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ON NEW MOMENT ESTIMATION OF PARAMETERS OF THE
GENERALIZED GAMMA DISTRIBUTION USING IT’S

CHARACTERIZATION

Ping-Huang Huang and Tea-Yuan Hwang

Abstract. In this paper, the three estimators for three parameters of the gen-
eralized gamma distribution are proposed by using its characterization, and
shown to be more convenient and more efficient than the maximum likelihood
estimator for small samples. Furthermore, the estimators for the parameter of
its special distribution such as gamma and Weibull distributions which are the
most important in the reliability field and survival analysis are obtained.

1. INTRODUCTION

In early work with the generalized gamma distribution there was difficult in
developing inference procedures with maximum likelihood estimation and large-
sample method based on normal approximation to their distributions. (e.g. Stacy
and Mihram, 1965., Parr and Webster, 1965; Harter 1967; Hager and Bain, 1970),
but work by Prentice (1974) clarified matters a great deal and its inference can now
be fairly easily handled (e.g. Farewell and Prentice, 1977; Lawless, 1980). Much
of the difficulties with the model arise because the generalized gamma distribution
with very different sets of parameter values look alike. Therefore Prentice (1974)
considered the distribution in a reparameterized form that reduces this effect and
makes properties of the distribution much more transparent.

Although Prentice (1974) have presented a procedure to obtain the three param-
eters of the generalized gamma distribution, his procedure still quit complicated. In
this paper, we propose a simple procedure to obtain the three estimators by using its
characterization and moment estimation approach. Note that Hwang and Hu (1999)
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have obtained more general characterizations with the independence of sample co-
efficient of variation Vn with sample mean Xn as one of its special cases when
random samples are drawn from the generalized gamma distribution.

In this paper, their characterization is used to derive the expectation and the
variance of V 2

n in Section 2, and then the new estimators for the three parameters
of generalized gamma distribution are proposed. Furthermore, we compare by sim-
ulation the new estimators with the maximum likelihood estimator in terms of mean
absolute bias and mean square error for Weibull distribution in Section 3.

2. NEW MOMENT ESTIMATOR OF PARAMETERS OF THE GENERALIZED GAMMA

DISTRIBUTION

For deriving new moment estimators of three parameters of the generalized
gamma distribution, we need the following theorem obtained by using the similar
approach of Hwang and Hu (Theorem of 1999 and Cor. 4.1 of 2000).

Theorem 2.1. Let n ≥ 3 and let X1, X2, · · · , Xn be n positive i.i.d. random
variables having a probability density function f(x). Then the independence of the
sample mean X̄n and the sample coefficient of variation V n = Sn/X̄n is equivalent
to that f(x) is a generalized gamma density where S n is the sample standard
deviation.

The next theorem is easy to prove and used to derive the expectation and the
variance of V 2

n =
(
Sn/X̄n

)2, where X̄n and Sn are respectively the sample mean
and the sample standard deviation.

Theorem 2.2. Let n ≥ 3 and let X1, X2, · · · , Xn be n i.i.d. random samples
drawn from a population having a generalized gamma density

g(x; λ, β, k) =
λβ

Γ(k)
(λx)kβ−1 exp

[
−(λx)β

]
, x > 0, λ > 0, β > 0, k > 0.

Then

(2.1) E (Xm) =
Γ
(
k + m

β

)
λmΓ (k)

m = 1, 2, 3, ...

(2.2) E
(
X̄n

)
=

Γ
(
k + 1

β

)
λΓ (k)

,

(2.3) E
(
X̄2

n

)
=

Γ (k) Γ
(
k + 2

β

)
+ (n − 1) Γ2

(
k + 1

β

)
nλ2Γ2 (k)

,
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and

(2.4) E
(
S2

n

)
=

Γ (k) Γ
(
k + 2

β

)
− Γ2

(
k + 1

β

)
λ2Γ2 (k)

,

where X̄n and S2
n are respectively their sample mean and sample variance.

Note that the Theorem 2.2 gives the same results obtained by Hwang and Huang
(Theorem 2.2 of 2002) when the generalized gamma distribution reduced to gamma
distribution (β = 1). For proposing the estimators λ̂, k̂ and β̂ of λ, kand β based
on moment estimation approach, we need the following two theorems.

