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COLORING THE SQUARE OF AN OUTERPLANAR GRAPH

Ko-Wei Lih and Wei-Fan Wang

Abstract. Let G be an outerplanar graph with maximum degree ∆(G) ≥ 3.
We prove that the chromatic number χ(G2) of the square of G is at most
∆(G) + 2. This confirms a conjecture of Wegner [8] for outerplanar graphs.
The upper bound can be further reduced to the optimal value ∆(G)+ 1 when
∆(G) ≥ 7.

1. INTRODUCTION

Only simple graphs are considered in this paper. For two vertices u and v of a
graph G(V, E), let distG(u, v) denote the distance between u and v in G, that is the
length of a shortest path connecting them. The square G2 of a graph G is the graph
defined on the vertex set V (G) such that u and v are adjacent in G2 if and only
if 1 ≤ distG(u, v) ≤ 2. A proper k-coloring is a mapping φ from V (G) to the set
{1, 2, . . . , k} such that φ(u) �= φ(v) whenever u and v are adjacent. Obviously, a
k-coloring φ of G gives rise to a proper coloring of G2 if and only if φ(u) �= φ(v)
whenever 1 ≤ distG(u, v) ≤ 2. We call such a coloring φ a square-k-coloring of
G. The chromatic number χ(G) is the least number k such that G admits a proper
k-coloring. Let ∆(G) denote the maximum degree of a vertex of the graph G. It is
evident that χ(G2) ≥ ∆(G) + 1 for any graph G. This lower bound is sharp. For
instance, χ(T 2) = ∆(T ) + 1 for every tree T with at least one edge. On the other
hand, it is easy to see that χ(G2) ≤ ∆2(G)+1 for any graph G. This upper bound
is also sharp. The 5-cycle and the Petersen graph are two examples.

Wegner [8] first investigated the chromatic number of the square of a planar
graph. He proved that χ(G2) ≤ 8 for every planar graph G with ∆(G) = 3
and conjectured that the upper bound could be reduced to 7. Recently, Thomassen
[6] has established Wegner’s conjecture. Wegner [8] also proposed the following
conjecture. The upper bounds are sharp if the conjecture is true.
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Conjecture 1. Let G be a planar graph. Then

χ(G2) ≤
{

∆(G) + 5 if 4 ≤ ∆(G) ≤ 7;

�3∆(G)/2�+ 1 if ∆(G) ≥ 8.

This conjecture remains open. The best upper bound as far as we know is
5∆(G)/3 + 78 established by Molloy and Salavatipour [5]. This improves other
recently obtained upper bounds: �9∆/5� + 2 for ∆(G) ≥ 749 ([1]), �9∆/5� + 1
for ∆(G) ≥ 47 ([2]), and 2∆(G) + 25 ([4]). For planar graphs of large girth,
better upper bounds for χ(G2) are known. Wang and Lih [7] proved that if G

is a planar graph with girth g(G), then χ(G2) ≤ ∆(G) + 5 when g(G) ≥ 7,
χ(G2) ≤ ∆(G) + 10 when g(G) ≥ 6, and χ(G2) ≤ ∆(G) + 16 when g(G) ≥ 5.

The focus of this paper is to study the chromatic number of the square of
an outerplanar graph. A planar graph is said to be outerplanar if it has a plane
embedding such that all vertices lie on the boundary of the unbounded face. An
outerplane graph is a particular embedding of an outerplanar graph. Bodlaender et
al. [3] showed that there are polynomial time algorithms for coloring the square of
an outerplanar graph G and χ(G2) ≤ ∆(G) + 5. We will reduce the upper bound
to ∆(G) + 2 when ∆(G) ≥ 3, and even to the optimal result χ(G2) = ∆(G) + 1
when ∆(G) ≥ 7.

2. SPECIAL VERTICES OF DEGREE 2

A vertex of degree k is called a k-vertex. The degree of v in the graph G is
denoted by dG(v). For a vertex v of a graph G, define NG

i (v) = {u ∈ V (G) |
distG(u, v) = i} for i ≥ 1 and define βG(v) = |NG

1 (v)|+ |NG
2 (v)|.

For an outerplane graph G, all faces are called inner faces, except that the
unbounded one is called the outer face. The boundary edges of the outer face are
called outer edges. All other edges are called inner edges. If G is 2-connected and
∆(G) ≥ 3, then an inner face f of G is called an end face if the boundary of f

contains exactly one inner edge, i.e., the boundary of f contains exactly two vertices
of degree 3 or more. The dual graph of G becomes a tree of order at least 2 when
the vertex corresponding to the outer face is deleted. Thus there exist at least two
leaves that determine two end faces of G.

Let |G| denote the order of G. It is well-known that a 2-connected outerplane
graph G has at least one 2-vertex if |G| ≥ 3, and at least two nonadjacent 2-vertices
if |G| ≥ 4.

Let M3 be the graph obtained from a path x1, x2, . . . , x7 of length 6, where
x1 �= x7, by adding the edges x1x3, x3x5, and x5x7. A graph G is said to contain
the configuration M3 if M3 appears in G as a subgraph such that dG(xi) = 2



Coloring the Square 1017

for i = 2, 4, 6 and dG(xj) = 4 for j = 1, 3, 5, 7. Define the function f so that
f(∆) = ∆ + 1 when 3 ≤ ∆ ≤ 6, and f(∆) = ∆ when ∆ ≥ 7.

Theorem 1. Let G be a 2-connected outerplane graph with |G| ≥ 3. Suppose
that ∆(G) ≥ 3 and G does not contain the configuration M 3 when ∆(G) = 4.
Then there exists a vertex u of degree 2 such that βG(u) ≤ f(∆).

Proof. Let ∆ = ∆(G). If ∆ = 3, then it is easy to see that βG(u) ≤ 4 for
some 2-vertex in the boundary of an end face.

So we may assume that ∆ ≥ 4. The smallest 2-connected outerplane graph with
maximum degree ∆ consists of a vertex joined to every vertex of a path of length
∆ − 1. Evidently, this graph has a 2-vertex u such that βG(u) = ∆ ≤ f(∆).

We now proceed by induction on |G|. Let C be the cycle consisting of all the
outer edges.

Since ∆ ≥ 4, there exists a subpath P of C of length at least 2 whose ends
have degree at least 3 in G, but all of whose internal vertices have degree 2 in G.
If the length of P is at least 3, then we may contract the second edge from one
end of P to get a shorter path. The result then follows by induction. Therefore we
assume that no two 2-vertices in C are adjacent.

Let an arbitrary 2-vertex u of G have neighbors v and w. If v and w are not
adjacent and their degrees are both less than ∆, then we add a new edge vw. In so
doing, we do not change the value of βG(u). We perform such additions wherever
possible. So we may assume the following for G.

Convention. Let u be a 2-vertex with neighbors v and w such that dG(v) ≥
dG(w). If v and w are not adjacent, then dG(v) = ∆.

In the sequel, we always label the two neighbors v and w of a 2-vertex u in such
a way that dG(v) ≥ dG(w). Let xv and xw denote the neighbors in C −u of v and
w, respectively. Let P (u) : z0, z1, . . . , zt be the shortest subpath of C containing
the path xv, v, u, w, xw and containing all the vertices in N G

1 (v)∪ NG
1 (w). Then

there exists an index i such that zi−2 = xv, zi−1 = v, zi = u, zi+1 = w, and
zi+2 = xw . Note that z0 and zt are in NG

1 (v) ∪ NG
1 (w). Now we choose a vertex

u such that P (u) has the minimum length.

Case 1. The neighbors of u are not adjacent.

Then by the Convention, dG(v) = ∆. Let H be the graph obtained from G

by deleting u and adding the edge vw. We see that |H | < |G|, ∆(H) = ∆(G),
and H satisfies the assumptions of the theorem. By the induction hypothesis, there
exists a vertex x such that dH(x) = 2 and βH(x) ≤ f(∆). Since dH(x) = 2 and
both dH(v) and dH(w) are at least 3, x is different from v and w. Obviously, at
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most one of v and w may be a neighbor of x. Suppose that both v and w are not
neighbors of x. Then βG(x) = βH(x) and x is what we are looking for.

Suppose that x is adjacent to v and z for some z different from w. If z is not a
neighbor of w, then NG

2 (x) = (NH
2 (x) \ {w}) ∪ {u}. Again, βG(x) = βH(x). If

z is a neighbor of w, then it implies that dG(v) = ∆ ≤ 3, contradicting our present
assumption that ∆ ≥ 4.

Suppose that x is adjacent to w and z for some z different from v. If z is not
a neighbor of v, then NG

2 (x) = (NH
2 (x) \ {v}) ∪ {u}. Again βG(x) = βH(x).

