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ON THE CONVERGENCE ANALYSIS OF THE ITERATIVE METHOD
WITH ERRORS FOR GENERAL MIXED QUASIVARIATIONAL

INEQUALITIES IN HILBERT SPACES

Lu-Chuan Zeng* and Jen-Chih Yao**

Abstract. The purpose of this paper is to investigate the iterative methods
for a class of general mixed quasivariational inequalities in a Hilbert space.
Utilizing the alternative equivalent formulation between general mixed qua-
sivariational inequalities and implicit fixed-point problems, we suggest and
analyze a new modified self-adaptive resolvent method with errors for solving
this class of general mixed quasivariational inequalities in conjunction with a
technique updating the solution. Moreover, we give the convergence analysis
of this method in a Hilbert space. Since this class of general mixed qua-
sivariational inequalities includes a number of known classes of variational
inequalities as special cases, our results are more general than some earlier
and recent ones in the literature.

1. INTRODUCTION

The theory of variational inequalities introduced by Stampacchia [1] in the early
1960s and later generalized and extended in various directions by others plays an
important and fundamental role in the study of a wide class of problems arising in
elasticity, fluid flow through porous media, finance, economics, transportation, cir-
cuit analysis, structural analysis and many other branches of mathematical and engi-
neering science; see [1-17]. Among these generalizations of variational inequalities,
a useful and significant generalization is called the mixed quasivariational inequality
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involving a nonlinear bifunction which enables us to study free,moving, unilateral
and equilibrium problems; see e.g., [17].

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉
and ‖ · ‖, respectively. Let K be a closed convex subset of H and T, g : H → H be
nonlinear operators. Let ϕ(·, ·) : H × H → R ∪ {+∞} be a bifunction continuous
with respect to both arguments. Recently Noor [18] considered and studied the
problem of finding u ∈ H such that

(1) 〈Tu, g(v)− g(u)〉+ ϕ(g(v), g(u))− ϕ(g(u), g(u))≥ 0, ∀g(v) ∈ H

which is called the general mixed quasivariational inequality problem. If the bi-
function ϕ(·, ·) is proper, convex and lower semicontinuous with respect to the first
argument, then problem (1) is equivalent to finding u ∈ H such that

0 ∈ Tu + ∂ϕ(g(u), g(u)),

which is known as a set-valued quasivariational inclusion problem where ∂ϕ(·, g(u)) :
H → 2H is a maximal monotone operator. This problem has been studied exten-
sively in recent years; see e.g., Zeng [19]

Special Cases.

(i) For g ≡ I , the identity operator, problem (1) reduces to

(2) 〈Tu, v − u〉+ ϕ(v, u)− ϕ(u, u) ≥ 0, ∀v ∈ H.l

Problem (2) is called the mixed quasivariational inequality.

(ii) If ϕ(u, v) = ϕ(v)∀v ∈ H , then problem (1)is equivalent to find u ∈ H such
that

(3) 〈Tu, g(v)− g(u)〉+ ϕ(g(v))− ϕ(g(u)) ≥ 0 ∀v ∈ H,

which is called the general variational inequality.

(iii) If ϕ(·) is the indicator function of a closed and convex subset K in H , that
is,

ϕ(u) =
{

0, if u ∈ K
+∞, otherwise,

then problem (3) is equivalent to find u ∈ H, g(u) ∈ K such that

(4) 〈Tu, g(v)− g(u)〉 ≥ 0, ∀g(v) ∈ K

which is known as the general variational inequality. See [20,21].
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(iv) For g ≡ I the identity operator, we get the corresponding classical variational
inequality.

From the above examples it is clear that for appropriate and suitable choice of
the operators T, g and the bifunction ϕ, a number of known classes of variational
inequalities can be obtained as special cases studied previously by many authors;
see e.g., [1-18].