Theorem 2.3. Let n ≥ 3 and let X1, X2, · · · , Xn be n i.i.d. random samples
drawn from a population having a generalized gamma density

g(x; λ, β, k) =
λβ

Γ(k)
(λx)kβ−1 exp

[
−(λx)β

]
, x > 0, λ > 0, β > 0, k > 0,

Then

(2.5) E(
S2

n

X̄2
n

) =
n ·
[
Γ(k) · Γ(k + 2

β ) − Γ2(k + 1
β )
]

Γ(k) · Γ(k + 2
β ) + (n − 1) · Γ2(k + 1

β )
,

where X̄n and S2
n are respectively their sample mean and sample variance.

Proof. By Theorem 2.1, we have

E
(
S2

n

)
= E

(
S2

n

X̄2
n

· X̄2
n

)
= E

(
S2

n

X̄2
n

)
· E (X̄2

n

)
and hence

E

(
S2

n

X̄2
n

)
=

E
(
S2

n

)
E
(
X̄2

n

)
Applying Theorem 2.2 to the above identity yields that

E(
S2

n

X̄2
n

) =
n ·
[
Γ(k) · Γ(k + 2

β ) − Γ2(k + 1
β )
]

Γ(k) · Γ(k + 2
β ) + (n − 1) · Γ2(k + 1

β )

Thus Theorem 2.3 is established.

Note that Theorem 2.3 give the same result obtained by Hwang and Huang
(Theorem 2.3 of 2002) when generalized gamma distribution is reduced to gamma
distribution, i.e., β = 1.
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Note that E
(

S2
n

X̄2
n

)
→ Γ(k)·Γ

(
k+ 2

β

)
Γ2
(
k+ 1

β

) − 1 as n → ∞ and that this limit is the

square of the population coefficient of variation. Thus S2
n

X̄2
n

is an asymptotically
unbiased estimator of the square of the population coefficient of variation.

Theorem 2.4. Let n ≥ 3 and let X1, X2, · · · , Xn be n i.i.d. random samples
drawn from a population having a generalized gamma density

g(x; λ, β, k) =
λβ

Γ(k)
(λx)kβ−1 exp

[
−(λx)β

]
, x > 0, λ > 0, β > 0, k > 0.

Then

E
(
Xβm

)
=

dm

dtm

[
λkβ

(λβ − t)k

]
t=0

Proof. Making a transformation Xβ, we have

E
(
etXβ

)
=

λkβ

(λβ − t)k
, t > 0

By Taylor’s expansion for etX
β , we have

E
(
etXβ

)
= E

( ∞∑
m=0

tmXβm

m!

)
, t > 0

Differentiating the both sides of the above equation m times with respect to t and
evaluated at t = 0, we have

E
(
Xβm

)
=

dm

dtm

∞∑
m=0

E

(
tmXβm

m!

)∣∣∣∣
t=0

=
dm

dtm

[
λkβ

(λβ − t)k

]
t=0

and Theorem 2.4 is established.

By Theorem 2.4 for m = 1, we have E
(
Xβ
)

= k
λβ and for a set of n i.i.d.

random samples X1, X2, · · · , Xn, the following equality holds:

(2.6) E

(
Xβ

1 + Xβ
2 + ... + Xβ

n

n

)
=

k

λβ
.

Based on Theorems 2.2, 2.3 and (2.6), we set, by using moment estimation
approach, three equations for finding three estimators

(
β̂, λ̂, k̂ say

)
of parameters

β, λ, k respectively as follows:

(2.7) X̄n =
Γ
(
k + 1

β

)
λ · Γ (k)

,
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(2.8)
S2

n

nX̄2
n

=
Γ(k) · Γ(k + 2

β ) − Γ2(k + 1
β )

Γ(k) · Γ(k + 2
β ) + (n − 1) · Γ2(k + 1

β )
,

(2.9)
n∑

i=1

Xβ
i =

nk

λβ
.