If z is a neighbor of v, then z and w must be adjacent. Now let the neighbor of
z in C − x be y, where y �= v as dG(v) = ∆ ≥ 4. Hence dG(z) ≥ 4. If y is
adjacent to v, then βG(x) = 5 ≤ f(∆), and we are done. Suppose that y is not a
neighbor of v. If dG(v) = 4, then dG(z) = 4 since dG(v) = ∆. Again, it follows
that βG(x) = 5 ≤ f(∆), and we are done.

Suppose next dG(v) ≥ 5. Let j ≤ i − 2 be the largest index such that zj is
a neighbor of v. If j = 0, then all the vertices at distance at most 2 from x are
included in the path zi−1, zi, . . . , zt. It follows that P (x) is strictly shorter than
P (u), a contradiction. Hence j > 0. Let k be the smallest index, j < k ≤ i − 2,
such that zk is a 2-vertex. If k < i − 2, then all the vertices at distance at most 2
from zk are included in the path z0, z1, . . . , zi−1. It follows that P (zk) is strictly
shorter than P (u), a contradiction. Now suppose that k = i − 2. In this case,
zi−2 and zj must be adjacent, i.e., j = i − 3. If zj−1 is also a neighbor of v, then
βG(zi−2) = dG(v) ≤ f(∆).

Suppose that zj−1 is not a neighbor of v. If there is at least one vertex zp,
0 < p < j − 1, that is adjacent to v, then there is some 2-vertex zm, p < m < j,
such that all the vertices at distance at most 2 from zm are included in the path z0,
z1, . . . , zi−1. Therefore, P (zm) is strictly shorter than P (u), a contradiction. Now
suppose that no such zp exists. It implies that dG(v) = ∆ = 5. Hence, dG(z) ≤ 5.
It follows that βG(x) ≤ 6 = f(∆), and we are done.

Case 2. The neighbors of u are adjacent.

If v is adjacent to xw, then βG(u) = dG(v) ≤ ∆ ≤ f(∆) and u is what we are
looking for. Henceforth we assume that v and xw are not adjacent.

Subcase 2.1. The number of indices j, 0 ≤ j < i− 2, such that zj is adjacent
to v is at least two.

Let j < i − 2 be the largest index such that zj is a neighbor of v. Let k be
the smallest index, j < k ≤ i − 2, such that zk is a 2-vertex. If k < i − 2 or zt is
not adjacent to v, then all the vertices at distance at most 2 from zk are included
in the path z0, z1, . . . , zi+1. It follows that P (zk) is strictly shorter than P (u), a
contradiction. Now suppose that k = i − 2 and zt is a neighbor of v. In this case,
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zi−2 and zj must be adjacent, i.e., j = i − 3. If zj−1 is also a neighbor of v, then
βG(zi−2) = dG(v) ≤ f(∆), and we are done.

Suppose that zj−1 is not a neighbor of v. If there is at least one vertex zp,
0 < p < j − 1, that is adjacent to v, then there is some 2-vertex zm, p < m < j,
such that all the vertices at distance at most 2 from zm are included in the path z0,
z1, . . . , zi−1. Therefore, P (zm) is strictly shorter than P (u), a contradiction.

Now suppose that no such zp exists. If dG(v) ≥ 7, or dG(w) ≥ 5, or dG(w) = 4
but w is not adjacent to zt, then there is some zs, i + 2 < s < t, that is a neighbor
of v or w. It follows that there is some 2-vertex zm, i + 2 ≤ m < s, such that all
the vertices at distance at most 2 from zm are included in the path zi−1, zi, . . . ,
zt. Therefore, P (zm) is strictly shorter than P (u), a contradiction. The remaining
possibilities are such that dG(v) = 6 and dG(w) = 3, or dG(w) = 4 and w is
adjacent to zt. We see that βG(u) = 7 ≤ f(∆) in both cases and u satisfies the
theorem.

