ON GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR AN INTEGRO-DIFFERENTIAL EQUATION WITH STRONG DAMPING

Shun-Tang Wu and Long-Yi Tsai

Abstract

The initial boundary value problem for an integro-differential equation with strong damping in a bounded domain is considered. The existence, asymptotic behavior and blow-up of solutions are discussed under some conditions. The decay estimates of the energy function and the estimates of the lifespan of blow-up solutions are given.

1. Introduction

In this paper we consider the initial boundary value problem for the following nonlinear integro-differential equation:

$$
\begin{equation*}
u_{t t}-M\left(\|\nabla u\|_{2}^{2}\right) \Delta u+\int_{0}^{t} g(t-s) \Delta u(s) d s+h\left(u_{t}\right)=f(u) \tag{1.1}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega, \tag{1.2}
\end{equation*}
$$

and boundary condition

$$
\begin{equation*}
u(x, t)=0, x \in \partial \Omega, t \geq 0, \tag{1.3}
\end{equation*}
$$

where $\Delta=\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}$ and $\Omega \subset R^{N}, N \geq 1$, is a bounded domain with a smooth boundary $\partial \Omega$ so that Divergence theorem can be applied. Here, g represents the kernel of the memory term which is assumed to decay exponentially (see assumption (A1)), $h\left(u_{t}\right)=-\Delta u_{t}, f$ is a nonlinear function like $f(u)=|u|^{p-2} u, p>2$ and

Received July 7, 2004, revised January 19, 2005.
Communicated by Yingfei Yi.
2000 Mathematics Subject Classification: 35L05, 35A07.
Key words and phrases: Blow-up, Life span, Damping, integro-differential equation.
$M(s)$ is a positive locally Lipschitz function like $M(s)=m_{0}+b s^{\gamma}, m_{0}>0$, $b \geq 0, \gamma \geq 1$ and $s \geq 0$.

When $g \equiv 0$, for the case that $M \equiv 1$, the equation (1.1) becomes a nonlinear wave equation which has been extensively studied and several results concerning existence and nonexistence have been established $[1,3,4,8,10,11]$. When M is not a constant function, a special case of equation (1.1) is Kirchhoff equation which has been introduced in order to describe the nonlinear vibrations of an elastic string. More precisely, we have

$$
\begin{equation*}
\rho h \frac{\partial^{2} u}{\partial t^{2}}=\left\{p_{0}+\frac{E h}{2 L} \int_{0}^{L}\left(\frac{\partial u}{\partial x}\right)^{2} d x\right\} \frac{\partial^{2} u}{\partial x^{2}}+f \tag{1.4}
\end{equation*}
$$

for $0<x<L, t \geq 0$; where u is the lateral deflection, x the space coordinate, t the time, E the Young modulus, ρ the mass density, h the cross section area, L the length, p_{0} the initial axial tension and f the external force. Kirchhoff [9] was the first one to study the oscillations of stretched strings and plates. In this case the existence and nonexistence of solutions have been discussed by many authors and the references cited therein $[5,6,16,17,18,19]$.

When g is not trivial on R, for the case that $M \equiv 1$, (1.1) becomes a semilinear viscoelastic equation. Cavalcanti et al. [2] treated (1.1) for $h\left(u_{t}\right)=a(x) u_{t}$, here $a(x)$ may be null on a part of the domain. By assuming the kernel g in the memory term decays exponentially, they obtained an exponentially decay rate of the energy. This work extended the result of Zuazua [22] in which he considered (1.1) with $g=0$ and the damping is localized. On the other hand, when $h=0$, Jiang and Rivera [8] proved, in the framework of nonlinear viscoelasticity, the exponential decay of the energy provided that the kernel g decays exponentially. Recently, Wu and Tsai [20] discuss the global solution as well as energy decay, and blow-up of solutions for h and f are power-like functions. In the case that M is not a constant function, the equation (1.1) is a model to describe the motion of deformable solids as hereditary effect is incorporated. The equation (1.1) was first studied by Torrejon and Young [21] who proved the existence of weakly asymptotic stable solution for large analytical datum. Later, Rivera [14] showed the existence of global solutions for small datum and the total energy decays to zero exponentially under some restrictions.

In this paper we show that under some conditions the solution is global in time and the energy decays exponentially. In this way, we can extend the result of [14] to nonzero external force term $f(u)$ and the result of $[20]$ to nonconstant $M(s)$. We also obtain the new results for blow-up properties of local solution with small positive initial energy by using the direct method [13]. The content of this paper is organized as follows. In section 2, we give some lemmas and assumptions which will be used later. In section 3, we first use Faedo-Galerkin method to study the
existence of the simpler problem (3.1) - (3.3). Then, we obtain the local existence Theorem 3.2 by using contraction mapping principle. Moreover, the uniqueness of solution is also given. In section 4, we first define an energy function $E(t)$ in (4.7) and show that it is a non-increasing function of t. We obtain global existence and decay properties of the solutions of (1.1) - (1.3) given in Theorem 4.4. Finally, the blow-up properties of $(1.1)-(1.3)$ and the estimates for the blow-up time T^{*} are also given.

2. Preliminary Results

In this section, we shall give some lemmas and assumptions which will be used throughout this work.

Lemma 2.1. (Sobolev-Poincare inequality [12]) If $2 \leq p \leq \frac{2 N}{N-2}$, then

$$
\|u\|_{p} \leq B_{1}\|\nabla u\|_{2},
$$

for $u \in H_{0}^{1}(\Omega)$ holds with some constant B_{1}, where $\|\cdot\|_{p}$ denotes the norm of $L^{p}(\Omega)$.

Lemma 2.1. [13] Let $\delta>0$ and $B(t) \in C^{2}(0, \infty)$ be a nonnegative function satisfying

$$
\begin{equation*}
B^{\prime \prime}(t)-4(\delta+1) B^{\prime}(t)+4(\delta+1) B(t) \geq 0 \tag{2.1}
\end{equation*}
$$

If

$$
\begin{equation*}
B^{\prime}(0)>r_{2} B(0)+K_{0} \tag{2.2}
\end{equation*}
$$

then

$$
B^{\prime}(t)>K_{0}
$$

for $t>0$, where K_{0} is a constant, $r_{2}=2(\delta+1)-2 \sqrt{(\delta+1) \delta}$ is the smallest root of the equation

$$
r^{2}-4(\delta+1) r+4(\delta+1)=0
$$

Lemma 2.3. [13] If $J(t)$ is a non-increasing function on $\left[t_{0}, \infty\right), t_{0} \geq 0$ and satisfies the differential inequality

$$
\begin{equation*}
J^{\prime}(t)^{2} \geq a+b J(t)^{2+\frac{1}{\delta}} \text { for } t_{0} \geq 0 \tag{2.3}
\end{equation*}
$$

where $a>0, b \in R$, then there exists a finite time T^{*} such that

$$
\lim _{t \rightarrow T^{*}-} J(t)=0
$$

and the upper bound of T^{*} is estimated respectively by the following cases:
(i) If $b<0$ and $J\left(t_{0}\right)<\min \left\{1, \sqrt{\frac{a}{-b}}\right\}$ then

$$
T^{*} \leq t_{0}+\frac{1}{\sqrt{-b}} \ln \frac{\sqrt{\frac{a}{-b}}}{\sqrt{\frac{a}{-b}}-J\left(t_{0}\right)}
$$

(ii) If $b=0$, then

$$
T^{*} \leq t_{0}+\frac{J\left(t_{0}\right)}{\sqrt{a}}
$$

(iii) If $b>0$, then

$$
T^{*} \leq \frac{J\left(t_{0}\right)}{\sqrt{a}}
$$

or

$$
T^{*} \leq t_{0}+2^{\frac{3 \delta+1}{2 \delta}} \frac{\delta c}{\sqrt{a}}\left\{1-\left[1+c J\left(t_{0}\right)\right]^{\frac{-1}{2 \delta}}\right\}
$$

where $c=\left(\frac{b}{a}\right)^{\frac{\delta}{2+\delta}}$.
Lemma 2.4. [15] Let $\phi(t)$ be a non-increasing and nonnegative function on $[0, T], T>1$, such that

$$
\phi(t)^{1+r} \leq \omega_{0}(\phi(t)-\phi(t+1)) \text { on }[0, T]
$$

where ω_{0} is a positive constant and r is a nonnegative constant. Then we have
(i) if $r>0$, then

$$
\phi(t) \leq\left(\phi(0)^{-r}+\omega_{0}^{-1} r[t-1]^{+}\right)^{-\frac{1}{r}}
$$

where $[t-1]^{+}=\max \{t-1,0\}$.
(ii) if $r=0$, then

$$
\phi(t) \leq \phi(0) e^{-\omega_{1}[t-1]^{+}} \text {on }[0, T]
$$

where $\omega_{1}=\ln \left(\frac{\omega_{0}}{\omega_{0}-1}\right)$, here $\omega_{0}>1$.
Now, we state the general hypotheses:
(A1) $g: R^{+} \rightarrow R^{+}$is a bounded C^{1} function satisfying

$$
\begin{equation*}
m_{0}-\int_{0}^{\infty} g(s) d s=l>0 \tag{2.4}
\end{equation*}
$$

and there exist positive constants ξ_{1}, ξ_{2}, and ξ_{3} such that

$$
\begin{equation*}
-\xi_{1} g(t) \leq g^{\prime}(t) \leq-\xi_{2} g(t) \tag{2.5}
\end{equation*}
$$

(A2) $f(0)=0$ and there is a positive constant k_{1} such that

$$
|f(u)-f(v)| \leq k_{1}|u-v|\left(|u|^{p-2}+|v|^{p-2}\right),
$$

for $u, v \in R$ and $2<p \leq \frac{2(N-1)}{N-2} ;(\infty$, if $N \leq 2)$.

3. Local Existence

In this section, we shall discuss the local existence of solutions for integrodifferential equations (1.1) - (1.3) by using contraction mapping principle.

An important step in the proof of local existence Theorem 3.2 below is the study of the following simpler problem :

$$
\begin{equation*}
u_{t t}-\mu(t) \Delta u+\int_{0}^{t} g(t-s) \Delta u(s) d s-\Delta u_{t}=f_{1}(x, t) \text { on } \Omega \times(0, T) \tag{3.1}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega, \tag{3.2}
\end{equation*}
$$

and Dirichlet boundary condition

$$
\begin{equation*}
u(x, t)=0, x \in \partial \Omega, t>0 \tag{3.3}
\end{equation*}
$$

Here, $T>0, f$ is a fixed forcing term on $\Omega \times(0, T)$, and μ is a positive locally Lipschitz function on $[0, \infty)$ with $\mu(t) \geq m_{0}>0$ for $t \geq 0$.

Lemma 3.1. Suppose that (A1) holds, and that $u_{0} \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega), u_{1} \in$ $L^{2}(\Omega)$ and $f_{1} \in L^{2}\left([0, T] ; L^{2}(\Omega)\right)$. Then the problem (3.1) - (3.3) admits a unique solution u such that

$$
\begin{aligned}
u & \in C\left([0, T] ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right), \\
u_{t} & \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left([0, T], H_{0}^{1}(\Omega)\right), \\
u_{t t} & \in L^{2}\left([0, T] ; L^{2}(\Omega)\right) .
\end{aligned}
$$

Proof. Let $\left(w_{n}\right)_{n \in N}$ be a basis in $H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ and V_{n} be the space generated by $w_{1}, \cdots, w_{n}, n=1,2, \cdots$.
Let us consider

$$
u_{n}(t)=\sum_{i=1}^{n} r_{i n}(t) w_{i}
$$

be the weak solution of the following approximate problem corresponding to (3.1) (3.3)

$$
\begin{align*}
& \int_{\Omega} u_{n}^{\prime \prime}(t) w d x+\mu(t) \int_{\Omega} \nabla u_{n}(t) \cdot \nabla w d x \\
& -\int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla u_{n}(\tau) \cdot \nabla w d x d \tau+\int_{\Omega} \nabla u_{n}^{\prime}(t) \cdot \nabla w d x \tag{3.4}\\
= & \int_{\Omega} f_{1}(x, t) w d x \text { for } w \in V_{n},
\end{align*}
$$

with initial conditions

$$
\begin{equation*}
u_{n}(0)=u_{0 n} \equiv \sum_{i=1}^{n} p_{i n} w_{i} \rightarrow u_{0} \text { in } H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{n}^{\prime}(0)=u_{1 n} \equiv \sum_{i=1}^{n} q_{i n} w_{i} \rightarrow u_{1} \text { in } L^{2}(\Omega) \tag{3.6}
\end{equation*}
$$

where $p_{i n}=\int_{\Omega} u_{0} w_{i} d x, q_{i n}=\int_{\Omega} u_{1} w_{i} d x$ and $u^{\prime}=\frac{\partial u}{\partial t}$.
By standard methods in differential equations, we prove the existence of solutions to $(3.4)-(3.6)$ on some interval $\left[0, t_{n}\right), 0<t_{n}<T$. In order to extend the solution of $(3.4)-(3.6)$ to the whole interval $[0, T]$, we need following a prior estimate.