Simplifying (2.8) further, we have

(2.10) cΓ2

(
k +

1
β

)
= Γ

(
k +

2
β

)
Γ (k) ,

where c = nX̄2
n+(n−1)S2

n

nX̄2
n−S2

n
. Thus the solutions of β, λ, k obtained by solving the three

equations (2.7), (2.9) and (2.10) simultaneously are proposed for their estimators.
When the generalized gamma distribution reduces to the gamma distribution

(β = 1), we have

(2.11) λ̂ =
k̂

X̄n
, k̂ =

X̄2
n

S2
n

− 1
n

,

which are the same as proposed by Hwang and Huang (2002), while to the Weibull
distribution (k = 1) the proposed two estimators can be obtained by solving the
following two equations which are obtained by simplifying (2.7) and (2.9) for k = 1.

(2.12) λβX̄n = Γ
(

1
β

)
,

(2.13) cΓ2

(
1
β

)
= 2βΓ

(
2
β

)
.

and the estimator 1
X̄n

of λ is obtained by (2.7) or (2.9) but not (2.10) for exponential
distribution (k = β = 1) which is as same as maximum likelihood estimator.

The variances of sample variance and sample coefficient of variation can be
derived as the following theorem which procedure of proof is as similar as Theorem
2.3.

Theorem 2.5. Let n ≥ 3 and let X1, X2, · · · , Xn be n i.i.d. random samples
drawn from a population having a generalized gamma density

g(x; λ, β, k) =
λβ

Γ(k)
(λx)kβ−1 exp

[
−(λx)β

]
, x > 0, λ > 0, β > 0, k > 0
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Then

(2.14) V ar
(
S2

n

)
= E

(
S4

n

)− [c0c2 − c2
1

λ2c2
0

]2

,

and

(2.15) V ar
(
V 2

n

)
=

E
(
S4

n

)
E
(
X̄4

n

) −
[

n
(
c0c2 − c2

1

)
c0c2 + (n − 1) c2

1

]2

.

where

(2.16) ci = Γ
(

k +
i

β

)
, i = 0, 1, 2, 3, 4.

(2.17)

E
(
X̄4

n

)
=

1
n3λ4c4

0

{
c3
0c4 + 4 (n − 1) c2

0c1c3

+3 (n − 1) c2
0c

2
2

+6 (n − 1) (n − 2) c0c1c
2
2+ (n − 1) (n − 2) (n − 3)c4

1},

and

(2.18)

E
(
S4

n

)
=

n

(n − 1)2 λ4c2
0

{c0c4 + (n − 1) c2
2 −

1
n2c2

0[
(2n − 1) c0c2 − (n − 1) c2

1

c0c2 + (n − 1) c2
1

]

· (c3
0c4+ 4 (n − 1) c2

0c1c3 + 3 (n − 1) c2
0c

2
2

+6 (n − 1) (n − 2) c0c1c
2
2 + (n − 1) (n − 2) (n − 3) c4

1

)}
.

When the generalized gamma distribution is reduced to the gamma distribution
(β = 1), (2.14) and (2.15) can be simplified respectively as following:

(2.19) V ar
(
S2

n

)
=

k

λ4

[
2k

n − 1
+

6
n

]
,

and

(2.20) V ar
(
V 2

n

)
=

2k (k + 1)

(n − 1)
(
k + 1

n

)2 (
k + 2

n

) (
k + 3

n

) ,
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which are the same as the Theorem 2.4 of Hwang and Huang (2002); there is some
error in the equation (2.3) of Hwang and Huang (2002).

Furthermore, while the generalized gamma distribution is reduced to the Weibull
distribution (k = 1), (2.14) and (2.15) can be simplified respectively as following:

(2.21) V ar
(
S2

n

)
= E

(
S4

n

)− [d2 − d2
1

λ2

]2

,

and

(2.22) V ar
(
V 2

n

)
=

E
(
S4

n

)
E
(
X̄4

n

) −
[

n
(
d2 − d2

1

)
d2 + (n − 1) d2

1

]2

.

where di = i
βΓ
(

i
β

)
, i = 1, 2, 3, 4.

(2.23)

E
(
X̄4

n

)
=

1
n3λ4

{d4 + 4 (n − 1) d1d3

+3 (n − 1) d2
2 + 6 (n − 1) (n − 2) d1d

2
2

+ (n − 1) (n − 2) (n − 3) d4
1

}
,

and

(2.24)

E
(
S4

n

)
=

n

(n − 1)2 λ4
{d4 + (n − 1) d2

2

− 1
n2

[
(2n − 1) d2 − (n − 1) d2

1

d2 + (n − 1) d2
1

]

· (d4+ 4 (n − 1) d1d3 + 3 (n − 1) d2
2

+6 (n − 1) (n − 2) d1d
2
2. + (n − 1) (n − 2) (n − 3) d4

1

)}
Theorem 2.5 implies that both V ar(S2

n) and V ar(V 2
n ) tend to zero as n → ∞.

Thus S2
n and V 2

n are respectively consistent estimators of
Γ(k)Γ(k+ 2

β
)−Γ2(k+ 1

β
)

λ2p2(k)
and

n·
[
Γ(k)·Γ(k+ 2

β
)−Γ2(k+ 1

β
)
]

Γ(k)·Γ(k+ 2
β

)+(n−1)·Γ2(k+ 1
β
)

for large samples. After some computations, we find

ar(V 2
n )V ar(S2

n) when n
[
λ2Γ2(k)− Γ2(k + 1

β )
]
≤ Γ(k)Γ(k + 2

β ) −Γ2(k + 1
β ).

Furthermore, the fact that V ar(V 2
n ) → 0 as n → ∞ also confirms the reason:

why Vn can always be considered approximately as constant for large samples, and it
can be used in checking experiment results and in estimating the standard deviation.
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3. THE COMPARISON WITH MAXIMUM LIKELIHOOD ESTIMATOR

Since the comparison of our estimator (k̂c, λ̂c) with maximum likelihood estima-
tor (k̂l, λ̂l) have been done by Hwang and Huang (2002) for the gamma distribution
(β = 1), thus the comparison of our estimators (β̂c, λ̂c) with maximum likelihood
estimators (β̂l, λ̂l) would be done for Weibull distribution (k = 1) in this paper. In
order to compare relative performances of the estimators mentioned above, the sim-
ulation procedures used in this paper is proposed by Greenwood and Durand (1960)
which improved Thom (1958). Note that (β̂l, λ̂l) are more difficult to compute than
(β̂c, λ̂c); the former even can’t be found for some cases.

The scale parameter values λ = 0.5, 1.0, 1.5 and 2.0 were studied in the sim-
ulation study corresponding to β = 0.5, 0.95, 1.0, 1.5, and 2.0. For each of these
(β, λ)-values, 1000 random sample, each of size 10, were generated from a Weibull
distribution. For each simulated sample, the MLE’s and our estimates were obtained
and compared their mean absolute bias and mean square errors respectively. The
following results are the worst case in all simulations.

Tables 1-5 give the mean absolute bias and mean square error estimates error
estimates for MLE and our estimates based on the undiscarded samples until 1000
samples are completed. The mean absolute bias and the mean square errors of
β̂c and λ̂c estimators are always smaller than those of β̂ and λ̂l estimators. The
numbers in the parentheses of Tables 1-5 are the bias of β̂c and λ̂c less than β̂l

and λ̂l respectively within 1000 biases; although the numbers in the parentheses for
various (β, λ,) less than 500, but their mean absolute biases always smaller; this
means that absolute biases induced by (β̂c, λ̂c) always smaller than by (β̂l, λ̂l).

Table 1. Mean absolute bias and mean square error for Weibull parameter estimator
using 1000 random samples of size 10 from Weibull distribution with β =
0.5

λ |β̂l − β| |β̂c − β| |λ̂l − λ| |λ̂c − λ|
Bias 0.5 0.2417 0.1101 (173) 0.2254 0.2326 (213)

1.0 0.1565 0.1099 (172) 1.2964 0.4665 (206)
1.5 0.7677 0.1123 (198) 0.6949 0.6876 (229)
2.0 1.3592 0.1074 (170) 0.6985 0.8683 (193)

MSE 0.5 4.2774 0.0206 2.0404 0.1317
1.0 0.4792 0.0204 828.59 0.4596
1.5 125.536 0.0210 6.7129 0.9911
2.0 1303.79 0.0197 10.851 1.7305
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Table 2. Mean absolute bias and mean square error for Weibull parameter estimator
using 1000 random samples of size 10 from Weibull distribution with β =
1.0

λ |β̂l − β| |β̂c − β| |λ̂l − λ| |λ̂c − λ|
Bias 0.5 0.4452 0.1272 (433) 0.1365 0.1220 (462)

1.0 0.4753 0.1188 (475) 0.2840 0.2389 (473)
1.5 0.6541 0.1249 (464) 0.4385 0.3809 (462)
2.0 0.5648 0.1164 (448) 0.5795 0.4889 (466)

MSE 0.5 5.0403 0.0257 0.0750 0.0398
1.0 4.1884 0.0230 0.2934 0.1363
1.5 76.1254 0.0256 0.6847 0.3671
2.0 15.6411 0.0222 1.2717 0.6052

Table 3. Mean absolute bias and mean square error for Weibull parameter estimator
using 1000 random samples of size 10 from Weibull distribution with β =
1.5

λ |β̂l − β| |β̂c − β| |λ̂l − λ| |λ̂c − λ|
Bias 0.5 0.9957 0.1264 (490) 0.1359 0.1170 (450)

1.0 0.9957 0.1264 (490) 0.1359 0.1170 (450)
1.5 0.5694 0.1240 (442) 0.3986 0.3571 (451)
2.0 0.5615 0.1257 (480) 0.5155 0.4510 (464)

MSE 0.5 221.608 0.0266 0.0690 0.0347
1.0 30.5121 0.0252 0.2447 0.1405
1.5 13.4106 0.0253 0.5511 0.3190
2.0 10.5556 0.0257 0.9287 0.4844

Table 4. Mean absolute bias and mean square error for Weibull parameter estimator
using 1000 random samples of size 10 from Weibull distribution with β =
2.0

λ |β̂l − β| |β̂c − β| |λ̂l − λ| |λ̂c − λ|
Bias 0.5 0.7320 0.1365 (491) 0.0740 0.0662 (422)

1.0 0.5322 0.1390 (521) 0.1639 0.1447 (451)
1.5 0.5484 0.1401 (533) 0.2498 0.2136 (431)
2.0 0.5173 0.1383 (465) 0.2857 0.2550 (435)

MSE 0.5 92.1199 0.0318 0.0186 0.0109
1.0 4.4506 0.0320 0.0933 0.0513
1.5 5.7316 0.0322 0.2088 0.1100
2.0 10.6006 0.0317 0.2724 0.1642
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Table 5. Mean absolute bias and mean square error for Weibull parameter estimator
using 1000 random samples of size 10 from Weibull distribution with β =
2.0

λ |β̂l − β| |β̂c − β| |λ̂l − λ| |λ̂c − λ|
Bias 0.5 0.3050 0.1216 (508) 0.0414 0.0372 (364)

1.0 0.3652 0.1294 (511) 0.0898 0.0792 (363)
1.5 0.3109 0.1228 (524) 0.1305 0.1161 (367)
2.0 0.3987 0.1236 (543) 0.1953 0.1629 (384)

MSE 0.5 0.7342 0.0284 0.0066 0.0040
1.0 0.9782 0.0297 0.0306 0.0174
1.5 0.7629 0.0273 0.0693 0.0391
2.0 1.1217 0.0280 0.1477 0.0756

Until now, we have done more than 100,000 times simulation for λ = 0.5, 1.0, 1.5,
2.0 and β = 0.5, 0.95, 1.0, 1.5, 2.0, when n = 5(5)25, 26(1)30, and obtained the
following conclusions: (1) (β̂c, λ̂c) is better than (β̂l, λ̂l) for n � 25, and the smaller
n the better (β̂c, λ̂c); (2) (β̂l, λ̂l) is better than (β̂c, λ̂c) for n > 25, and the larger
n the better (β̂l, λ̂l).
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