Subcase 2.2. The vertex z0 is precisely xv.
If zt is a neighbor of w, then βG(u) ≤ 5 ≤ f(∆) since 3 ≤ dG(w) ≤ dG(v) ≤ 4

in this case. Suppose that zt is adjacent to v, but not to w. It is obvious that
dG(v) ≥ 4. If dG(w) ≥ 4, then there is some zj , i + 2 < j < t, that is adjacent
to w. Thus there is some 2-vertex zk, i + 2 ≤ k < j, such that all the vertices at
distance at most 2 from zk are included in the path zi−1, zi, . . . , zt. It follows
that P (zk) is strictly shorter than P (u), a contradiction. So suppose dG(w) = 3. If
dG(v) = 4, then βG(u) = 5 ≤ f(∆), hence u satisfies the theorem. If dG(v) ≥ 5,
then there is some zp, i + 2 < p < t, that is adjacent to v. Since v is not adjacent
to xw, there is some 2-vertex zq, i+2 ≤ q < p, such that all the vertices at distance
at most 2 from zq are included in the path zi−1, zi, . . . , zt. It follows that P (zq)
is strictly shorter than P (u), a contradiction.

Subcase 2.3. The vertex z0 is different from xv and is a neighbor of v such
that no vertices among zj , 0 < j < i − 2, are adjacent to v.

First assume that zt is not a neighbor of v. Thus dG(v) = 4. If dG(w) = 3,
then βG(u) = 5 ≤ f(∆). If dG(w) = 4, then βG(u) = 6 ≤ f(∆) when ∆ ≥ 5. In
both cases, u satisfies the theorem.

Now assume that ∆ = 4. If the degree of zi−2 is 4, or is 3 but zi−2 is not a
neighbor of z0, then some zj , 0 < j < i − 2, is a neighbor of zi−2. Thus there is
some 2-vertex zk, j < k < i − 2, such that all the vertices at distance at most 2
from zk are included in the path z0, z1, . . . , zi−1. It follows that P (zk) is strictly
shorter than P (u), a contradiction.

Suppose that zi−2 is of degree 3 and adjacent to z0. If zi−3 is of degree 2 and
adjacent to z0, then βG(zi−3) = 4 < f(∆). Thus zi−3 satisfies the theorem. If
zi−3 is of degree 2, but not adjacent to z0, then all the vertices at distance at most
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2 from zi−3 are included in the path z0, z1, . . . , zi−1. It follows that P (zi−3) is
strictly shorter than P (u), a contradiction.

Suppose that the degree of zi−3 is at least 3. Then zi−3 cannot be a neighbor
of z0, for otherwise v would be a cut vertex. Then there is some 2-vertex zk,
1 < k < i− 3, such that all the vertices at distance at most 2 from zk are included
in the path z0, z1, . . . , zi−2. It follows that P (zk) is strictly shorter than P (u), a
contradiction.

Consequently, the only possibility left for zi−2 is its degree is 2. If zi−2 is not
adjacent to z0, then all the vertices at distance at most 2 from zi−2 are included
in the path z0, z1, . . . , zi+1. It follows that P (zi−2) is strictly shorter than
P (u), a contradiction. If zi−2 is adjacent to z0, i.e., i = 3, and dG(z0) = 3,
then βG(z1) = 5 = f(∆). Thus z1 satisfies the theorem. So the last remaining
possibility is that z1 is a 2-vertex, z1 is adjacent to z0, and z0 is a 4-vertex.

Now since dG(v) = dG(w) = 4, an argument similar to the above for zi−2

can be applied to z5. We either obtain a desired 2-vertex or the degrees of z5 and
z6 are 2 and 4, respectively. Note that the vertices z0, z1, . . . , z6 would induce a
configuration M3. However, that is ruled out by the assumptions of the theorem.

Finally, suppose that zt is a neighbor of v. This implies that dG(v) ≥ 5. If
dG(v) ≥ 6, or dG(w) ≥ 5, or if dG(v) = 5, dG(w) = 4, and zt is not adjacent to w,
then there is some zj , i+2 < j < t, that is adjacent to v or w. It follows that there
is some 2-vertex zk , i + 2 ≤ k < j, such that all the vertices at distance at most
2 from zk are included in the path zi−1, zi, . . . , zt. Therefore, P (zk) is strictly
shorter than P (u), a contradiction. If dG(v) = 5, and dG(w) = 3 or dG(w) = 4
but zt is adjacent to w, then βG(u) = 6 ≤ f(∆). Thus u satisfies the theorem.

Let C5 + e be the graph obtained from a cycle of length 5 with two non-
consecutive vertices joined. Then its maximum degree is 3 and βC5+e(u) = 4 for
any vertex u.

