{1}=n_{2} H_{2}$.

Proposition 3.4. Let $x: M_{1} \times{ }_{f} M_{2}$ be an isometric immersion of an n dimensional warped product into a $(2 m+1)$-dimensional Kenmotsu space form $\widetilde{M}(c)$, with $c>-1$, such that ξ is tangent to M_{1}. Then:

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c-3}{4}+\left(\frac{3}{n_{2}}\|P\|^{2}-1\right) \frac{c+1}{4} \tag{3.17}
\end{equation*}
$$

Moreover, the equality case of (3.17) holds if and only if x is a mixed totally geodesic immersion, the partial mean curvature vectors satisfy $n_{1} H_{1}=n_{2} H_{2}$ and both M_{1} and M_{2} are anti-invariant submanifolds in $\widetilde{M}(c)$.

As applications, we derive certain obstructions to the existence of minimal warped product submanifolds in Kenmotsu space forms.

Corollary 3.5. Let $M_{1} \times{ }_{f} M_{2}$ be a warped product whose warping function f is harmonic. Then $M_{1} \times{ }_{f} M_{2}$ admits no minimal immersion into a Kenmotsu space form $\widetilde{M}(c)$ with $c \leq-1$, such that ξ be tangent to M_{1}.

Proof. Assume f is a harmonic function on M_{1} and $M_{1} \times_{f} M_{2}$ admits a minimal immersion into a Kenmotsu space form $\widetilde{M}(c)$ with $c \leq-1$, such that ξ is tangent to M_{1}. Then, the inequalities (3.15) and (3.16) become impossible.

Corollary 3.6. If the warping function f of a warped product $M_{1} \times{ }_{f} M_{2}$ is an eigenfunction of the Laplacian on M_{1} with corresponding eigenvalue $\lambda>0$, then $M_{1} \times{ }_{f} M_{2}$ does not admit a minimal immersion in a Kenmotsu space form $\widetilde{M}(c)$ with $c \leq-1$, such that ξ be tangent to M_{1}.

Assume now that $M_{1} \times_{f} M_{2}$ is a warped product submanifold of a Kenmotsu space form $\widetilde{M}(c)$ such that ξ is tangent to M_{2}.

If we put $Z=\xi$ in (3.2), the last equation (2.1) leads to a contradiction. Thus we may state the following.

Proposition 3.7. There do not exist warped product submanifolds $M_{1} \times{ }_{f} M_{2}$ in a Kenmotsu space form $\widetilde{M}(c)$ such that ξ is tangent to M_{2}.

References

1. K. Arslan, R. Ezentas, I. Mihai, C. Murathan and C. Ozgur, Ricci curvature of submanifolds in Kenmotsu space forms, Int. J. Math. Math. Sci., 29 (2002), 719726.
2. D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976.
3. B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math. 60 (1993), 568-578.
4. B. Y. Chen, Geometry of warped products as Riemannian submanifolds and related problems, Soochow J. Math., 28 (2002), 125-156.
5. B. Y. Chen, On isometric minimal immersions from warped products into real space forms, Proc. Edinburgh Math. Soc., 45 (2002), 579-587.
6. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.
7. K. Matsumoto and I. Mihai, Warped product submanifolds in Sasakian space forms, SUT J. Math., 38 (2002), 135-144.
8. A. Mihai, Warped product submanifolds in complex space forms. Acta Sci. Math. (Szeged), 70 (2004), 419-427.
9. S. Nölker, Isometric immersions of warped products, Differential Geom. Appl., 6 (1996), 1-30.
10. S. Tanno, The automorphisms groups of almost contact metric manifolds, Tohoku Math. J., 21 (1969), 21-38.
11. K. Yano and M. Kon, Structures on Manifolds, World Scientific, Singapore, 1984.
[^1]
[^0]: Received December 22, 2004, revised January 26, 2005.
 Communicated by Bang-Yen Chen. 2000 Mathematics Subject Classification: 53C40, 53B25, 53C25.
 Key words and phrases: Warped product, Warping function, Mean curvature, Kenmotsu space form. This paper was written while the forth author has visited Uludag University, Bursa, Turkey, supported by the Scientific and Technical Research Council of Turkey (TUBITAK) - NATO-D research fellowship. He would like to express his sincere thanks for the hospitality he received during this visit.

[^1]: Cengizhan Murathan, Kadri Arslan and Ridvan Ezentas
 Uludag University,
 Faculty of Arts and Sciences,
 Department of Mathematics,
 Görükle 16059,
 Bursa, Turkey
 E-mail: arslan@uludag.edu.tr
 Ion Mihai
 Faculty of Mathematics, University of Bucharest, Str. Academiei 14, 010014 Bucharest,
 Romania