Step 1. Setting $w=u_{n}^{\prime}(t)$ in (3.4), we obtain

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{1}{2}\left\|u_{n}^{\prime}(t)\right\|_{2}^{2}+\frac{\mu(t)}{2}\left\|\nabla u_{n}(t)\right\|_{2}^{2}\right)+\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2} \\
= & \int_{\Omega} f_{1}(x, t) u_{n}^{\prime}(t) d x+\int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla u_{n}(\tau) \cdot \nabla u_{n}^{\prime}(t) d x d \tau \\
& +\frac{\mu^{\prime}(t)}{2}\left\|\nabla u_{n}(t)\right\|_{2}^{2}
\end{aligned}
$$

Noting that, by Holder inequality and Young's inequality, we have

$$
\begin{align*}
& \int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla u_{n}(\tau) \cdot \nabla u_{n}^{\prime}(t) d x d \tau \\
\leq & \frac{1}{2}\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2}+\frac{\|g\|_{L^{1}}}{2} \int_{0}^{t} g(t-\tau)\left\|\nabla u_{n}(\tau)\right\|_{2}^{2} d \tau \tag{3.8}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\Omega} f_{1}(x, t) u_{n}^{\prime}(t) d x \leq \frac{1}{2}\left\|f_{1}\right\|_{2}^{2}+\frac{1}{2}\left\|u_{n}^{\prime}(t)\right\|_{2}^{2} \tag{3.9}
\end{equation*}
$$

Then, by using (3.8) and (3.9), we obtain from (3.7)

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{1}{2}\left\|u_{n}^{\prime}(t)\right\|_{2}^{2}+\frac{\mu(t)}{2}\left\|\nabla u_{n}(t)\right\|_{2}^{2}\right)+\frac{1}{2}\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2} \\
\leq & \frac{1}{2}\left\|f_{1}\right\|_{2}^{2}+\frac{\|g\|_{L^{1}}}{2} \int_{0}^{t} g(t-\tau)\left\|\nabla u_{n}(\tau)\right\|_{2}^{2} d \tau \tag{3.10}\\
& +\frac{\mu^{\prime}(t)}{2}\left\|\nabla u_{n}(t)\right\|_{2}^{2}+\frac{1}{2}\left\|u_{n}^{\prime}(t)\right\|_{2}^{2}
\end{align*}
$$

By integrating (3.10), we get

$$
\begin{align*}
& \left\|u_{n}^{\prime}(t)\right\|_{2}^{2}+\mu(t)\left\|\nabla u_{n}(t)\right\|_{2}^{2}+\int_{0}^{t}\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2} d t \tag{3.11}\\
\leq & c_{1}+\int_{0}^{t}\left[1+\frac{1}{\mu(t)}\left(\left|\mu^{\prime}(t)\right|+\|g\|_{L^{1}}^{2}\right)\right]\left[\left\|u_{n}^{\prime}(t)\right\|_{2}^{2}+\mu(t)\left\|\nabla u_{n}(t)\right\|_{2}^{2}\right] d t
\end{align*}
$$

where $c_{1}=\left\|u_{1 n}\right\|_{2}^{2}+\mu(0)\left\|\nabla u_{0 n}\right\|_{2}^{2}+\int_{0}^{t}\left\|f_{1}\right\|_{2}^{2} d t$.
Thus, by employing Gronwall's Lemma, we see that

$$
\begin{equation*}
\left\|u_{n}^{\prime}(t)\right\|_{2}^{2}+\mu(t)\left\|\nabla u_{n}(t)\right\|_{2}^{2}+\int_{0}^{t}\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2} d t \leq L_{1} \tag{3.12}
\end{equation*}
$$

for $t \in[0, T]$ and L_{1} is a positive constant independent of $n \in N$.
Step 2. Setting $w=u_{n}^{\prime \prime}(t)$ in (3.4), we have

$$
\begin{align*}
& \left\|u_{n}^{\prime \prime}(t)\right\|_{2}^{2}+\frac{d}{d t}\left(\mu(t) \int_{\Omega} \nabla u_{n}(t) \cdot \nabla u_{n}^{\prime}(t) d x+\frac{1}{2}\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2}\right) \\
= & \mu^{\prime}(t) \int_{\Omega} \nabla u_{n}(t) \cdot x \nabla u_{n}^{\prime}(t) d x+\mu(t)\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2} \\
& +\frac{d}{d t}\left(\int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla u_{n}(\tau) \cdot \nabla u_{n}^{\prime}(t) d x d \tau\right)-g(0) \int_{\Omega} \nabla u_{n}(t) \cdot \nabla u_{n}^{\prime}(t) d x \tag{3.13}\\
& -\int_{0}^{t} g^{\prime}(t-\tau) \int_{\Omega} \nabla u_{n}(\tau) \cdot \nabla u_{n}^{\prime}(t) d x d \tau+\int_{\Omega} f_{1}(x, t) u_{n}^{\prime \prime}(t) d x .
\end{align*}
$$

Noting that, by (2.5), Hölder inequality and Young's inequality, we have

$$
\begin{gather*}
\quad-\int_{0}^{t} g^{\prime}(t-\tau) \int_{\Omega} \nabla u_{n}(\tau) \cdot \nabla u_{n}^{\prime}(t) d x d \tau \tag{3.14}\\
\leq \eta\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2}+\frac{\xi_{1}^{2}\|g\|_{L^{1}}}{4 \eta} \int_{0}^{t} g(t-\tau)\left\|\nabla u_{n}(\tau)\right\|_{2}^{2} d \tau .
\end{gather*}
$$

By Hölder inequality and Young's inequality again, we get

$$
\begin{equation*}
g(0) \int_{\Omega} \nabla u_{n}(t) \cdot \nabla u_{n}^{\prime}(t) d x \leq \eta\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2}+\frac{g(0)^{2}}{4 \eta}\left\|\nabla u_{n}(t)\right\|_{2}^{2} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mu^{\prime}(t) \int_{\Omega} \nabla u_{n}(t) \cdot \nabla u_{n}^{\prime}(t) d x\right| \leq \eta\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2}+\frac{M_{1}^{2}}{4 \eta}\left\|\nabla u_{n}(t)\right\|_{2}^{2} \tag{3.16}
\end{equation*}
$$

where $0<\eta \leq \frac{1}{4}$ is some positive constant and $M_{1}=\sup _{0 \leq t \leq T}\left\{\left|\mu^{\prime}(t)\right|\right\}$.
Thus, integrating (3.13) over $(0, t)$, and using $(3.14)-(3.16)$, we obtain

$$
\begin{align*}
& \frac{1}{2}\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2}+\frac{1}{2} \int_{0}^{t}\left\|u_{n}^{\prime \prime}(t)\right\|_{2}^{2} d t \\
\leq & \frac{M_{1}^{2}+\xi_{1}^{2}\|g\|_{L^{1}}^{2}+g(0)^{2}}{4 \eta} \int_{0}^{t}\left\|\nabla u_{n}(\tau)\right\|_{2}^{2} d \tau+\mu(t) \int_{0}^{t}\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2} d t \\
& +3 \eta \int_{0}^{t}\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2} d t+\frac{1}{2} \int_{0}^{t}\left\|f_{1}\right\|_{2}^{2} d t \tag{3.17}\\
& +\int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla u_{n}(\tau) \cdot \nabla u_{n}^{\prime}(t) d x d \tau \\
& +\mu(t)\left|\int_{\Omega} \nabla u_{n}(t) \cdot \nabla u_{n}^{\prime}(t) d x\right|+\mu(0)\left|\int_{\Omega} \nabla u_{0 n} \cdot \nabla u_{1 n} d x\right|
\end{align*}
$$

By using Hölder inequality and Young's inequality on the fifth and sixth term in (3.17) and by (3.12), we deduce

$$
\begin{aligned}
& \left(\frac{1}{2}-2 \eta\right)\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2}+\frac{1}{2} \int_{0}^{t}\left\|u_{n}^{\prime \prime}(t)\right\|_{2}^{2} d t \\
\leq & c_{2}+\left(M_{2}+3 \eta\right) \int_{0}^{t}\left\|\nabla u_{n}^{\prime}(\tau)\right\|_{2}^{2} d \tau
\end{aligned}
$$

where $c_{2}=\mu(0)\left\|\nabla u_{0 n}\right\|_{2}\left\|\nabla u_{1 n}\right\|_{2}+\frac{\left[\left(M_{1}^{2}+\xi_{1}^{2}\|g\|_{L^{1}}^{2}+g(0)^{2}+\|g\|_{L^{1}}\|g\|_{L^{\infty}}\right) T+M_{2}^{2}\right] L_{1}}{4 \eta m_{0}}$ $+\frac{1}{2} \int_{0}^{t}\left\|f_{1}\right\|_{2}^{2} d t$ and $M_{2}=\sup _{0 \leq t \leq T}\{|\mu(t)|\}$.

Then, by Gronwall's Lemma, we have

$$
\begin{equation*}
\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2}+\int_{0}^{t}\left\|u_{n}^{\prime \prime}(t)\right\|_{2}^{2} d t \leq L_{2} \tag{3.18}
\end{equation*}
$$

for all $t \in[0, T]$ and L_{2} is a positive constant independent of $n \in N$.

Step 3. Setting $w=-\Delta u_{n}$ in (3.4), we deduce

$$
\begin{align*}
& \frac{d}{d t}\left(-\int_{\Omega} u_{n}^{\prime}(t) \Delta u_{n}(t) d x+\frac{1}{2}\left\|\Delta u_{n}(t)\right\|_{2}^{2}\right) \\
& -\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2}+\mu(t)\left\|\Delta u_{n}\right\|_{2}^{2} \tag{3.19}\\
\leq & \frac{1}{4 \eta}\left\|f_{1}\right\|_{2}^{2}+\eta\left\|\Delta u_{n}\right\|_{2}^{2}+\int_{0}^{t} g(t-\tau) \int_{\Omega} \Delta u_{n}(\tau) \Delta u_{n}(t) d x d \tau
\end{align*}
$$

where $0<\eta \leq \frac{m_{0}}{2}$ is some positive constant.
Since

$$
\begin{align*}
& \int_{0}^{t} g(t-\tau) \int_{\Omega} \Delta u_{n}(\tau) \Delta u_{n}(t) d x d \tau \tag{3.20}\\
\leq & \eta\left\|\Delta u_{n}(t)\right\|_{2}^{2}+\frac{\|g\|_{L^{1}}}{4 \eta} \int_{0}^{t} g(t-\tau)\left\|\Delta u_{n}(\tau)\right\|_{2}^{2} d \tau,
\end{align*}
$$

then by integrating (3.19) and using (3.20) and (3.18), we obtain

$$
\begin{aligned}
& \frac{1}{4}\left\|\Delta u_{n}\right\|_{2}^{2}+\left(m_{0}-2 \eta\right) \int_{0}^{t}\left\|\Delta u_{n}(\tau)\right\|_{2}^{2} d \tau \\
\leq & c_{3}+\frac{\|g\|_{L^{1}}^{2}}{4 \eta} \int_{0}^{t}\left\|\Delta u_{n}(\tau)\right\|_{2}^{2} d \tau,
\end{aligned}
$$

where $c_{3}=\left\|u_{1 n}\right\|_{2}\left\|\Delta u_{0 n}\right\|_{2}+\frac{1}{2}\left\|\Delta u_{0 n}\right\|_{2}^{2}+\frac{1}{4 \eta} \int_{0}^{t}\left\|f_{1}\right\|_{2}^{2} d t+L_{1}+L_{2} T$.
Thus, by Gronwall's Lemma, we have

$$
\begin{equation*}
\left\|\Delta u_{n}\right\|_{2}^{2}+\int_{0}^{t}\left\|\Delta u_{n}(\tau)\right\|_{2}^{2} d \tau \leq L_{3} \tag{3.21}
\end{equation*}
$$

for all $t \in[0, T]$ and L_{3} is a positive constant independent of $n \in N$.
Step 4. Let $j \geq n$ be two natural numbers and consider $z_{n}=u_{j}-u_{n}$. Then, applying the same way as in the estimate step 1 and step 3 and observing that $\left\{u_{0 n}\right\}$ and $\left\{u_{1 n}\right\}$ are Cauchy sequence in $H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ and $L^{2}(\Omega)$, respectively, we deduce

$$
\begin{equation*}
\left\|z_{n}^{\prime}(t)\right\|_{2}^{2}+\mu(t)\left\|\nabla z_{n}(t)\right\|_{2}^{2}+\int_{0}^{t}\left\|\nabla z_{n}^{\prime}(t)\right\|_{2}^{2} d t \rightarrow 0 \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\Delta z_{n}\right\|_{2}^{2}+\int_{0}^{t}\left\|\Delta z_{n}(\tau)\right\|_{2}^{2} d \tau \rightarrow 0, \text { as } n \rightarrow \infty \tag{3.23}
\end{equation*}
$$

for all $t \in[0, T]$.
Therefore, from (3.12), (3.18), (3.21), (3.22) and (3.23), we see that

$$
\begin{gather*}
u_{i} \rightarrow u \text { strongly in } C\left(0, T ; H_{0}^{1}(\Omega)\right) \tag{3.24}\\
u_{i}^{\prime} \rightarrow u^{\prime} \text { strongly in } C\left(0, T ; L^{2}(\Omega)\right) \tag{3.25}\\
u_{i}^{\prime} \rightarrow u^{\prime} \text { strongly in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right), \tag{3.26}\\
u_{i}^{\prime \prime} \rightarrow u^{\prime \prime} \text { weakly in } L^{2}\left(0, T ; L^{2}(\Omega)\right) \tag{3.27}
\end{gather*}
$$

Then $(3.24)-(3.27)$ are sufficient to pass the limit in (3.4) to obtain

$$
u_{t t}-\mu(t) \Delta u+\int_{0}^{t} g(t-s) \Delta u(s) d s-\Delta u_{t}=f_{1}(x, t) \text { in } L^{2}\left(0, T ; H^{-1}(\Omega)\right)
$$

Next, we want to show the uniqueness of (3.1) - (3.3). Let $u^{(1)}, u^{(2)}$ be two solutions of $(3.1)-(3.3)$. Then $z=u^{(1)}-u^{(2)}$ satisfies

$$
\begin{align*}
& \int_{\Omega} z^{\prime \prime}(t) w d x+\mu(t) \int_{\Omega} \nabla z(t) \cdot \nabla w d x-\int_{0}^{t} g(t-\tau) \int_{\Omega} \nabla z(\tau) \cdot \nabla w d x d \tau \\
& +\int_{\Omega} \nabla z^{\prime}(t) \cdot \nabla w d x=0 \text { for } w \in H_{0}^{1}(\Omega) \tag{3.28}\\
& \quad z(x, 0)=0, z^{\prime}(x, 0)=0, \quad x \in \Omega
\end{align*}
$$

and

$$
z(x, t)=0, x \in \partial \Omega, t \geq 0
$$

Setting $w=z^{\prime}(t)$ in (3.28), then as in deriving (3.12), we see that

$$
\begin{aligned}
& \left\|z^{\prime}(t)\right\|_{2}^{2}+\mu(t)\|\nabla z(t)\|_{2}^{2}+\int_{0}^{t}\left\|\nabla z^{\prime}(t)\right\|_{2}^{2} d t \\
\leq & \int_{0}^{t}\left[1+\frac{1}{\mu(s)}\left(\left|\mu^{\prime}(s)\right|+\|g\|_{L^{1}}^{2}\right)\right]\left[\left\|z^{\prime}(s)\right\|_{2}^{2}+\mu(s)\|\nabla z(s)\|_{2}^{2}\right] d t
\end{aligned}
$$

Thus, employing Gronwall's Lemma, we conclude that

$$
\begin{equation*}
\left\|z^{\prime}(t)\right\|_{2}=\|\nabla z(t)\|_{2}=0 \text { for all } t \in[0, T] \tag{3.29}
\end{equation*}
$$

Therefore, we have the uniqueness.
Now, we are ready to to show the local existence of the problem (1.1) - (1.3).

Theorem 3.2. Suppose that (A1) and (A2) hold, and that $u_{0} \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, $u_{1} \in L^{2}(\Omega)$, then there exists a unique solution u of (1.1) - (1.3) satisfying

$$
u \in C\left([0, T] ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right) \text { and } u_{t} \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left([0, T] ; H_{0}^{1}(\Omega)\right) .
$$

Moreover, at least one of the following statements holds true :

$$
\begin{align*}
& (i) T=\infty \\
& (i i) e(u(t)) \equiv\left\|u_{t}(t)\right\|_{2}^{2}+\|\Delta u(t)\|_{2}^{2} \rightarrow \infty \text { as } t \rightarrow T^{-} . \tag{3.30}
\end{align*}
$$

Proof. Define the following two-parameter space: $\quad X_{T, R_{0}}=$

$$
\left\{\begin{array}{c}
v \in C\left([0, T] ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right), v_{t} \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{2}\left([0, T] ; H_{0}^{1}(\Omega)\right): \\
e(v(t)) \leq R_{0}^{2}, t \in[0, T], \text { with } v(0)=u_{0} \text { and } v_{t}(0)=u_{1} .
\end{array}\right\}
$$

for $T>0, R_{0}>0$. Then $X_{T, R_{0}}$ is a complete metric space with the distance

$$
\begin{equation*}
d(y, z)=\sup _{0 \leq t \leq T} e(y(t)-z(t))^{\frac{1}{2}} \tag{3.31}
\end{equation*}
$$

where $y, z \in X_{T, R_{0}}$.
Given $v \in X_{T, R_{0}}$, we consider the following problem

$$
\begin{equation*}
u_{t t}-M\left(\|\nabla v\|_{2}^{2}\right) \Delta u+\int_{0}^{t} g(t-s) \Delta u(s) d s-\Delta u_{t}=f(v) \tag{3.32}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega, \tag{3.33}
\end{equation*}
$$

and boundary condition

$$
\begin{equation*}
u(x, t)=0, x \in \partial \Omega, t \geq 0 \tag{3.34}
\end{equation*}
$$

First of all, we observe that

$$
\begin{align*}
\frac{d}{d t} M\left(\|\nabla v\|_{2}^{2}\right) & =2 M^{\prime}\left(\|\nabla v\|_{2}^{2}\right) \int_{\Omega} \nabla v \cdot \nabla v_{t} d x \\
& \leq 2 M_{3}\|\Delta v\|_{2}\left\|v_{t}\right\|_{2} \tag{3.35}\\
& \leq 2 M_{3} R_{0}^{2}
\end{align*}
$$

where $M_{3}=\sup \left\{\left|M^{\prime}(s)\right| ; 0 \leq s \leq B_{1}^{2} R_{0}^{2}\right\}$. And by (A2), we see that $f \in$ $L^{2}\left([0, T] ; L^{2}(\Omega)\right)$.

Thus, by Lemma 3.1, there exists a unique solution u of (3.32) - (3.34). We define the nonlinear mapping $S v=u$, and then, we shall show that there exist $T>0$ and $R_{0}>0$ such that
(i) $S: X_{T, R_{0}} \rightarrow X_{T, R_{0}}$,
(ii) S is a contraction mapping in $X_{T, R_{0}}$ with respect to the metric $d(\cdot, \cdot)$ defined in (3.31).
(i) Multiplying (3.32) by $2 u_{t}$, and then integrating it over $\Omega \times(0, t)$, we obtain

$$
\begin{align*}
& \frac{d}{d t}\left[\left\|u_{t}\right\|_{2}^{2}+\left(M\left(\|\nabla v\|_{2}^{2}\right)-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2}+(g \diamond \nabla u)(t)\right] \\
& +2\left\|\nabla u_{t}\right\|_{2}^{2}-\left(g^{\prime} \diamond \nabla u\right)(t)+g(t)\|\nabla u(t)\|_{2}^{2} \tag{3.36}\\
= & I_{1}+I_{2}
\end{align*}
$$

where

$$
I_{1}=\left(\frac{d}{d t} M\left(\|\nabla v\|_{2}^{2}\right)\right)\|\nabla u(t)\|_{2}^{2}
$$

and

$$
I_{2}=2 \int_{\Omega} f(v) u_{t} d x
$$

The equality in (3.36) is obtained, because

$$
\begin{align*}
& -\int_{0}^{t} \int_{\Omega} g(t-\tau) \nabla u(\tau) \cdot \nabla u_{t}(t) d x d \tau \\
= & \frac{1}{2} \frac{d}{d t}\left[(g \diamond \nabla u)(t)-\int_{0}^{t} g(\tau)\|\nabla u(t)\|_{2}^{2} d \tau\right] \tag{3.37}\\
& -\frac{1}{2}\left(g^{\prime} \diamond \nabla u\right)(t)+\frac{1}{2} g(t)\|\nabla u(t)\|_{2}^{2},
\end{align*}
$$

where

$$
\begin{equation*}
(g \diamond \nabla u)(t)=\int_{0}^{t} g(t-\tau) \int_{\Omega}|\nabla u(\tau)-\nabla u(t)|^{2} d x d \tau . \tag{3.38}
\end{equation*}
$$

Noting that by using (3.35) and (3.30), we have

$$
\begin{equation*}
\left|I_{1}\right| \leq 2 M_{3} B_{1}^{2} R_{0}^{2} e(u(t)), \tag{3.39}
\end{equation*}
$$

and by (A2), Hölder inequality and Poincaré inequality, we get

$$
\begin{align*}
\left|I_{2}\right| & \leq 2 k_{1} \int_{\Omega}|v|^{p-1}\left|u_{t}\right| d x \\
& \leq 2 k_{1} B_{1}^{2(p-1)}\|\Delta v\|_{2}^{p-1}\left\|u_{t}\right\|_{2} \tag{3.40}\\
& \leq 2 k_{1} B_{1}^{2(p-1)} R_{0}^{p-1} e(u(t))^{\frac{1}{2}} .
\end{align*}
$$

Then, by (3.39), (3.40) and (A1), we have from (3.36)

$$
\begin{align*}
& \quad \frac{d}{d t}\left[\left\|u_{t}\right\|_{2}^{2}+\left(M\left(\|\nabla v\|_{2}^{2}\right)-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2}+(g \diamond \nabla u)(t)\right] \\
& \quad+2\left\|\nabla u_{t}\right\|_{2}^{2} \tag{3.41}\\
& \leq \\
& 2 M_{3} B_{1}^{2} R_{0}^{2} e(u(t))+2 k_{1} B_{1}^{2(p-1)} R_{0}^{p-1} e(u(t))^{\frac{1}{2}} .
\end{align*}
$$

On the other hand, multiplying (3.32) by $-2 \Delta u$, and integrating it over Ω, we get

$$
\begin{aligned}
& \frac{d}{d t}\left\{\|\Delta u\|_{2}^{2}-2 \int_{\Omega} u_{t} \Delta u d x\right\}+2 M\left(\|\nabla v\|_{2}^{2}\right)\|\Delta u(t)\|_{2}^{2} \\
\leq & 2 \int_{\Omega} u_{t} \Delta u_{t} d x-2 \int_{\Omega} f(v) \Delta u d x+2 \int_{0}^{t} g(t-\tau) \int_{\Omega} \Delta u(\tau) \Delta u(t) d x d \tau
\end{aligned}
$$

Using similar arguments as for (3.20) and (3.40), we deduce

$$
\begin{align*}
& \quad \frac{d}{d t}\left\{\|\Delta u\|_{2}^{2}-2 \int_{\Omega} u_{t} \Delta u d x\right\}+2\left(M\left(\|\nabla v\|_{2}^{2}\right)-\eta\right)\|\Delta u(t)\|_{2}^{2} \\
& \leq 2 k_{1} B_{1}^{2(p-1)} R_{0}^{p-1} e(u)^{\frac{1}{2}}+\frac{\|g\|_{L^{1}}}{2 \eta} \int_{0}^{t} g(t-\tau)\|\Delta u(\tau)\|_{2}^{2} d \tau \tag{3.42}\\
& \quad+2\left\|\nabla u_{t}\right\|_{2}^{2}
\end{align*}
$$

where $0<\eta \leq \frac{\|g\|_{L^{1}}}{2}$ is some constant.
Multiplying (3.42) by $\varepsilon, 0<\varepsilon \leq 1$, and adding (3.41) together, we obtain

$$
\begin{align*}
& \frac{d}{d t} e^{*}(u(t))+2(1-\varepsilon)\left\|\nabla u_{t}\right\|_{2}^{2}+2 \varepsilon\left(M\left(\|\nabla v\|_{2}^{2}\right)-\eta\right)\|\Delta u(t)\|_{2}^{2} \\
\leq & 2 M_{3} B_{1}^{2} R_{0}^{2} e(u(t))+2 k_{1}(1+\varepsilon) B_{1}^{2(p-1)} R_{0}^{p-1} e(u(t))^{\frac{1}{2}} \tag{3.43}\\
& +\varepsilon \frac{\|g\|_{L^{1}}}{2 \eta} \int_{0}^{t} g(t-\tau)\|\Delta u(\tau)\|_{2}^{2} d \tau
\end{align*}
$$

where

$$
\begin{aligned}
& e^{*}(u(t)) \\
= & \left\|u_{t}\right\|_{2}^{2}+\left(M\left(\|\nabla v\|_{2}^{2}\right)-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2}+(g \diamond \nabla u)(t) \\
& -2 \varepsilon \int_{\Omega} u_{t} \Delta u d x+\varepsilon\|\Delta u\|_{2}^{2}
\end{aligned}
$$

By Young's inequality, we get

$$
\left|2 \varepsilon \int_{\Omega} u_{t} \Delta u d x\right| \leq 2 \varepsilon\left\|u_{t}\right\|_{2}^{2}+\frac{\varepsilon}{2}\|\Delta u\|_{2}^{2}
$$

Hence

$$
\begin{aligned}
e^{*}(u(t)) \geq & (1-2 \varepsilon)\left\|u_{t}\right\|_{2}^{2}+\frac{\varepsilon}{2}\|\Delta u\|_{2}^{2}+\left(M\left(\|\nabla v\|_{2}^{2}\right)-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2} \\
& +(g \diamond \nabla u)(t)
\end{aligned}
$$

Choosing $\varepsilon=\frac{2}{5}$ and by (2.4), we have

$$
\begin{equation*}
e^{*}(u(t)) \geq \frac{1}{5} e(u(t)) \tag{3.44}
\end{equation*}
$$

and

$$
\begin{align*}
e^{*}\left(u_{0}\right) \leq & (1+2 \varepsilon)\left\|u_{1}\right\|_{2}^{2}+\frac{3 \varepsilon}{2}\left\|\Delta u_{0}\right\|_{2}^{2}+M\left(\left\|\nabla u_{0}\right\|_{2}^{2}\right)\left\|\nabla u_{0}\right\|_{2}^{2} \tag{3.45}\\
& \leq c_{2}
\end{align*}
$$

where

$$
c_{2}=2\left\|u_{1}\right\|_{2}^{2}+\left\|\Delta u_{0}\right\|_{2}^{2}+M\left(\left\|\nabla u_{0}\right\|_{2}^{2}\right)\left\|\nabla u_{0}\right\|_{2}^{2}
$$

Integrating (3.43) over $(0, t)$, we get

$$
\begin{align*}
& e^{*}(u(t))+\frac{4}{5}\left(m_{0}-\eta-\frac{\|g\|_{L^{1}}^{2}}{4 \eta}\right) \int_{0}^{t}\|\Delta u(s)\|_{2}^{2} d s \\
& \leq e^{*}\left(u_{0}\right)+\int_{0}^{t}\left[10 M_{3} B_{1}^{2} R_{0}^{2} e^{*}(u(s))\right. \tag{3.46}\\
& \left.+\frac{14 \sqrt{5}}{5} k_{1} B_{1}^{2(p-1)} R_{0}^{p-1} e^{*}(u(s))^{\frac{1}{2}}\right] d s
\end{align*}
$$

Taking $\eta=\frac{\|g\|_{L^{1}}}{2}$ in (3.46), then from (2.4), we deduce

$$
e^{*}(u(t)) \leq e^{*}\left(u_{0}\right)+\int_{0}^{t}\left(10 M_{3} B_{1}^{2} R_{0}^{2} e^{*}(u(s))+\frac{14 \sqrt{5}}{5} k_{1} B_{1}^{2(p-1)} R_{0}^{p-1} e^{*}(u(s))^{\frac{1}{2}}\right) d s
$$

Thus, by Gronwall's Lemma and using (3.45), we have

$$
\begin{equation*}
e^{*}(u(t)) \leq\left(\sqrt{c_{2}}+\frac{7 \sqrt{5}}{20} k_{1} B_{1}^{2(p-1)} R_{0}^{p-1} T\right)^{2} \mathrm{e}^{10 M_{3} B_{1}^{2} R_{0}^{2} T} \tag{3.47}
\end{equation*}
$$

Then, by (3.44), we obtain

$$
\begin{equation*}
e(u(t)) \leq \chi\left(u_{0}, u_{1}, R_{0}, T\right)^{2} \mathrm{e}^{10 M_{3} B_{1}^{2} R_{0}^{2} T} \tag{3.48}
\end{equation*}
$$

for any $t \in(0, T]$ and

$$
\chi\left(u_{0}, u_{1}, R_{0}, T\right)=\sqrt{5 c_{2}}+\frac{7}{4} k_{1} B_{1}^{2(p-1)} R_{0}^{p-1} T
$$

We see that if parameters T and R_{0} satisfy

$$
\begin{equation*}
\chi\left(u_{0}, u_{1}, R_{0}, T\right)^{2} \mathrm{e}^{20 M_{3} B_{1}^{2} R_{0}^{2} T} \leq R_{0}^{2} \tag{3.49}
\end{equation*}
$$

Moreover, by Lemma 3.1, $u \in C^{0}\left([0, T] ; H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right)$. On the other hand, it follows from (3.41) and (3.48) that $u_{t} \in L^{2}\left((0, T) ; H_{0}^{1}(\Omega)\right)$. Thus, S maps $X_{T, R_{0}}$ into itself.

Next, we will show that S is a contraction mapping with respect to the metric $d(\cdot, \cdot)$. Let $v_{i} \in X_{T, R_{0}}$ and $u^{(i)} \in X_{T, R_{0}}, i=1,2$ be the corresponding solution to (3.32) - (3.34).

Let $w(t)=\left(u^{(1)}-u^{(2)}\right)(t)$, then w satisfy the following system:

$$
\begin{align*}
& w_{t t}-M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right) \Delta w+\int_{0}^{t} g(t-\tau) \Delta w(\tau) d \tau-\Delta w_{t} \tag{3.50}\\
= & f\left(v_{1}\right)-f\left(v_{2}\right)+\left[M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)-M\left(\left\|\nabla v_{2}\right\|_{2}^{2}\right)\right] \Delta u^{(2)},
\end{align*}
$$

with initial conditions

$$
\begin{equation*}
w(0)=0, w_{t}(0)=0 \tag{3.51}
\end{equation*}
$$

and boundary condition

$$
\begin{equation*}
w(x, t)=0, x \in \partial \Omega \text { and } t \geq 0 \tag{3.52}
\end{equation*}
$$

Multiplying (3.50) by $2 w_{t}$, and integrating it over Ω, we have

$$
\begin{align*}
& \quad \frac{d}{d t}\left[\left\|w_{t}\right\|_{2}^{2}+\left(M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)-\int_{0}^{t} g(s) d s\right)\|\nabla w(t)\|_{2}^{2}+(g \diamond \nabla w)(t)\right] \tag{3.53}\\
& \quad+2\left\|\nabla w_{t}\right\|_{2}^{2}-\left(g^{\prime} \diamond \nabla w\right)(t)+g(t)\|\nabla w(t)\|_{2}^{2} \\
& = \\
& I_{3}+I_{4}+I_{5},
\end{align*}
$$

where

$$
I_{3}=2\left[M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)-M\left(\left\|\nabla v_{2}\right\|_{2}^{2}\right)\right] \int_{\Omega} \Delta u^{(2)} w_{t} d x
$$

$$
I_{4}=2 \int_{\Omega}\left(f\left(v_{1}\right)-f\left(v_{2}\right)\right) w_{t} d x
$$

and

$$
I_{5}=\left(\frac{d}{d t} M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)\right)\|\nabla w(t)\|_{2}^{2}
$$

To proceed the estimates of $I_{i}, i=3,4,5$, we observe that

$$
\begin{align*}
\left|I_{3}\right| & \leq 2 L\left(\left\|\nabla v_{1}\right\|_{2}+\left\|\nabla v_{2}\right\|_{2}\right)\left\|\nabla v_{1}-\nabla v_{2}\right\|_{2}\left\|\Delta u^{(2)}\right\|_{2}\left\|w_{t}\right\|_{2} \tag{3.54}\\
& \leq 4 L B_{1}^{2} R_{0}^{2} e\left(v_{1}-v_{2}\right)^{\frac{1}{2}} e(w(t))^{\frac{1}{2}},
\end{align*}
$$

$$
\begin{equation*}
\left|I_{4}\right| \leq 4 k_{1} B_{1}^{2(p-1)} R_{0}^{p-2} e\left(v_{1}-v_{2}\right)^{\frac{1}{2}} e(w(t))^{\frac{1}{2}}, \tag{3.55}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|I_{5}\right| \leq 2 M_{3} B_{1}^{2} R_{0}^{2} e(w(t)), \tag{3.56}
\end{equation*}
$$

where $L=L\left(R_{0}\right)$ is the Lipschitz constant of $M(r)$ in $\left[0, R_{0}\right]$.
Thus, by using (3.54) - (3.56) in (3.53), we get

$$
\begin{align*}
& \quad \frac{d}{d t}\left[\left\|w_{t}\right\|_{2}^{2}+\left(M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)-\int_{0}^{t} g(s) d s\right)\|\nabla w(t)\|_{2}^{2}+(g \diamond \nabla w)(t)\right] \\
& \quad+2\left\|\nabla w_{t}\right\|_{2}^{2} \tag{3.57}\\
& \leq \\
& 2 M_{3} B_{1}^{2} R_{0}^{2} e(w(t))+c_{3} e\left(v_{1}-v_{2}\right)^{\frac{1}{2}} e(w(t))^{\frac{1}{2}}
\end{align*}
$$

where $c_{3}=4\left(L B_{1}^{2} R_{0}^{2}+k_{1} B_{1}^{2(p-1)} R_{0}^{p-2}\right)$.
On the other hand, multiplying (3.50) by $-2 \Delta w$, and as in deriving (3.42), (3.54) and (3.56), we deduce

$$
\begin{align*}
& \frac{d}{d t}\left\{\|\Delta w\|_{2}^{2}-2 \int_{\Omega} w_{t} \Delta w d x\right\}+2\left(M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)-\eta\right)\|\Delta w(t)\|_{2}^{2} \\
\leq & c_{3} e\left(v_{1}-v_{2}\right)^{\frac{1}{2}} e(w)^{\frac{1}{2}}+\frac{\|g\|_{L^{1}}}{2 \eta} \int_{0}^{t} g(t-\tau)\|\Delta w(\tau)\|_{2}^{2} d \tau \tag{3.58}\\
& +2\left\|\nabla w_{t}\right\|_{2}^{2}
\end{align*}
$$

where $0<\eta \leq \frac{\|g\|_{L^{1}}}{2}$.

Multiplying (3.58) by $\varepsilon, 0<\varepsilon \leq 1$, and adding (3.57) together, we obtain

$$
\begin{align*}
& \frac{d}{d t} e_{*}(w(t))+2(1-\varepsilon)\left\|\nabla w_{t}\right\|_{2}^{2}+2 \varepsilon\left(M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)-\eta\right)\|\Delta w\|_{2}^{2} \\
\leq & 2 M_{3} B_{1}^{2} R_{0}^{2} e(w(t))+(1+\varepsilon) c_{3} e\left(v_{1}-v_{2}\right)^{\frac{1}{2}} e(w(t))^{\frac{1}{2}} \tag{3.59}\\
& +\varepsilon \frac{\|g\|_{L^{1}}}{2 \eta} \int_{0}^{t} g(t-\tau)\|\Delta w(\tau)\|_{2}^{2} d \tau,
\end{align*}
$$

where

$$
\begin{align*}
& e_{*}(w(t)) \\
= & \left\|w_{t}\right\|_{2}^{2}+\left(M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)-\int_{0}^{t} g(s) d s\right)\|\nabla w\|_{2}^{2}+(g \diamond \nabla w)(t) \tag{3.60}\\
& -2 \varepsilon \int_{\Omega} w_{t} \Delta w d x+\varepsilon\|\Delta w\|_{2}^{2} .
\end{align*}
$$

By using Young's inequality on the fourth term of right hand side of (3.60), we get

$$
\begin{aligned}
e_{*}(w(t)) \geq & (1-2 \varepsilon)\left\|w_{t}\right\|_{2}^{2}+\frac{\varepsilon}{2}\|\Delta w\|_{2}^{2} \\
& +\left(M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)-\int_{0}^{t} g(s) d s\right)\|\nabla w(t)\|_{2}^{2}+(g \diamond \nabla w)(t) .
\end{aligned}
$$

Choosing $\varepsilon=\frac{2}{5}$ and by (2.4), we have

$$
\begin{equation*}
e_{*}(w(t)) \geq \frac{1}{5} e(w(t)), \tag{3.61}
\end{equation*}
$$

and by (3.51) - (3.52), we also see that

$$
\begin{equation*}
e_{*}(w(0))=0 \tag{3.62}
\end{equation*}
$$

Then, applying the same way as in obtaining (3.46) and then taking $\eta=\frac{\|g\|_{L^{1}}}{2}$, we deduce

$$
\begin{aligned}
e_{*}(w(t)) \leq & e_{*}(w(0))+\int_{0}^{t}\left[10 M_{3} B_{1}^{2} R_{0}^{2} e_{*}(w(s))\right. \\
& \left.+\frac{7 \sqrt{5} c_{3}}{5} e\left(v_{1}-v_{2}\right)^{\frac{1}{2}} e_{*}(w(s))^{\frac{1}{2}}\right] d s
\end{aligned}
$$

Thus, by Gronwall's Lemma, we obtain

$$
e_{*}(w(t)) \leq\left(\frac{7 \sqrt{5} c_{3}}{20} B_{1}^{2(p-1)} R_{0}^{p-2}\right)^{2} T^{2} \mathrm{e}^{10 M_{3} B_{1}^{2} R_{0}^{2} T} \sup _{0 \leq t \leq T} e\left(v_{1}-v_{2}\right) .
$$

By (3.61) and (3.31), we have

$$
\begin{equation*}
d\left(u^{1}, u^{2}\right) \leq C\left(T, R_{0}\right)^{\frac{1}{2}} d\left(v_{1}, v_{2}\right) \tag{3.63}
\end{equation*}
$$

where

$$
C\left(T, R_{0}\right)=5\left(\frac{7 \sqrt{5} c_{3}}{20} B_{1}^{2(p-1)} R_{0}^{p-2}\right)^{2} T^{2} \mathrm{e}^{10 M_{3} B_{1}^{2} R_{0}^{2} T}
$$

Hence, under inequality (3.49), S is a contraction mapping if $C\left(T, R_{0}\right)<1$. Indeed, we choose R_{0} sufficient large and T sufficient small so that (3.49) and (3.63) are satisfied at the same time. By applying Banach fixed point theorem, we obtain the local existence result.

The second statement of the theorem is proved by a standard continuation argument. The proof of Theorem 3.2 is now completed.

4. Global Existence and Energy Decay

In this section, we consider the global existence and energy decay of solutions for a kind of the problem (1.1) - (1.3) :

$$
\begin{equation*}
u_{t t}-M\left(\|\nabla u\|_{2}^{2}\right) \Delta u+\int_{0}^{t} g(t-s) \Delta u(s) d s-\Delta u_{t}=|u|^{p-2} u \tag{4.1}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega, \tag{4.2}
\end{equation*}
$$

and boundary condition

$$
\begin{equation*}
u(x, t)=0, x \in \partial \Omega, t \geq 0 \tag{4.3}
\end{equation*}
$$

where $2<p \leq \frac{2(N-1)}{N-2}$ and $M(s)=m_{0}+b s^{\gamma}, m_{0}>0, b \geq 0, \gamma \geq 1$ and $s \geq 0$.
Let

$$
\begin{align*}
I_{1}(t) \equiv & I_{1}(u(t))=\left(m_{0}-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2}+(g \diamond \nabla u)(t) \tag{4.4}\\
& \quad-\|u(t)\|_{p}^{p},
\end{align*}
$$

$$
\begin{align*}
I_{2}(t) \equiv & I_{2}(u(t))=\left(m_{0}-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2}+b\|\nabla u(t)\|_{2}^{2(\gamma+1)} \tag{4.5}\\
& +(g \diamond \nabla u)(t)-\|u(t)\|_{p}^{p}
\end{align*}
$$

and

$$
\begin{align*}
J(t) \equiv & J(u(t))=\frac{1}{2}\left(m_{0}-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2}+\frac{1}{2}(g \diamond \nabla u)(t) \tag{4.6}\\
& +\frac{b}{2(\gamma+1)}\|\nabla u(t)\|_{2}^{2(\gamma+1)}-\frac{1}{p}\|u(t)\|_{p}^{p}
\end{align*}
$$

for $u(t) \in H_{0}^{1}(\Omega), t \geq 0$, and $(g \diamond \nabla u)(t)$ is given in (3.38).
We define the energy of the solution u of (4.1) - (4.3) by

$$
\begin{equation*}
E(t)=\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+J(t) \tag{4.7}
\end{equation*}
$$

Lemma 4.1. $E(t)$ is a non-increasing function on $[0, \infty)$ and

$$
\begin{equation*}
E^{\prime}(t)=-\left\|\nabla u_{t}\right\|_{2}^{2}+\frac{1}{2}\left(g^{\prime} \diamond \nabla u\right)(t)-\frac{1}{2} g(t)\|\nabla u(t)\|_{2}^{2} \tag{4.8}
\end{equation*}
$$

Proof. By using Divergence theorem, (4.1) - (4.3) and (3.37), we see that (4.8) follows at once.

Lemma 4.2. Let u be the solution of (4.1) - (4.3). Assume the conditions of Theorem 3.2 hold. If $I_{1}\left(u_{0}\right)>0$ and

$$
\begin{equation*}
\alpha=\frac{B_{1}^{p}}{l}\left(\frac{2 p}{l(p-2)} E(0)\right)^{\frac{p-2}{2}}<1 \tag{4.9}
\end{equation*}
$$

then $I_{2}(t)>0$, for all $t \geq 0$.
Proof. Since $I_{1}\left(u_{0}\right)>0$, it follows from the continuity of $u(t)$ that

$$
\begin{equation*}
I_{1}(t)>0 \tag{4.10}
\end{equation*}
$$

for some interval near $t=0$. Let $t_{\max }>0$ be a maximal time (possibly $t_{\max }=T$), when (4.10) holds on $\left[0, t_{\max }\right)$.

From (4.6) and (4.4), we have

$$
\begin{align*}
J(t) & \geq \frac{1}{2}\left(m_{0}-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+\frac{1}{2}(g \diamond \nabla u)(t)-\frac{1}{p}\|u\|_{p}^{p} \tag{4.11}\\
& \geq \frac{p-2}{2 p}\left[\left(m_{0}-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+(g \diamond \nabla u)(t)\right]+\frac{1}{p} I_{1}(t)
\end{align*}
$$

By using (4.11), (4.7) and Lemma 4.1, we get

$$
\begin{align*}
l\|\nabla u\|_{2}^{2} & \leq\left(m_{0}-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2} \leq \frac{2 p}{p-2} J(t) \\
& \leq \frac{2 p}{p-2} E(t) \leq \frac{2 p}{p-2} E(0) \tag{4.12}
\end{align*}
$$

Then, from Poincaré inequality and (4.9), we obtain from (4.12)

$$
\begin{align*}
\|u\|_{p}^{p} & \leq B_{1}^{p}\|\nabla u\|_{2}^{p} \leq \frac{B_{1}^{p}}{l}\left(\frac{2 p}{l(p-2)} E(0)\right)^{\frac{p-2}{2}} l\|\nabla u\|_{2}^{2} \tag{4.13}\\
& =\alpha l\|\nabla u\|_{2}^{2}<\left(m_{0}-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2} \text { on }\left[0, t_{\max }\right)
\end{align*}
$$

Thus
(4.14) $I_{1}(t)=\left(m_{0}-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+(g \diamond \nabla u)(t)-\|u\|_{p}^{p}>0$ on $\left[0, t_{\max }\right)$.

This implies that we can take $t_{\max }=T$. But, from (4.4) and (4.5), we see that

$$
I_{2}(t) \geq I_{1}(t), t \in[0, T]
$$

Therefore, we have $I_{2}(t)>0, t \in[0, T]$.
Next, we want to show that $T=\infty$. Multiplying (4.1) by $-2 \Delta u$, and integrating it over Ω, we get

$$
\begin{aligned}
& \frac{d}{d t}\left\{\|\Delta u\|_{2}^{2}-2 \int_{\Omega} u_{t} \Delta u d x\right\}+2 M\left(\|\nabla v\|_{2}^{2}\right)\|\Delta u\|_{2}^{2} \\
\leq & 2\left\|\nabla u_{t}\right\|_{2}^{2}-2 \int_{\Omega}|u|^{p-2} u \Delta u d x+2 \int_{0}^{t} g(t-\tau) \int_{\Omega} \Delta u(\tau) \Delta u(t) d x d \tau
\end{aligned}
$$

Applying the same arguments as in (3.42), we have

$$
\begin{align*}
& \frac{d}{d t}\left\{\|\Delta u\|_{2}^{2}-2 \int_{\Omega} u_{t} \Delta u d x\right\}+\left(2 M\left(\|\nabla u\|_{2}^{2}\right)-2 \eta\right)\|\Delta u\|_{2}^{2} \\
\leq & 2\left\|\nabla u_{t}\right\|_{2}^{2}+\frac{\|g\|_{L^{1}}}{2 \eta} \int_{0}^{t} g(t-\tau)\|\Delta u(\tau)\|_{2}^{2} d \tau \tag{4.15}\\
& -2 \int_{\Omega}|u|^{p-2} u \Delta u d x
\end{align*}
$$

where $0<\eta \leq \frac{\|g\|_{L^{1}}}{2}$.

Multiplying (4.15) by $\varepsilon, 0<\varepsilon \leq 1$, and multiplying (4.8) by 2 , and then adding them together, we obtain

$$
\begin{align*}
& \frac{d}{d t} E^{*}(t)+2(1-\varepsilon)\left\|\nabla u_{t}\right\|_{2}^{2}+2 \varepsilon\left(M\left(\|\nabla u\|_{2}^{2}\right)-\eta\right)\|\Delta u\|_{2}^{2} \\
\leq & -2 \varepsilon \int_{\Omega}|u|^{p-2} u \Delta u d x+\varepsilon \frac{\|g\|_{L^{1}}}{2 \eta} \int_{0}^{t} g(t-\tau)\|\Delta u(\tau)\|_{2}^{2} d \tau \tag{4.16}
\end{align*}
$$

where

$$
\begin{equation*}
E^{*}(t)=2 E(t)-2 \varepsilon \int_{\Omega} u_{t} \Delta u d x+\varepsilon\|\Delta u\|_{2}^{2} \tag{4.17}
\end{equation*}
$$

By Young's inequality, we get

$$
\left|2 \varepsilon \int_{\Omega} u_{t} \Delta u d x\right| \leq 2 \varepsilon\left\|u_{t}\right\|_{2}^{2}+\frac{\varepsilon}{2}\|\Delta u\|_{2}^{2}
$$

Hence, choosing $\varepsilon=\frac{2}{5}$ and by (4.14), we see that

$$
\begin{equation*}
E^{*}(t) \geq \frac{1}{5}\left(\left\|u_{t}\right\|_{2}^{2}+\|\Delta u\|_{2}^{2}\right) \tag{4.18}
\end{equation*}
$$

Moreover, we note that

$$
\begin{align*}
\left.2\left|\int_{\Omega}\right| u\right|^{p-2} u \Delta u d x \mid & \leq 2(p-1) \int_{\Omega}|u|^{p-2}|\nabla u|^{2} d x \tag{4.19}\\
& \leq 2(p-1)\|u\|_{(p-2) \theta_{1}}^{p-2}\|\nabla u\|_{2 \theta_{2}}^{2}
\end{align*}
$$

where $\frac{1}{\theta_{1}}+\frac{1}{\theta_{2}}=1$, so that, we put $\theta_{1}=1$ and $\theta_{2}=\infty$, if $N=1 ; \theta_{1}=1+\varepsilon_{1}$ (for arbitrary small $\varepsilon_{1}>0$), if $N=2$; and $\theta_{1}=\frac{N}{2}, \theta_{2}=\frac{N}{N-2}$, if $N \geq 3$.

Then, by Poincare inequality, (4.12) and (4.18), we have

$$
\begin{align*}
\left.2\left|\int_{\Omega}\right| u\right|^{p-2} u \Delta u d x \mid & \leq 2 B_{1}^{p}(p-1)\|\nabla u\|_{2}^{p-2}\|\Delta u\|_{2}^{2} \tag{4.20}\\
& \leq c_{1} E^{*}(t)
\end{align*}
$$

where $c_{1}=10 B_{1}^{p}(p-1)\left(\frac{2 p}{l(p-2)} E(0)\right)^{\frac{p-2}{2}}$.
Substituting (4.20) into (4.16), and then integrating it over $(0, t)$, we obtain

$$
\begin{align*}
& E^{*}(t)+\frac{4}{5}\left(m_{0}-\eta-\frac{\|g\|_{L^{1}}^{2}}{4 \eta}\right) \int_{0}^{t}\|\Delta u(s)\|_{2}^{2} d s \tag{4.21}\\
\leq & E^{*}(0)+\int_{0}^{t} c_{1} E^{*}(s) d s
\end{align*}
$$

Taking $\eta=\frac{\|g\|_{L^{1}}}{2}$ in (4.21), and then by Gronwall's Lemma, we deduce

$$
E^{*}(t) \leq E^{*}(0) \exp \left(c_{1} t\right)
$$

for any $t \geq 0$. Therefore by Theorem 3.2, we have $T=\infty$.

Lemma 4.3. If u satisfies the assumptions of Lemma 4.2, then there exists $0<\eta_{1}<1$ such that

$$
\begin{equation*}
\|u(t)\|_{p}^{p} \leq\left(1-\eta_{1}\right)\left(m_{0}-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2} \text { on }[0, \infty) \tag{4.22}
\end{equation*}
$$

where $\eta_{1}=1-\alpha$.

Proof. From (4.11), we get

$$
\|u\|_{p}^{p} \leq \alpha l\|\nabla u\|_{2}^{2}
$$

Let $\eta_{1}=1-\alpha$, then we have (4.22).

Theorem 4.4. (Global existence and Energy decay) Suppose that (A1) holds. Assume $I_{1}\left(u_{0}\right)>0$ and (4.9) holds, then the problem (4.1) - (4.3) admits a global solution u if $u_{0} \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ and $u_{1} \in L^{2}(\Omega)$.
Furthermore, we have the following decay estimates:

$$
E(t) \leq E(0) e^{-\tau_{1} t} \text { on }[0, \infty)
$$

where τ_{1} is given in (4.38).

Proof. By integrating (4.8) over $[t, t+1]$, we get

$$
\begin{equation*}
E(t)-E(t+1) \equiv D(t)^{2} \tag{4.23}
\end{equation*}
$$

where

$$
D(t)^{2}=\int_{t}^{t+1}\left\|\nabla u_{t}\right\|_{2}^{2} d t-\frac{1}{2} \int_{t}^{t+1}\left(g^{\prime} \diamond \nabla u\right)(t) d t+\frac{1}{2} \int_{t}^{t+1} g(t)\|\nabla u(t)\|_{2}^{2} d t
$$

Hence, by (A1), there exist $t_{1} \in\left[t, t+\frac{1}{4}\right], t_{2} \in\left[t+\frac{3}{4}, t+1\right]$ such that

$$
\begin{equation*}
\left\|\nabla u_{t}\left(t_{i}\right)\right\|_{2}^{2} \leq 4 D(t)^{2}, \quad i=1,2 \tag{4.24}
\end{equation*}
$$

Next, multiplying (4.1) by u and integrating it over $\Omega \times\left[t_{1}, t_{2}\right]$, we have

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}}\left[\left(m_{0}-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+b\|\nabla u\|_{2}^{2(\gamma+1)}-\|u\|_{p}^{p}\right] d t \\
= & -\int_{t_{1}}^{t_{2}} \int_{\Omega} u_{t t} u d x d t-\int_{t_{1}}^{t_{2}} \int_{\Omega} \nabla u_{t} \cdot \nabla u d x d t \\
& +\int_{t_{1}}^{t_{2}} \int_{\Omega} \int_{0}^{t} g(t-s) \nabla u(t) \cdot[\nabla u(s)-\nabla u(t)] d s d x d t
\end{aligned}
$$

Then, by (4.5), we obtain

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} I_{2}(t) d t \\
= & -\int_{t_{1}}^{t_{2}} \int_{\Omega} u_{t t} u d x d t-\int_{t_{1}}^{t_{2}} \int_{\Omega} \nabla u_{t} \cdot \nabla u d x d t+\int_{t_{1}}^{t_{2}}(g \diamond \nabla u)(t) d t \\
& +\int_{t_{1}}^{t_{2}} \int_{\Omega} \int_{0}^{t} g(t-s) \nabla u(t) \cdot[\nabla u(s)-\nabla u(t)] d s d x d t
\end{aligned}
$$

By using Hölder inequality and Young's inequality, we have

$$
\begin{equation*}
\left|\int_{t_{1}}^{t_{2}} \int_{\Omega} \nabla u_{t} \cdot \nabla u d x d t\right| \leq \int_{t_{1}}^{t_{2}}\left\|\nabla u_{t}\right\|_{2}\|\nabla u\|_{2} d t \tag{4.25}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}} \int_{\Omega} \int_{0}^{t} g(t-s) \nabla u(t) \cdot[\nabla u(s)-\nabla u(t)] d s d x d t \\
\leq & \delta \int_{t_{1}}^{t_{2}} \int_{0}^{t} g(t-s)\|\nabla u\|_{2}^{2} d s d t+\frac{1}{4 \delta} \int_{t_{1}}^{t_{2}}(g \diamond \nabla u)(t) d t \tag{4.26}
\end{align*}
$$

where δ is some positive constant to be chosen later.
Note that by integrating by parts, Hölder inequality and Poincare inequality, we get

$$
\begin{align*}
& \left|\int_{t_{1}}^{t_{2}} \int_{\Omega} u_{t t} u d x d t\right| \\
\leq & B_{1}^{2} \sum_{i=1}^{2}\left\|\nabla u_{t}\left(t_{i}\right)\right\|_{2}\left\|\nabla u\left(t_{i}\right)\right\|_{2}+B_{1}^{2} \int_{t}^{t+1}\left\|\nabla u_{t}\right\|_{2}^{2} d t . \tag{4.27}
\end{align*}
$$

Then, by (4.25) - (4.27), we deduce

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} I_{2}(t) d t \\
\leq & B_{1}^{2} \sum_{i=1}^{2}\left\|\nabla u_{t}\left(t_{i}\right)\right\|_{2}\left\|\nabla u\left(t_{i}\right)\right\|_{2}+B_{1}^{2} \int_{t}^{t+1}\left\|\nabla u_{t}\right\|_{2}^{2} d t \\
& +\int_{t_{1}}^{t_{2}}\left\|\nabla u_{t}\right\|_{2}\|\nabla u\|_{2} d t+\left(\frac{1}{4 \delta}+1\right) \int_{t_{1}}^{t_{2}}(g \diamond \nabla u)(t) d t \\
& +\delta \int_{t_{1}}^{t_{2}} \int_{0}^{t} g(t-s)\|\nabla u(t)\|_{2}^{2} d s d t .
\end{aligned}
$$

Furthermore, by (4.24) and (4.12), we have

$$
\begin{equation*}
\left\|\nabla u_{t}\left(t_{i}\right)\right\|_{2}\left\|\nabla u\left(t_{i}\right)\right\|_{2} \leq c_{2} D(t) \sup _{t_{1} \leq s \leq t_{2}} E(s)^{\frac{1}{2}} \tag{4.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}\left\|\nabla u_{t}\right\|_{2}\|\nabla u\|_{2} d t \leq \frac{c_{2}}{2} D(t) \sup _{t_{1} \leq s \leq t_{2}} E(s)^{\frac{1}{2}} \tag{4.29}
\end{equation*}
$$

where $c_{2}=2\left(\frac{2 p}{l(p-2)}\right)^{\frac{1}{2}}$.
Thus, by using (4.28) and (4.29), we obtain

$$
\int_{t_{1}}^{t_{2}} I_{2}(t) d t
$$

$$
\begin{align*}
\leq & c_{3} D(t) \sup _{t_{1} \leq s \leq t_{2}} E(s)^{\frac{1}{2}}+B_{1}^{2} D(t)^{2}+\left(\frac{1}{4 \delta}+1\right) \int_{t_{1}}^{t_{2}}(g \diamond \nabla u)(t) d t \tag{4.30}\\
& +\delta \int_{t_{1}}^{t_{2}} \int_{0}^{t} g(t-s)\|\nabla u(t)\|_{2}^{2} d s d t
\end{align*}
$$

where $c_{3}=\left(2 B_{1}^{2}+\frac{1}{2}\right) c_{2}$.
On the other hand, from (2.5) and (4.23), we get

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}}(g \diamond \nabla u)(t) d t \\
\leq & -\frac{1}{\xi_{2}} \int_{t_{1}}^{t_{2}}\left(g^{\prime} \diamond \nabla u\right)(t) d t \tag{4.31}\\
\leq & \frac{2}{\xi_{2}} D(t)^{2},
\end{align*}
$$

and by (2.4) and Lemma 4.3, we have

$$
\begin{align*}
\int_{t_{1}}^{t_{2}} \int_{0}^{t} g(t-s)\|\nabla u(t)\|_{2}^{2} d s d t & \leq \frac{1}{\xi_{2}} \int_{t_{1}}^{t_{2}} \int_{0}^{t} g^{\prime}(t-s)\|\nabla u(t)\|_{2}^{2} d s d t \\
& =\frac{1}{\xi_{2}} \int_{t_{1}}^{t_{2}}[g(0)-g(t)]\|\nabla u(t)\|_{2}^{2} d t \tag{4.32}\\
& \leq \frac{1}{\xi_{2}} \int_{t_{1}}^{t_{2}} g(0)\|\nabla u(t)\|_{2}^{2} d t \\
& \leq \frac{g(0)}{\eta_{1} l \xi_{2}} \int_{t_{1}}^{t_{2}} I_{2}(t) d t
\end{align*}
$$

where the last inequality is derived by (4.22), because

$$
\begin{equation*}
\left(m_{0}-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2} \leq \frac{1}{\eta_{1}} I_{1}(t) \leq \frac{1}{\eta_{1}} I_{2}(t) \text { for } t \geq 0 . \tag{4.33}
\end{equation*}
$$

Hence, by choosing δ such that $\frac{\delta g(0)}{\eta_{1} 1 \xi_{2}}=\frac{1}{2}$ and by (4.31) - (4.32), we obtain from (4.30)

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} I_{2}(t) d t \leq 2 c_{3} D(t) \sup _{t_{1} \leq s \leq t_{2}} E(s)^{\frac{1}{2}}+c_{4} D(t)^{2} \tag{4.34}
\end{equation*}
$$

where $c_{4}=4\left[B_{1}^{2}+\left(\frac{g(0)}{2 \eta_{1} 1 \xi_{2}}+1\right) \frac{1}{\xi_{2}}\right]$.
Moreover, from (4.7), (4.4) and using (4.14), we see that

$$
\begin{align*}
E(t) \leq & \frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+c_{5}\left(m_{0}-\int_{0}^{t} g(s) d s\right)\|\nabla u\|_{2}^{2}+c_{5}(g \diamond \nabla u)(t) \tag{4.35}\\
& +c_{6} I_{2}(t)
\end{align*}
$$

where $c_{5}=\frac{1}{2}-\frac{1}{p}$ and $c_{6}=\left(\frac{1}{p}+\frac{1}{2(\gamma+1)}\right)$.
By integrating (4.35) over (t_{1}, t_{2}), we obtain

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}} E(t) d t \leq & \frac{1}{2} \int_{t_{1}}^{t_{2}}\left\|u_{t}\right\|_{2}^{2} d t+c_{6} \int_{t_{1}}^{t_{2}} I_{2}(t) d t+c_{5} \int_{t_{1}}^{t_{2}}(g \diamond \nabla u)(t) d t \\
& +c_{5} \int_{t_{1}}^{t_{2}}\left(m_{0}-\int_{0}^{t} g(s) d s\right)\|\nabla u(t)\|_{2}^{2} d t .
\end{aligned}
$$

Thus, by Poincaré inequality, (4.23), (4.31) and (4.33), we have

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} E(t) d t \leq \frac{B_{1}^{2}}{2} D(t)^{2}+\left(c_{6}+\frac{c_{5}}{\eta_{1}}\right) \int_{t_{1}}^{t_{2}} I_{2}(t) d t+\frac{2 c_{5}}{\xi_{2}} D(t)^{2} \tag{4.36}
\end{equation*}
$$

By multiplying (4.1) by u_{t} and then integrating it over $\left[t, t_{2}\right] \times \Omega$, we obtain

$$
\begin{aligned}
E(t)= & E\left(t_{2}\right)+\int_{t}^{t_{2}}\|\nabla u(t)\|_{2}^{2} d t-\frac{1}{2} \int_{t}^{t_{2}}\left(g^{\prime} \diamond \nabla u\right)(t) d t \\
& +\frac{1}{2} \int_{t}^{t_{2}} g(s)\|\nabla u(s)\|_{2}^{2} d s
\end{aligned}
$$

Since $t_{2}-t_{1} \geq \frac{1}{2}$, we get

$$
E\left(t_{2}\right) \leq 2 \int_{t_{1}}^{t_{2}} E(t) d t
$$

Then, thanks to (4.23), we have

$$
\begin{aligned}
E(t) \leq & 2 \int_{t_{1}}^{t_{2}} E(t) d t+\int_{t}^{t+1}\|\nabla u(t)\|_{2}^{2} d t-\frac{1}{2} \int_{t}^{t+1}\left(g^{\prime} \diamond \nabla u\right)(t) d t \\
& +\frac{1}{2} \int_{t}^{t+1} g(s)\|\nabla u(s)\|_{2}^{2} d s \\
= & 2 \int_{t_{1}}^{t_{2}} E(t) d t+D(t)^{2}
\end{aligned}
$$

Thus, by using (4.36) and (4.34), we obtain

$$
E(t) \leq c_{7} D(t)^{2}+c_{8} D(t) \sup _{t_{1} \leq s \leq t_{2}} E(s)^{\frac{1}{2}}
$$

where $c_{7}=B_{1}^{2}+\frac{4 c_{5}}{\xi_{2}}+2\left(c_{6}+\frac{c_{5}}{\eta_{1}}\right) c_{4}+1$ and $c_{8}=4 c_{3}\left(c_{6}+\frac{c_{5}}{\eta_{1}}\right)$.
Hence, by Young's inequality, we deduce

$$
\begin{equation*}
E(t) \leq c_{9} D(t)^{2} \tag{4.37}
\end{equation*}
$$

where c_{9} is some positive constant.
Therefore, we have the following decay estimates:
From (4.37) and (4.23), we have

$$
E(t) \leq c_{10}[E(t)-E(t+1)] \text { for } t \geq 0
$$

$c_{10}=\max \left\{c_{9}, 1\right\}$.
Thus, by Lemma 2.4, we obtain

$$
\begin{equation*}
E(t) \leq E(0) e^{-\tau_{1} t}, \text { on }[0, \infty) \tag{4.38}
\end{equation*}
$$

where $\tau_{1}=\ln \frac{c_{10}}{c_{10}-1}$.

5. Blow-up Property

In this section, we shall discuss the blow up phenomena of problem (1.1)-(1.3);

$$
\begin{equation*}
u_{t t}-M\left(\|\nabla u\|_{2}^{2}\right) \Delta u+\int_{0}^{t} g(t-s) \Delta u(s) d s-\Delta u_{t}=f(u) \tag{5.1}
\end{equation*}
$$

In order to state our results, we make further assumptions on f, M and g :
(A3) there exists a positive constant δ such that

$$
s f(s) \geq(2+4 \delta) F(s), \text { for all } s \in R
$$

where

$$
F(s)=\int_{0}^{s} f(r) d r
$$

and

$$
(2 \delta+1) \bar{M}(s)-\left(M(s)+2 \delta m_{0}\right) s \geq, \text { for all } s \geq 0
$$

where

$$
\bar{M}(s)=\int_{0}^{s} M(r) d r
$$

(A4) We make the following extra assumption on g

$$
\int_{0}^{\infty} g(s) d s<\frac{4 \delta m_{0}}{1+4 \delta}
$$

here δ is the constant appeared in (A3).
Remark. (1) In this case, we define the energy function of the solution u of (5.1), (1.2) and (1.3) by

$$
\begin{align*}
E(t)= & \frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+\frac{1}{2} \bar{M}\left(\|\nabla u(t)\|_{2}^{2}\right)+\frac{1}{2}(g \diamond \nabla u)(t) \\
& -\frac{1}{2} \int_{0}^{t} g(s) d s\|\nabla u(t)\|_{2}^{2}-\int_{\Omega} F(u(t)) d x \tag{5.2}
\end{align*}
$$

for $t \geq 0$. Then we have

$$
\begin{align*}
E(t)= & E(0)-\int_{0}^{t}\left\|\nabla u_{t}(t)\right\|_{2}^{2} d t+\frac{1}{2} \int_{0}^{t}\left(g^{\prime} \diamond \nabla u\right)(t) d t \\
& -\frac{1}{2} \int_{0}^{t} g(t)\|\nabla u(t)\|_{2}^{2} d t \tag{5.3}
\end{align*}
$$

We note that the energy function $E(t)$ defined by (5.2) is the same as in (4.7).
(2) It is clear that $f(u)=|u|^{p-2} u, p>2$ satisfies (A3) with $\delta=\frac{p-2}{4}$ and $M(s)=m_{0}+b s^{\gamma}$ satisfies (A3) for $m_{0}>0, b \geq 0, \gamma \geq 1, s \geq 0$.

Definition. A solution u of $(5.1),(1.2),(1.3)$ is called blow-up if there exists a finite time T^{*} such that

$$
\lim _{t \rightarrow T^{*-}}\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{-1}=0
$$

Now, let u be a solution of (5.1) and define

$$
\begin{equation*}
a(t)=\int_{\Omega} u^{2} d x+\int_{0}^{t} \int_{\Omega}|\nabla u|^{2} d x d t, t \geq 0 \tag{5.4}
\end{equation*}
$$

Lemma 5.1. Assume that (A 1$)-(\mathrm{A} 4)$ hold, then we have

$$
\begin{equation*}
a^{\prime \prime}(t)-4(\delta+1) \int_{\Omega} u_{t}^{2} d x \geq(-4-8 \delta) E(0)+(4+8 \delta) \int_{0}^{t}\left\|\nabla u_{t}\right\|_{2}^{2} d t \tag{5.5}
\end{equation*}
$$

Proof. Form (5.4), we have

$$
\begin{equation*}
a^{\prime}(t)=2 \int_{\Omega} u u_{t} d x+\|\nabla u\|_{2}^{2} \tag{5.6}
\end{equation*}
$$

By (5.1) and Divergence theorem, we get

$$
\begin{align*}
a^{\prime \prime}(t)= & 2\left\|u_{t}\right\|_{2}^{2}-2 M\left(\|\nabla u\|_{2}^{2}\right)\|\nabla u\|_{2}^{2}+2 \int_{\Omega} f(u) u d x \\
& +2 \int_{0}^{t} \int_{\Omega} g(t-s) \nabla u(s) \cdot \nabla u(t) d x d s \tag{5.7}
\end{align*}
$$

By (5.2) and (5.3), we have from (5.7)

$$
\begin{aligned}
& a^{\prime \prime}(t)-4(\delta+1)\left\|u_{t}\right\|_{2}^{2} \\
\geq & (-4-8 \delta) E(0)+(4+8 \delta) \int_{0}^{t}\left\|\nabla u_{t}(t)\right\|_{2}^{2} d t+\int_{\Omega} 2[f(u) u-(2+4 \delta) F(u)] d x \\
& +\left\{(2+4 \delta) \bar{M}\left(\|\nabla u(t)\|_{2}^{2}\right)-\left[2 M\left(\|\nabla u(t)\|_{2}^{2}\right)+(2+4 \delta) \int_{0}^{t} g(s) d s\right]\|\nabla u(t)\|_{2}^{2}\right\} \\
& +2 \int_{0}^{t} \int_{\Omega} g(t-s) \nabla u(s) \cdot \nabla u(t) d x d s-(2+4 \delta) \int_{0}^{t}\left(g^{\prime} \diamond \nabla u\right)(t) d t \\
& +(2+4 \delta)(g \diamond \nabla u)(t) .
\end{aligned}
$$

By using Hölder inequality and Young's inequality, we have

$$
\begin{aligned}
& \int_{\Omega} \int_{0}^{t} g(t-s) \nabla u(s) \cdot \nabla u(t) d s d x \\
(5.8)= & \int_{\Omega} \int_{0}^{t} g(t-s) \nabla u(t) \cdot(\nabla u(s)-\nabla u(t)) d s d x+\int_{0}^{t} g(t-s) d s\|\nabla u(t)\|_{2}^{2} \\
\geq & -\left[\frac{1}{2}(g \diamond \nabla u)(t)+\frac{1}{2} \int_{0}^{t} g(s) d s\|\nabla u(t)\|_{2}^{2}\right]+\int_{0}^{t} g(s) d s\|\nabla u(t)\|_{2}^{2}
\end{aligned}
$$

Then by (5.8), we get

$$
\begin{aligned}
& a^{\prime \prime}(t)-4(\delta+1)\left\|u_{t}\right\|_{2}^{2} \\
\geq & (-4-8 \delta) E(0)+(4+8 \delta) \int_{0}^{t}\left\|\nabla u_{t}(t)\right\|_{2}^{2} d t \\
& +\int_{\Omega} 2[f(u) u-(2+4 \delta) F(u)] d x \\
& +\left\{(2+4 \delta) \bar{M}\left(\|\nabla u(t)\|_{2}^{2}\right)-\left[2 M\left(\|\nabla u(t)\|_{2}^{2}\right)\right.\right. \\
& \left.\left.+(1+4 \delta) \int_{0}^{t} g(s) d s\right]\|\nabla u(t)\|_{2}^{2}\right\} \\
& +2 \int_{0}^{t} \int_{\Omega} g(t-s) \nabla u(s) \cdot \nabla u(t) d x d s-(2+4 \delta) \int_{0}^{t}\left(g^{\prime} \diamond \nabla u\right)(t) d t \\
& +(1+4 \delta)(g \diamond \nabla u)(t) .
\end{aligned}
$$

Therefore by (A3), (A4) and (A1), we obtain (5.5).
Now, we consider three different cases on the sign of the initial energy $E(0)$.
(1) If $E(0)<0$, then from (5.5), we have

$$
a^{\prime}(t) \geq a^{\prime}(0)-4(1+2 \delta) E(0) t, t \geq 0
$$

Thus we get $a^{\prime}(t)>\left\|\nabla u_{0}\right\|_{2}^{2}$ for $t>t^{*}$, where

$$
\begin{equation*}
t^{*}=\max \left\{\frac{a^{\prime}(0)-\left\|\nabla u_{0}\right\|_{2}^{2}}{4(1+2 \delta) E(0)}, 0\right\} \tag{5.9}
\end{equation*}
$$

(2) If $E(0)=0$, then $a^{\prime \prime}(t) \geq 0$ for $t \geq 0$.

Furthermore, if $a^{\prime}(0)>\left\|\nabla u_{0}\right\|_{2}^{2}$, then $a^{\prime}(t)>\left\|\nabla u_{0}\right\|_{2}^{2}, t \geq 0$
(3) For the case that $E(0)>0$, we first note that

$$
\begin{equation*}
2 \int_{0}^{t} \int_{\Omega} \nabla u \cdot \nabla u_{t} d x d t=\|\nabla u(t)\|_{2}^{2}-\left\|\nabla u_{0}\right\|_{2}^{2} \tag{5.10}
\end{equation*}
$$

By using Hölder inequality and Young's inequality, we have from (5.10)

$$
\begin{equation*}
\|\nabla u(t)\|_{2}^{2} \leq\left\|\nabla u_{0}\right\|_{2}^{2}+\int_{0}^{t}\|\nabla u(t)\|_{2}^{2} d t+\int_{0}^{t}\left\|\nabla u_{t}(t)\right\|_{2}^{2} d t \tag{5.11}
\end{equation*}
$$

By Hölder inequality and Young's inequality in (5.6) and by (5.11), we get

$$
\begin{equation*}
a^{\prime}(t) \leq a(t)+\left\|\nabla u_{0}\right\|_{2}^{2}+\left\|u_{t}\right\|_{2}^{2}+\int_{0}^{t}\left\|\nabla u_{t}(t)\right\|_{2}^{2} d t \tag{5.12}
\end{equation*}
$$

Hence by (5.5) and (5.12), we obtain

$$
a^{\prime \prime}(t)-4(\delta+1) a^{\prime}(t)+4(\delta+1) a(t)+K_{1} \geq 0
$$

where

$$
K_{1}=(4+8 \delta) E(0)+4(\delta+1)\left\|\nabla u_{0}\right\|_{2}^{2}
$$

Let

$$
b(t)=a(t)+\frac{K_{1}}{4(1+\delta)}, t>0
$$

Then $b(t)$ satisfies (2.1). By (2.2), we see that if

$$
\begin{equation*}
a^{\prime}(0)>r_{2}\left[a(0)+\frac{K_{1}}{4(1+\delta)}\right]+\left\|\nabla u_{0}\right\|_{2}^{2} \tag{5.13}
\end{equation*}
$$

then $a^{\prime}(t)>\left\|\nabla u_{0}\right\|_{2}^{2}, t>0$.
Consequently, we have
Lemma 5.2. Assume that (A1)-(A4) hold and that either one of the following conditions is satisfied:
(i) $E(0)<0$,
(ii) $E(0)=0$ and $a^{\prime}(0)>\left\|\nabla u_{0}\right\|_{2}^{2}$,
(iii) $E(0)>0$ and (5.13) holds, then $a^{\prime}(t)>\left\|\nabla u_{0}\right\|_{2}^{2}$ for $t>t_{0}$, where $t_{0}=t^{*}$ is given by (5.9) in case (i) and $t_{0}=0$ in cases (ii) and (iii).

Now, we will find the estimate for the life span of $a(t)$.
Let

$$
\begin{equation*}
J(t)=\left(a(t)+\left(T_{1}-t\right)\left\|\nabla u_{0}\right\|_{2}^{2}\right)^{-\delta}, \text { for } t \in\left[0, T_{1}\right] \tag{5.14}
\end{equation*}
$$

where $T_{1}>0$ is a certain constant which will be specified later.
Then we have

$$
J^{\prime}(t)=-\delta J(t)^{1+\frac{1}{\delta}}\left(a^{\prime}(t)-\left\|\nabla u_{0}\right\|_{2}^{2}\right)
$$

and

$$
\begin{equation*}
J^{\prime \prime}(t)=-\delta J(t)^{1+\frac{2}{\delta}} V(t) \tag{5.15}
\end{equation*}
$$

where
(5.16) $V(t)=a^{\prime \prime}(t)\left(a(t)+\left(T_{1}-t\right)\left\|\nabla u_{0}\right\|_{2}^{2}\right)-(1+\delta)\left(a^{\prime}(t)-\left\|\nabla u_{0}\right\|_{2}^{2}\right)^{2}$.

For simplicity of calculation, we denote

$$
\begin{aligned}
P & =\int_{\Omega} u^{2} d x \\
Q & =\int_{0}^{t}\|\nabla u(t)\|_{2}^{2} d t \\
R & =\int_{\Omega} u_{t}^{2} d x \\
S & =\int_{0}^{t}\left\|\nabla u_{t}(t)\right\|_{2}^{2} d t .
\end{aligned}
$$

From (5.6) , by (5.10) and Hölder inequality, we get

$$
\begin{align*}
a^{\prime}(t) & =2 \int_{\Omega} u_{t} u d x+\left\|\nabla u_{0}\right\|_{2}^{2}+2 \int_{0}^{t} \int_{\Omega} \nabla u \cdot \nabla u_{t} d x d t \tag{5.17}\\
& \leq 2(\sqrt{R P}+\sqrt{Q S})+\left\|\nabla u_{0}\right\|_{2}^{2}
\end{align*}
$$

By (5.5), we have

$$
\begin{equation*}
a^{\prime \prime}(t) \geq(-4-8 \delta) E(0)+4(1+\delta)(R+S) \tag{5.18}
\end{equation*}
$$

Thus, by using (5.17) and (5.18) in (5.16), we obtain

$$
\begin{aligned}
V(t) \geq & {[(-4-8 \delta) E(0)+4(1+\delta)(R+S)]\left(a(t)+\left(T_{1}-t\right)\left\|\nabla u_{0}\right\|_{2}^{2}\right) } \\
& -4(1+\delta)(\sqrt{R P}+\sqrt{Q S})^{2}
\end{aligned}
$$

And by (5.14), we have

$$
\begin{aligned}
V(t) \geq & (-4-8 \delta) E(0) J(t)^{-\frac{1}{\delta}}+4(1+\delta)(R+S)\left(T_{1}-t\right)\left\|\nabla u_{0}\right\|_{2}^{2} \\
& +4(1+\delta)\left[(R+S)(P+Q)-(\sqrt{R P}+\sqrt{Q S})^{2}\right]
\end{aligned}
$$

By Schwarz inequality, the last term in the above inequality is nonnegative. Hence we have

$$
\begin{equation*}
V(t) \geq(-4-8 \delta) E(0) J(t)^{-\frac{1}{\delta}}, t \geq t_{0} \tag{5.19}
\end{equation*}
$$

Therefore by (5.15) and (5.19), we get

$$
\begin{equation*}
J^{\prime \prime}(t) \leq \delta(4+8 \delta) E(0) J(t)^{1+\frac{1}{\delta}}, t \geq t_{0} \tag{5.20}
\end{equation*}
$$

Note that by Lemma 5.2, $J^{\prime}(t)<0$ for $t>t_{0}$. Multiplying (5.20) by $J^{\prime}(t)$ and integrating it from t_{0} to t, we have

$$
J^{\prime}(t)^{2} \geq \alpha+\beta J(t)^{2+\frac{1}{\delta}} \text { for } t \geq t_{0}
$$

where

$$
\begin{equation*}
\alpha=\delta^{2} J\left(t_{0}\right)^{2+\frac{2}{\delta}}\left[\left(a^{\prime}\left(t_{0}\right)-\left\|\nabla u_{0}\right\|_{2}^{2}\right)^{2}-8 E(0) J\left(t_{0}\right)^{\frac{-1}{\delta}}\right] \tag{5.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta=8 \delta^{2} E(0) \tag{5.22}
\end{equation*}
$$

We observe that

$$
\alpha>0 \quad \text { iff } E(0)<\frac{\left(a^{\prime}\left(t_{0}\right)-\left\|\nabla u_{0}\right\|_{2}^{2}\right)^{2}}{8\left[a\left(t_{0}\right)+\left(T_{1}-t_{0}\right)\left\|\nabla u_{0}\right\|_{2}^{2}\right]}
$$

Then by Lemma 2.3, there exists a finite time T^{*} such that $\lim _{t \rightarrow T^{*-}} J(t)=0$ and the upper bounds of T^{*} are estimated respectively according to the sign of $E(0)$. This will imply that

$$
\lim _{t \rightarrow T^{*-}}\left\{\int_{\Omega} u^{2} d x+\int_{0}^{t}\|\nabla u\|_{2}^{2} d t\right\}^{-1}=0
$$

Thus by Poincare inequality, we deduce

$$
\begin{equation*}
\lim _{t \rightarrow T^{*-}}\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{-1}=0 \tag{5.23}
\end{equation*}
$$

Theorem 5.3. Assume that (A1)-(A4) hold and that either one of the following conditions is satisfied:
(i) $E(0)<0$,
(ii) $E(0)=0$ and $a^{\prime}(0)>\left\|\nabla u_{0}\right\|_{2}^{2}$,
(iii) $0<E(0)<\frac{\left(a^{\prime}\left(t_{0}\right)-\left\|\nabla u_{0}\right\|_{2}^{2}\right)^{2}}{8\left[a\left(t_{0}\right)+\left(T_{1}-t_{0}\right)\left\|\nabla u_{0}\right\|_{2}^{2}\right]}$ and (5.13) holds, then the solution u blows up at finite time T^{*} in the sense of (5.23).

In case (i),

$$
\begin{equation*}
T^{*} \leq t_{0}-\frac{J\left(t_{0}\right)}{J^{\prime}\left(t_{0}\right)} \tag{5.24}
\end{equation*}
$$

Furthermore, if $J\left(t_{0}\right)<\min \left\{1, \sqrt{\frac{\alpha}{-\beta}}\right\}$, then we have

$$
\begin{equation*}
T^{*} \leq t_{0}+\frac{1}{\sqrt{-\beta}} \ln \frac{\sqrt{\frac{\alpha}{-\beta}}}{\sqrt{\frac{\alpha}{-\beta}}-J\left(t_{0}\right)} \tag{5.25}
\end{equation*}
$$

In case (ii),

$$
\begin{equation*}
T^{*} \leq t_{0}-\frac{J\left(t_{0}\right)}{J^{\prime}\left(t_{0}\right)} \tag{5.26}
\end{equation*}
$$

or

$$
\begin{equation*}
T^{*} \leq t_{0}+\frac{J\left(t_{0}\right)}{\sqrt{\alpha}} \tag{5.27}
\end{equation*}
$$

In case (iii),

$$
\begin{equation*}
T^{*} \leq \frac{J\left(t_{0}\right)}{\sqrt{\alpha}} \tag{5.28}
\end{equation*}
$$

or

$$
\begin{equation*}
T^{*} \leq t_{0}+2^{\frac{3 \delta+1}{2 \delta}} \frac{\delta c}{\sqrt{\alpha}}\left\{1-\left[1+c J\left(t_{0}\right)\right]^{\frac{-1}{2 \delta}}\right\} \tag{5.29}
\end{equation*}
$$

where $c=\left(\frac{\beta}{\alpha}\right)^{\frac{\delta}{2+\delta}}$, here α and β are in (5.21) and (5.22) respectively.
Note that in case $(i), t_{0}=t^{*}$ is given in (5.9) and $t_{0}=0$ in case $(i i)$ and (iii).
Remark. The choice of T_{1} in (5.14) is possible under some conditions. We shall discuss it as follows :
(i) for the case $E(0)=0$,

First, we note that the condition $a^{\prime}(0)>\left\|\nabla u_{0}\right\|_{2}^{2}$ implies $\int_{\Omega} u_{0} u_{1} d x>0$.

By (5.26), we choose

$$
T_{1} \geq-\frac{J(0)}{J^{\prime}(0)} .
$$

Then, by Hölder inequality, Poincaré inequality and Young's inequality, we have

$$
\left\|u_{0}\right\|_{2}^{2}+T_{1}\left\|\nabla u_{0}\right\|_{2}^{2} \leq \delta\left(\varepsilon B_{1}^{2}\left\|\nabla u_{0}\right\|_{2}^{2}+\frac{1}{\varepsilon}\left\|u_{1}\right\|_{2}^{2}\right) T_{1} .
$$

where ε is some positive constant.
Choosing $\varepsilon=\frac{1}{\delta B_{1}^{2}}$, we get

$$
T_{1} \geq \frac{\left\|u_{0}\right\|_{2}^{2}}{\delta^{2} B_{1}^{2}\left\|u_{1}\right\|_{2}^{2}} .
$$

In particular, we choose T_{1} as

$$
T_{1}=\frac{\left\|u_{0}\right\|_{2}^{2}}{\delta^{2} B_{1}^{2}\left\|u_{1}\right\|_{2}^{2}} .
$$

We then get

$$
T^{*} \leq \frac{\left\|u_{0}\right\|_{2}^{2}}{\delta^{2} B_{1}^{2}\left\|u_{1}\right\|_{2}^{2}}
$$

(ii) for the case $E(0)<0$,
(1) If $\int_{\Omega} u_{0} u_{1} d x>0$, then $a^{\prime}(t)>\left\|\nabla u_{0}\right\|_{2}^{2}$ and $t^{*}=0$. Thus T_{1} can be chosen as in (i).
(2) If $\int_{\Omega} u_{0} u_{1} d x \leq 0$, then $t^{*}=\frac{a^{\prime}(0)-\left\|\nabla u_{0}\right\|_{2}^{2}}{4(1+2 \delta) E(0)}$. Thus, by (5.24), we choose $T_{1} \geq t^{*}-\frac{J\left(t^{*}\right)}{J^{\prime}\left(t^{*}\right)}$.
(iii) for the case $E(0)>0$. Under the condition

$$
E(0)<\min \left\{\kappa_{1}, \kappa_{2}\right\},
$$

where

$$
\kappa_{1}=\frac{(1+\delta)\left[a^{\prime}(0)-r_{2} a(0)-\left(r_{2}+1\right)\left\|\nabla u_{0}\right\|_{2}^{2}\right]}{r_{2}(1+2 \delta)},
$$

and

$$
\kappa_{2}=\frac{\left[4\left(\int_{\Omega} u_{0} u_{1} d x\right)^{2}-1\right]\left[\delta-\left\|\nabla u_{0}\right\|_{2}^{2}\right]}{8 \delta\left\|\nabla u_{0}\right\|_{2}^{2}} .
$$

If $\left\|\nabla u_{0}\right\|_{2}^{2}<\delta, T_{1}$ is chosen to satisfy

$$
\kappa_{3} \leq T_{1} \leq \kappa_{4}
$$

here

$$
\begin{aligned}
\kappa_{3} & =\frac{\left\|u_{0}\right\|_{2}^{2}}{\delta-\left\|\nabla u_{0}\right\|_{2}^{2}} \\
\kappa_{4} & =\frac{4\left(\int_{\Omega} u_{0} u_{1} d x\right)^{2}-8 E(0)\left\|u_{0}\right\|_{2}^{2}-1}{8 E(0)\left\|\nabla u_{0}\right\|_{2}^{2}}
\end{aligned}
$$

Therefore we have

$$
T \leq T^{*} \leq \frac{\kappa_{3}}{\sqrt{4\left(\int_{\Omega} u_{0} u_{1} d x\right)^{2}-8 E(0) \kappa_{3}}}
$$

References

1. J. Ball, Remarks on blow up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford, 28 (1977), 473-486.
2. M. M. Cavalcanti, Domingos Cavalcanti, V. N. and Soriano, J. A., Exponential decay for the solution of semilinear viscoleastic wave equation with localized damping, Electronic J. Diff. Eqns., 44 (2002), 1-14.
3. R. T. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z., 132 (1973), 183-203.
4. A. Haraux and E. Zuazua, Decay estimates for some semilinear damped hyperbolic problems, Arch. Rational Mech. Anal., 100 (1988), 191-206.
5. M. Hosoya and Y. Yamada, On some nonlinear wave equations II : global existence and energy decay of solutions, J. Fac. Sci. Univ. Toyko Sect. IA Math., 38 (1991), 239-250.
6. R. Ikehata, A note on the global solvability of solutions to some nonlinear wave equations with dissipative terms, Differential and Integral Equations, 8 (1995), 607616.
7. S. Jiang and J. E. Munoz Rivera, A global existence theorem for the Dirichlet problem in nonlinear n-dimensional viscoelastic, Differential and Integral Equations, 9 (1996), 791-810.
8. V. K. Kalantarov and O. A. Ladyzhenskaya, The occurrence of collapse for quasilinear equations of parabolic and hyperbolic type, J. Soviet Math., 10 (1978), 53-70.
9. G. Kirchhoff, Vorlesungen uber Mechanik, Leipzig, Teubner, 1883.
10. M. Kopackova, Remarks on bounded solutions of a semilinear dissipative hyperbolic equation, Comment. Math. Univ. Carloin., 30 (1989), 713-719.
11. H. A.Levine, Instability and nonexistence of global solutions of nonlinear wave equation of the form $D u_{t t}=A u+F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.
12. T. Matsutama and R. Ikehata, On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping, J. Math. Anal. and Appli., 204 (1996). 729-753.
13. M. R. Li and L. Y. Tsai, Existence and nonexistence of global solutions of some systems of semilinear wave equations, Nonlinear Anal., Theory, Methods \& Applications, 54 (2003), 1397-1415.
14. J. E. Munoz Rivera, Global solution on a quasilinear wave equation with memory, Bolletino U.M.I., 7(8B) (1994), 289-303.
15. M. Nako, A difference inequality and its application to nonlinear evolution equations, J. Math. Soc. Japan, 30 (1978), 747-762.
16. K. Nishihara and Y. Yamada, On global solutions of some degenerate quasilinear hyperbolic equations with dissipative terms, Funkcial Ekvac., 33 (1990), 151-159.
17. K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math. Methods in The Appl. Sci., 20 (1997), 151-177.
18. K. Ono, On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation, J. Math. Anal. and Appli., 216 (1997), 321-342.
19. S. T. Wu and L. Y. Tsai, Blow-up of solutions for some nonlinear wave equations of Kirchhoff type with some dissipation, to appear in Nonlinear Anal., Theory, Methods \& Applications.
20. S. T. Wu and L. Y. Tsai, On global solutions and blow-up solutions for a nonlinear viscoelastic wave equation with nonlinear damping, National Chengchi University, preprint, 2004.
21. R. M. Torrejón and J. Young, On a quasilinear wave equation with memory, Nonlinear Anal., Theory, Methods \& Applications, 16 1991), 61-78.
22. E. Zuazua, Exponential decay for the semilinear wave equation with locally distributed damping, Comm. PDE., 15 (1990), 205-235.

Shun-Tang Wu
General Education Center,
China University of Technology,
Taipei 116, Taiwan.
E-mail: stwu@cute.edu.tw

Long-Yi Tsai

Department of Mathematical Science, National Chengchi University,
Taipei 116, Taiwan.