For n ≥ 3, let On denote the outerplane graph obtained by adding n edges
u1u2, u2u3, . . . , unu1 inside a cycle u1, v1, u2, v2, . . . , un, vn, u1 of length 2n. We
have ∆(O3) = 4 and βO3(u) = 5 for any vertex u. Let A be the graph obtained
from O4 by joining the vertices u1 and u3. Then ∆(A) = 5 and βA(u) = 6 for
any 2-vertex u. Let B be the graph obtained from O6 by adding the new triangle
u1u3u5. Then ∆(B) = 6 and βB(u) = 7 for any 2-vertex u. Therefore, the upper
bound in Theorem 1 cannot be further reduced when 3 ≤ ∆ ≤ 6.

3. COLORING THE SQUARE

Let G be a connected graph. It is straightforward to verify the following facts.

(1) If ∆(G) = 1, then χ(G2) = 2.
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(2) If ∆(G) = 2 and G is a path, then χ(G2) = 3 = ∆(G) + 1. If ∆(G) = 2
and G is a cycle, then 3 ≤ χ(G2) ≤ 5. Moreover, χ(G2) = 3 = ∆(G)+1 if
and only if |G| ≡ 0 (mod 3); χ(G2) = 5 = ∆(G)+ 3 if and only if |G| = 5.

Lemma 2. Let x be a cut vertex of the graph G. Let Gi be the subgraph
induced by Vi ∪ {x} for i = 1, 2, . . . , m, where Vi’s are the vertex sets of the
components of G − x. Then χ(G2) = max1≤i≤m{dG(x) + 1, χ(G2

i )}.

Proof. Let k = max1≤i≤m{dG(x) + 1, χ(G2
i )}. Since Gi is a subgraph

of G, χ(G2) ≥ χ(G2
i ) for every i, 1 ≤ i ≤ m. Moreover, it is obvious that

χ(G2) ≥ ∆(G) + 1 ≥ dG(x) + 1. It follows that χ(G2) ≥ k. Conversely, let
each Gi be colored with a square-χ(G2

i )-coloring. Then all the neighbors of x in
Gi have different colors. By suitably renaming the colors, we can color x with the
same color in every Gi and all the neighbors of x in G are colored differently. It
follows that k ≥ χ(G2).

Theorem 3. Let G be an outerplane graph with ∆(G) ≥ 3. Then χ(G2) ≤
∆(G) + 2. Moreover, χ(G2) = ∆(G) + 1 if ∆(G) ≥ 7.

Proof. We proceed by induction on the order |G|. We may suppose the
connectedness of G. If |G| ≤ 4, the theorem holds trivially. Let ∆(G) ≥ 3 and
|G| ≥ 5.

Suppose that G is 2-connected. If ∆(G) �= 4, or ∆(G) = 4 but G does not
contain the configuration M3, then there is a 2-vertex u of G such that βG(u) ≤
∆(G) + 1 by Theorem 1. Let v and w be the neighbors of u. If v and w are not
adjacent, define H to be G − u + vw. If v and w are adjacent, define H to be
G − u. Then |H | < |G|, ∆(H) = ∆(G), and H is 2-connected. By the induction
hypothesis, H has a square-(∆(G)+2)-coloring. We can extend this coloring to G
since the vertex u has at most ∆(G) + 1 forbidden colors.

Now let ∆(G) = 4 and G contains the configuration M3. Let y1, y2 ∈ N1(x1)\
{x2, x3} and z1, z2 ∈ N1(x7) \ {x5, x6}. If x1 is adjacent to x7, we stipulate that
y2 = x7 and z2 = x1. Define the graph H to be G − {x2, x3, . . . , x6} if x1 is
adjacent to x7; to be G − {x2, x3, . . . , x6} + x1x7 otherwise. By the inductive
hypothesis, H has a square-6-coloring φ with the color set L = {1, 2, · · · , 6}. In
order to extend φ into a square-6-coloring of G, we consider the following two
cases.

Assume that x1 is adjacent to x7. Without loss of generality, we may let φ(y1) =
1, φ(x1) = 2, φ(x7) = 3, and φ(z1) = a. We first color x4 with 1, x5 with
b ∈ L\{1, 2, 3, a}, and x2 and x6 with c ∈ L\{1, 2, 3, a, b}. Afterward, we assign
a to x3 when a �= 1; we color x3 with d ∈ L \ {1, 2, 3, b, c} when a = 1.