It is well known that there now exists a variety of techniques including pro-
jection method and its variant forms, auxiliary principle and resolvent equations to
suggest and analyze various iterative algorithms for solving variational inequalities
and related optimization problems. Moreover, it is also known that the projection
method and its variant forms cannot be extended for mixed quasivariational inequal-
ities due to the presence of the bifunction. However, if the bifunction is a proper,
convex and lower semicontinuous with respect to the first argument, then it has been
shown [11] that mixed quasivariational inequalities are equivalent to the fixed-point
problems. Recently, utilizing the alternative equivalent formulation between mixed
quasivariational inequalities and implicit fixed-point problems, Noor [18] proposed
the following iterative method for solving problem (1) and proved its convergence
in finite-dimensional Hilbert space H .

Algorithm 1.1. (Algorithm 3.7 in [18]) Let T be g-pseudomonotone and g−1

exists. Letϕ(·, ·) : H × H → R
⋃{+∞}be a bifunction which not only is skew-

symmetric and continuous with respect to both arguments but also is proper, convex
and lower semicontinuous with respect to the first argument. For a given u0 ∈ H ,
compute the approximate solution un+1 by the following iterative scheme:

Step 1. (Predictor Step). Compute

g(yn) = Jϕ̂(un)[g(un) − ρnTun], n = 0, 1, 2, ...,

where ρn (prediction) satisfies

ρn〈Tun − Tg−1Jϕ̂(un)[g(yn)− ρnTyn], R(un)〉 ≤ σ‖R(un)‖2, σ ∈ (0, 1).

Step 2. (Corrector Step). Compute

g(un+1) = g(un)− αnd(un), n = 0, 1, 2, ...,

where d(un) = R(un)+ρnTJϕ̂(un)[g(yn)−ρnTyn], αn = 〈R(un), D(un)〉/‖d(un)‖2,

R(un) = g(un)− Jϕ̂(un)[g(yn)− ρnTyn], Jϕ̂(un) = (I + ρn∂ϕ(·, g(un)))−1 and

D(un) = R(un)− ρnTun + ρnTg−1Jϕ̂(un)[g(yn) − ρnTyn].
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Theorem 1.1. (Theorem 3.3 in [18]). Let ū ∈ H be a solution of problem
(1) and un+1 be the approximate solution obtained from Algorithm 1.1. If H is a
finite-dimensional space then limn→∞ un = ū.

On the other hand, Xu [22] gave the new modified proximal point algorithms for
finding a solution u ∈ H of the equation 0 ∈ Tu where T is a maximal monotone
operator and proved the strong and weak convergence of the approximate solutions
generated by those algorithms, respectively.

In this paper motivated and inspired by Xu [22], we extend Noor’s Algorithm
3.7 [18] to develop the new modified iterative algorithm for solving problem (1) in
a real Hilbert space H and also give the convergence analysis of this method. Since
this class of general mixed quasivariational inequalities includes a number of known
classes of variational inequalities as special cases, our results are more general than
some earlier and recent ones in the literature.

Throughout this paper, let Ω denote the solution set of problem (1).

2. ALGORITHMS AND PRELIMINARIES

Let H be a real Hilbert space with inner product〈·, ·〉 and norm ‖·‖, respectively.
Let T.g : H → H be nonlinear operators. Let ϕ(·, ·) : H × H → R

⋃{+∞} be a
bifunction which not only is continuous with respect to both arguments but also is
proper, convex and lower semicontinuous with respect to the first argument.

We need the following well-known results and concepts.

Definition 2.1. The operator T : H → H is said to be

(i) g-monotone if

〈Tu − Tv, g(u)− g(v)〉 ≥ 0 ∀u, v ∈ H ;

(ii) g-pseudomonotone if for all u, v ∈ H ,

〈Tu, g(v)− g(u)〉 ≥ 0 ⇒ 〈Tv, g(u)− g(v)〉 ≤ 0.

Remark 2.1. If g ≡ I the identity operator, then the concepts of g-monotonicity
and g-pseudonmontonicity reduce to the ones of monotonicity and pseudomonotonity,
respectively. It is well known [5] that monotonicity implies pseudomonotonicity but
the converse is not true in general. This shows that pseudomonotonicity is a weaker
condition than monotonicity.

Definition 2.2. The bifunction ϕ(·, ·) is said to be skew-symmetric if

ϕ(u, u)− ϕ(u, v)− ϕ(v, u) + ϕ(v, v) ≥ 0, ∀u, v ∈ H.
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Clearly if the skew-symmetric bifunction ϕ(·, ·) is linear in both arguments, then

ϕ(u, u) ≥ 0 ∀u ∈ H.

Definition 2.3. Let A be a maximal monotone operator. Then the resolvent
operator associated with A is defined as JA(u) = (I + ρA)−1(u) ∀u ∈ H where
ρ > 0 is a constant and I is the identity operator.

Remark 2.2. [18]. Let ϕ(·, ·) : H×H→R
⋃{+∞} be a bifunction. If for every

fixed u ∈ H, ϕ(·, u) : H → R
⋃{+∞}is proper, convex and lower semicontinuous,

then the subdifferential ∂ϕ(·, u) : H → 2H is maximal monotone and its resolvent
is defined by

Jϕ(u) = (I + ρ∂ϕ(·, u))−1 ≡ (I + ρ∂ϕ(u))−1

where ∂ϕ(u) ≡ ∂ϕ(·, u) unless otherwise specified.

The resolvent operator Jϕ(u) has the following characterization.

Lemma 2.1. For a given u ∈ H, z ∈ H satisfies the inequality

〈u − z, v − u〉+ ρϕ(v, u)− ρϕ(u, u) ≥ 0 ∀v ∈ H,

if and only if u = Jϕ(u)z where Jϕ(u) is resolvent operator and ρ > 0 is a constant.

Lemma 2.2. Letϕ(·, ·) : H×H → R
⋃{+∞} be a bifunction and g : H → H

be a homeomorphism. If for every fixed u ∈ H, ϕ(·, u) : H → R
⋃{+∞} is

proper,convex and lower semicontinuous, then the following statements are equiv-
alent:

(i) u ∈ H is a solution of problem (1);

(ii) u ∈ H satisfies the equation

0 ∈ T (u) + ∂ϕ(g(u), g(u));

(iii) u ∈ Hsatisfies the relation

(5) g(u) = Jϕ̂(u)[g(u− ρTu)] ρ > 0,

where Jϕ̂(u) := Jϕ(g(u)) = (I + ρ∂ϕ(·, g(u)))−1.

Proof. Observe that

〈−Tu, g(v)− g(u)〉 ≤ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ∀g(v) ∈ H

⇔ −Tu ∈ ∂ϕ(g(u), g(u))

⇔ g(u)− ρTu ∈ (I + ρ∂ϕ(·, g(u)))(g(u))

⇔ g(u) = (I + ρ∂ϕ(·, g(u)))−1(g(u)− ρTu) = Jϕ̂(u)(g(u)− ρTu)
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from which the result follows.

Lemma 2.3. ([23], p. 303). Let {an}and{bn} be two sequences of nonnegative
real numbers satisfying the inequality

an+1 ≤ an + bn, ∀n ≥ 1.

If
∑∞

n=1 bn < ∞, then limn→∞ an exists.

According to Noor ([18, p. 128), we can rewrite (5) in the following form:

g(u) = Jϕ̂(u)[g(w)− ρTw],

g(w) = Jϕ̂(u)[g(y)− ρTy],

g(y) = Jϕ̂(u)[g(u)− ρTu].

In this paper, we suggest a new modified self-adaptive resolvent method with
errors for solving problem (1) by modifying a technique updating the solution. To
this end, we define the residue vector R(u) by

R(u) := g(u)− g(w) = g(u)− Jϕ̂(u)[g(y)− ρTy]

where g(w) = