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WARPED PRODUCT SUBMANIFOLDS
IN KENMOTSU SPACE FORMS

C. Murathan, K. Arslan, R. Ezentas and I. Mihai

Abstract. Recently, Chen established a general sharp inequality for warped
products in real space forms. As applications, he obtained obstructions to min-
imal isometric immersions of warped products into real space forms. After-
wards, Matsumoto and one of the present authors proved the Sasakian version
of this inequality.

In the present paper, we obtain sharp estimates for the warping function
in terms of the mean curvature for warped products isometrically immersed in
Kenmotsu space forms. Some applications are derived.

1. INTRODUCTION

Let (M1, g1) and (M2, g2) be two Riemannian manifolds and f a positive dif-
ferentiable function on M1. The warped product of M1 and M2 is the Riemannian
manifold

M1 ×f M2 = (M1 × M2, g),

where g = g1 + f2g2 (see, for instance, [5]).
It is well-known that the notion of warped products plays some important role in

Differential Geometry as well as in Physics. For a recent survey on warped products
as Riemannian submanifolds, we refer to [4].

Let x : M1 ×f M2 → M̃ (c) be an isometric immersion of a warped product
M1 ×f M2 into a Riemannian manifold M̃(c) with constant sectional curvature c.
We denote by h the second fundamental form of x and Hi = 1

ni
trace hi, where
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trace hi is the trace of h restricted to Mi and ni = dimMi (i = 1, 2). We call Hi

(i = 1, 2) the partial mean curvature vectors.
The immersion x is said to be mixed totally geodesic if h(X, Z) = 0, for any

vector fields X and Z tangent to M1 and M2 respectively.
In [5], Chen established the following sharp relationship between the warping

function f of a warped product M1 ×f M2 isometrically immersed in a real space
form M̃(c) and the squared mean curvature ‖H‖2.

Theorem 1.1. Let x : M1 ×f M2 be an isometric immersion of an n-
dimensional warped product into an m-dimensional Riemannian manifold M̃(c) of
constant sectional curvature c. Then:

(1.1)
∆f

f
≤ n2

4n2
‖H‖2 + n1c,

where ni = dim Mi, i = 1, 2, and ∆ is the Laplacian operator of M 1.
Moreover, the equality case of (1.1) holds if and only if x is a mixed totally

geodesic immersion and n1H1 = n2H2, where Hi, i = 1, 2, are the partial mean
curvature vectors.

As applications, the author obtained necessary conditions for a warped product
to admit a minimal isometric immersion in a Euclidean space or in a real space form
(see [5]). Examples of submanifolds satisfying the equality case of (1.1) are given.

In the present paper, we establish corresponding inequalities for warped product
submanifolds tangent to the structure vector field ξ into Kenmotsu space forms.
Certain applications are derived.

2. KENMOTSU MANIFOLDS AND THEIR SUBMANIFOLDS

Tanno [10] has classified, into 3 classes, the connected almost contact Rieman-
nian manifolds whose automorphisms groups have the maximum dimensions:

(1) homogeneous normal contact Riemannian manifolds with constant φ -holomor-
phic sectional curvature;

(2) global Riemannian products of a line or circle and a Kaehlerian space form;

(3) warped product spaces L×f F , where L is a line and F a Kaehlerian manifold.

Kenmotsu [6] studied the third class and characterized it by tensor equations.
Later, such a manifold was called a Kenmotsu manifold.
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A (2m+1)-dimensional Riemannian manifold (M̃, g) is said to be a Kenmotsu
manifold if it admits an endomorphism φ of its tangent bundle T M̃ , a vector field
ξ and a 1-form η, which satisfy:

(2.1)



φ2 = −Id + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0,

g(φX, φY ) = g(X, Y ) − η(X)η(Y ), η(X) = g(X, ξ),

(∇̃Xφ)Y = −g(X, φY )ξ − η(Y )φX,

∇̃Xξ = X − η(X)ξ,

for any vector fields X, Y on M̃ , where ∇̃ denotes the Riemannian connection with
respect to g.

We denote by ω the fundamental 2-form of M̃ , i.e. ω(X, Y ) = g(φX, Y ),
∀X, Y ∈ Γ(TM̃). It was proved that the pairing (ω, η) defines a locally conformal
cosymplectic structure, i.e.

dω = 2ω ∧ η, dη = 0.

A Kenmotsu manifold with constant φ-holomorphic sectional curvature c is
called a Kenmotsu space form and is denoted by M̃(c). Then its curvature tensor
R̃ is expressed by [6]

(2.2)

4R̃(X, Y )Z = (c − 3){g(Y, Z)X − g(X, Z)Y } + (c + 1)[{η(X)Y

−η(Y )X}η(Z)+ {g(X, Z)η(Y ) − g(Y, Z)η(X)}ξ
+ω(Y, Z)φX − ω(X, Z)φY − 2ω(X, Y )φZ].

Let M̃ be a Kenmotsu manifold and M an n-dimensional submanifold tangent
to ξ.

For any vector field X tangent to M , we put

(2.3) φX = PX + FX,

where PX (resp. FX) denotes the tangential (resp. normal) component of φX .
Then P is an endomorphism of tangent bundle TM and F is a normal bundle
valued 1-form on TM .

The equation of Gauss is given by

(2.4)
R̃(X, Y, Z,W ) = R(X, Y, Z, W)

+g(h(X, W ), h(Y,Z))− g(h(X, Z), h(Y,W )),

for any vectors X, Y, Z, W tangent to M .
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We denote by H the mean curvature vector, i.e.

H(p) =
1
n

n∑
i=1

h(ei, ei),

where {e1, ..., en} is an orthonormal basis of the tangent space TpM, p ∈ M .
Also, we set

hr
ij = g(h(ei, ej), er), i, j = 1, ..., n; r = n + 1, ..., 2m+ 1,

and

‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)).

We denote by

‖P‖2 =
n∑

i,j=1

g2(Pei, ej).

By analogy with submanifolds in a Kaehler manifold, different classes of sub-
manifolds in a Kenmotsu manifold were considered (see, for example, [11]).

A submanifold M tangent to ξ is said to be invariant (resp. anti-invariant) if
φ(TpM) ⊂ TpM, ∀p ∈ M (resp. φ(TpM) ⊂ T⊥

p M, ∀p ∈ M ).
A submanifold M tangent to ξ is called a contact CR-submanifold [11] if there

exists a pair of orthogonal differentiable distributions D and D⊥ on M , such that:

(i) TM = D ⊕D⊥ ⊕ {ξ}, where {ξ} is the 1-dimensional distribution spanned
by ξ;

(ii) D is invariant by φ, i.e. φ(Dp) ⊂ Dp, ∀p ∈ M ;
(iii) D⊥ is anti-invariant by φ, i.e. φ(D⊥

p ) ⊂ T⊥
p M, ∀p ∈ M .

In particular, if D⊥ = {0} (resp. D = {0}), M is an invariant (resp. anti-
invariant) submanifold.

We recall the following result of Chen for later use.

Lemma [3]. Let n ≥ 2 and a1, ..., an, b real numbers such that(
n∑

i=1

ai

)2

= (n − 1)

(
n∑

i=1

a2
i + b

)

Then 2a1a2 ≥ b, with equality holding if and only if

a1 + a2 = a3 = ... = an.
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3. WARPED PRODUCT SUBMANIFOLDS

Chen established a sharp relationship between the warping function f of a
warped product M1 ×f M2 isometrically immersed in a real space form M̃(c) and
the squared mean curvature ‖H‖2 (see [5]). For other results on warped product
submanifolds in complex space forms we refer to [8]. Similar inequalities for warped
product submanifolds of a Sasakian space form were proved in [7].

In the present paper, we establish corresponding inequalities for warped product
submanifolds in Kenmotsu space forms. We investigate warped product submani-
folds tangent to the structure vector field ξ in a Kenmotsu space form M̃(c).

We distinguish 2 cases:
(a) ξ is tangent to M1;
(b) ξ is tangent to M2.

Lemma 3.1. Let x : M1×f M2 be an isometric immersion of an n-dimensional
warped product into a (2m+1)-dimensional Kenmotsu space form M̃(c), such that
ξ is tangent to M1. Then:

(3.1)
∆f

f
≤ n2

4n2
‖H‖2 + n1

c − 3
4

+

 3
n2

n1∑
j=1

n∑
t=n1+1

g2(Pej , et) − 1

 c + 1
4

,

where ni = dimMi, i = 1, 2, and ∆ is the Laplacian operator on M 1.
Moreover, the equality case of (3.1) holds if and only if x is a mixed totally

geodesic immersion and n1H1 = n2H2, where Hi, i = 1, 2, are the partial mean
curvature vectors.

Proof. Let M1×f M2 be a warped product submanifold into a Kenmotsu space
form M̃(c) of constant φ-sectional curvature c, such that ξ is tangent to M1.

Since M1 ×f M2 is a warped product, it is easily seen that

(3.2) ∇XZ = ∇ZX =
1
f

(Xf)Z,

for any vector fields X, Z tangent to M1, M2, respectively.
If X and Z are unit vector fields, it follows that the sectional curvature K(X∧Z)

of the plane section spanned by X and Z is given by

(3.3) K(X ∧ Z) = g(∇Z∇XX −∇X∇ZX, Z) =
1
f
{(∇XX)f − X2f}.

We choose a local orthonormal frame {e1, ..., en, en+1, ..., e2m+1}, such that
e1, ..., en1 are tangent to M1, en1 = ξ, en1+1, ..., en are tangent to M2 and en+1 is
parallel to the mean curvature vector H .
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Then, using (3.3), we get

(3.4)
∆f

f
=

n1∑
j=1

K(ej ∧ es),

for each s ∈ {n1 + 1, ..., n}.
From the equation of Gauss, we have

(3.5) n2‖H‖2 = 2τ + ‖h‖2 − n(n − 1)
c− 3

4
− (3‖P‖2 − 2n + 2)

c + 1
4

,

where τ denotes the scalar curvature of M1 ×f M2, that is,

τ =
∑

1≤i<j≤n

K(ei ∧ ej).

We set

(3.6) δ = 2τ − n(n − 1)
c− 3

4
− (3‖P‖2 − 2n + 2)

c + 1
4

− n2

2
‖H‖2.

Then, (3.5) can be written as

(3.7) n2‖H‖2 = 2(δ + ‖h‖2).

With respect to the above orthonormal frame, (3.7) takes the following form:(
n∑

i=1

hn+1
ii

)2

= 2

δ +
n∑

i=1

(hn+1
ii )2 +

∑
i�=j

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2

 .

If we put a1 = hn+1
11 , a2 =

∑n1
i=2 hn+1

ii and a3 =
∑n

t=n1+1 hn+1
tt , the above

equation becomes(
3∑

i=1

ai

)2

= 2

δ +
3∑

i=1

a2
i +

∑
1≤i�=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2

−
∑

2≤j �=k≤n1

hn+1
jj hn+1

kk −
∑

n1+1≤s�=t≤n

hn+1
ss hn+1

tt

 .

Thus a1, a2, a3 satisfy the Lemma of Chen (for n = 3), i.e.(
3∑

i=1

ai

)2

= 2

(
b +

3∑
i=1

a2
i

)
,
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with

b = δ +
∑

1≤i�=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2

−
∑

2≤j �=k≤n1

hn+1
jj hn+1

kk −
∑

n1+1≤s�=t≤n

hn+1
ss hn+1

tt .

Then 2a1a2 ≥ b, with equality holding if and only if a1 + a2 = a3.
In the case under consideration, this means

(3.8)

∑
1≤j<k≤n1

hn+1
jj hn+1

kk +
∑

n1+1≤s<t≤n

hn+1
ss hn+1

tt

≥ δ

2
+

∑
1≤α<β≤n

(hn+1
αβ )2 +

1
2

2m+1∑
r=n+2

n∑
α,β=1

(hr
αβ)2.

Equality holds if and only if

(3.9)
n1∑
i=1

hn+1
ii =

n∑
t=n1+1

hn+1
tt .

Using again Gauss equation, we have

(3.10)

n2
∆f

f
= τ −∑1≤j<k≤n1

K(ej ∧ ek) −∑n1+1≤s<t≤n K(es ∧ et)

= τ − n1(n1 − 1)(c− 3)
8

−
3

∑
1≤j<k≤n1−1

g2(Pej, ek) − n1 + 1

 c + 1
4

−
2m+1∑
r=n+1

∑
1≤j<k≤n1

(hr
jjh

r
kk − (hr

jk)
2)

−n2(n2 − 1)(c + 3)
8

− 3
4
(c + 1)

∑
n1+1≤s<t≤n

g2(Pes, et)

−
2m+1∑
r=n+1

∑
n1+1≤s<t≤n

(hr
ssh

r
tt − (hr

st)
2).
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Combining (3.8) and (3.10), we obtain

(3.11)

n2
∆f

f
≤ τ − n(n − 1)(c − 3)

8
+ n1n2

c − 3
4

− δ

2

−
3

∑
1≤j<k≤n1−1

g2(Pej, ek)+3
∑

n1+1≤s<t≤n

g2(Pes, et)−n1+1

c+1
4

−
2m+1∑
r=n+1

∑
1≤j<k≤n1

(hr
jjh

r
kk − (hr

jk)2)

−
2m+1∑
r=n+1

∑
n1+1≤s<t≤n

(hr
ssh

r
tt − (hr

st)
2),

or equivalently

n2
∆f

f
≤ τ − n(n − 1)(c− 3)

8
+ n1n2

c − 3
4

− δ

2

−
3

∑
1≤j<k≤n1−1

g2(Pej , ek)+3
∑

n1+1≤s<t≤n

g2(Pes, et)−n1+1

 c + 1
4

−
n1∑
j=1

n∑
t=n1+1

(hn+1
jt )2 − 1

2

2m+1∑
r=n+2

n∑
α,β=1

(hr
αβ)2

+
2m+1∑
r=n+2

∑
1≤j<k≤n1

((hr
jk)

2 − hr
jjh

r
kk)+

2m+1∑
r=n+2

∑
n1+1≤s<t≤n

((hr
st)

2−hr
ssh

r
tt)

= τ − n(n − 1)(c− 3)
8

+ n1n2
c − 3

4
− δ

2

−
3

∑
1≤j<k≤n1−1

g2(Pej , ek) + 3
∑

n1+1≤s<t≤n

g2(Pes, et) − n1+1

c + 1
4

−
2m+1∑
r=n+1

n1∑
j=1

n∑
t=n1+1

(hr
jt)

2− 1
2

2m+1∑
r=n+2

 n1∑
j=1

hr
jj

2

−1
2

2m+1∑
r=n+2

(
n∑

t=n1+1

hr
tt

)2

≤ τ − n(n − 1)(c− 3)
8

+ n1n2
c − 3

4
− δ

2

−
3

∑
1≤j<k≤n1−1

g2(Pej , ek)+3
∑

n1+1≤s<t≤n

g2(Pes, et) − n1+1

c + 1
4

.
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Taking account of (3.4), one derives

(3.12) n2
∆f

f
≤ n2

4
‖H‖2+n1n2

c − 3
4

+

3
n1∑
j=1

n∑
t=n1+1

g2(Pej , et) − n2

 c + 1
4

,

which is the inequality to prove.
We see that the equality sign of (3.12) holds if and only if

(3.13) hr
jt = 0, 1 ≤ j ≤ n1, n1 + 1 ≤ t ≤ n, n + 1 ≤ r ≤ 2m,

and

(3.14)
n1∑
i=1

hr
ii =

n∑
t=n1+1

hr
tt = 0, n + 2 ≤ r ≤ 2m.

Obviously (3.13) is equivalent to the mixed totally geodesy of the warped product
M1 ×f M2 and (3.9) and (3.14) implies n1H1 = n2H2.

The converse statement is straightforward.

We apply the above Lemma to Kenmotsu space forms having c < −1, c = −1
and c > −1, respectively.

Proposition 3.2. Let x : M1 ×f M2 be an isometric immersion of an n-
dimensional warped product into a (2m + 1)-dimensional Kenmotsu space form
M̃(c), with c < −1, such that ξ is tangent to M1. Then:

(3.15)
∆f

f
≤ n2

4n2
‖H‖2 + n1

c − 3
4

− c + 1
4

.

Moreover, the equality case of (3.15) holds if and only if x is a mixed totally
geodesic immersion, the partial mean curvature vectors satisfy n 1H1 = n2H2 and
φ(TM1) and TM2 are orthogonal.

Remark. On a contact CR-warped product submanifold M1 ×f M2, φ(TM1)
and TM2 are orthogonal. The converse statement is not always true.

Proposition 3.3. Let x : M1 ×f M2 be an isometric immersion of an n-
dimensional warped product into a (2m + 1)-dimensional Kenmotsu space form
M̃(−1), such that ξ is tangent to M1. Then:

(3.16)
∆f

f
≤ n2

4n2
‖H‖2 − n1.
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Moreover, the equality case of (3.16) holds if and only if x is a mixed totally
geodesic immersion and the partial mean curvature vectors satisfy n 1H1 = n2H2.

Proposition 3.4. Let x : M1 ×f M2 be an isometric immersion of an n-
dimensional warped product into a (2m + 1)-dimensional Kenmotsu space form
M̃(c), with c > −1, such that ξ is tangent to M1. Then:

(3.17)
∆f

f
≤ n2

4n2
‖H‖2 + n1

c − 3
4

+
(

3
n2

‖P‖2 − 1
)

c + 1
4

.

Moreover, the equality case of (3.17) holds if and only if x is a mixed totally
geodesic immersion, the partial mean curvature vectors satisfy n 1H1 = n2H2 and
both M1 and M2 are anti-invariant submanifolds in M̃(c).

As applications, we derive certain obstructions to the existence of minimal
warped product submanifolds in Kenmotsu space forms.

Corollary 3.5. Let M1 ×f M2 be a warped product whose warping function
f is harmonic. Then M1 ×f M2 admits no minimal immersion into a Kenmotsu
space form M̃(c) with c ≤ −1, such that ξ be tangent to M1.

Proof. Assume f is a harmonic function on M1 and M1 ×f M2 admits a
minimal immersion into a Kenmotsu space form M̃(c) with c ≤ −1, such that ξ is
tangent to M1. Then, the inequalities (3.15) and (3.16) become impossible.

Corollary 3.6. If the warping function f of a warped product M 1×f M2 is an
eigenfunction of the Laplacian on M 1 with corresponding eigenvalue λ > 0, then
M1 ×f M2 does not admit a minimal immersion in a Kenmotsu space form M̃ (c)
with c ≤ −1, such that ξ be tangent to M1.

Assume now that M1 ×f M2 is a warped product submanifold of a Kenmotsu
space form M̃(c) such that ξ is tangent to M2.

If we put Z = ξ in (3.2), the last equation (2.1) leads to a contradiction. Thus
we may state the following.

Proposition 3.7. There do not exist warped product submanifolds M 1 ×f M2

in a Kenmotsu space form M̃(c) such that ξ is tangent to M2.
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