Assume that x1 is not adjacent to x7. Since x1 is adjacent to x7 in H , φ(x1) /∈
{φ(z1), φ(z2)} and φ(x7) /∈ {φ(y1), φ(y2)}. Suppose that φ(y1) = 1, φ(y2) = 2,
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φ(x1) = 3, and φ(x7) = 4. First we color x4 with 1, x6 with 3, x2 with 4,
and x3 with 5. If 2 or 6 /∈ {φ(z1), φ(z2)}, we further color x5 with 2 or 6. If
{φ(z1), φ(z2)} = {2, 6}, we recolor x4 with 6 and then color x5 with 1.

Next suppose that G has a cut vertex x. Let Gi, 1 ≤ i ≤ m, be the subgraphs
induced by the components of G − x together with x. Then each Gi satisfies the
assumptions of the theorem. If ∆(Gi) ≥ 3, then χ(G2

i ) ≤ ∆(Gi) + 2 ≤ ∆(G) + 2
by the induction hypothesis. If ∆(Gi) ≤ 2, then χ(G2

i ) ≤ 5 ≤ ∆(G) + 2 as noted
at the beginning of this section. Thus χ(G2) ≤ ∆(G) + 2 by Lemma 2.

The “moreover” part can also be proved by induction since the 2-vertex u could
have been chosen so that βG(u) ≤ ∆(G) by Theorem 1.

It is yet to be determined if any outerplanar graph G with ∆(G) = 5 or 6 satisfies
χ(G2) = ∆(G)+ 2. We would conjecture that none exists. If an outerplanar graph
G with ∆(G) = 3 contains a 5-cycle, then χ(G2) = 5 = ∆(G) + 2. This example
together with the following theorem shows that the upper bound ∆(G) + 2 in
Theorem 3 is tight for ∆(G) = 3 or 4.

Theorem 4. For any n≥3, χ(O2
n)=5 except χ(O2

3)=χ(O2
4)=χ(O2

7)=6.

Proof. It is easy to see that 5 ≤ χ(O2
n) ≤ 6 for every n ≥ 3. Since O2

3 is K6

and O2
4 contains K6 as a subgraph, we have χ(O2

3) = χ(O2
4) = 6. We observe that

every color class contains at most three vertices for a square-k-coloring of O7. If a
color class is of size 3, then it contains at least two vertices of degree 2. Since O7

has seven vertices of degree 2, there are at most three color classes of size 3. This
implies k ≥ 6 and χ(O2

7) = 6.
Now assume n ≥ 5 and n �= 7. We are going to construct a square-5-coloring

of On in every possible case.
If n ≡ 0 (mod 5), we color the sequence of vertices u1, v1, u2, v2, . . . , un, vn

with the color sequence 1, 2, 3, 4, 5 repeatedly.
If n ≡ 1 (mod 5), we first color u1 and u4 with 1, u2 and u5 with 2, u3 and

u6 with 3, v1, v3, v5 with 4, and v2, v4, v6 with 5. Then we color the sequence of
vertices u7, v7, u8, v8, . . . , un, vn with the color sequence 1, 4, 2, 3, 5 repeatedly.

If n ≡ 2 (mod 5) and n ≥ 12, we first color u1, u4, u7, u10 with 1, u2, u5, u8, u11

with 2, u3, u6, u9, u12 with 3, v1, v3, v5, v7, v9, v11 with 4, and v2, v4, v6, v8, v10, v12

with 5. Then we color the sequence of vertices u13, v13, u14, v14, . . . , un, vn with
the color sequence 1, 4, 2, 3, 5 repeatedly.

If n ≡ 3 (mod 5), we first color v1, v3, v5, v7 with 1, u1, u4, v6 with 2, u2, v4, u7

with 3, v2, u5, u8 with 4, and u3, u6, v8 with 5. Then we color the sequence of
vertices u9, v9, u10, v10, . . . , un, vn with the color sequence 2, 3, 1, 4, 5 repeatedly.

If n ≡ 4 (mod 5), we first color u1, u4, u7 with 1, u2, v4, v6, v8 with 2,
v2, u5, v7, v9 with 3, v1, v3, v5, u8 with 4, and u3, u6, u9 with 5. Then color the
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sequence of vertices u10, v10, u11, v11, . . . , un, vn with the color sequence 1, 4, 2,
5, 3 repeatedly.
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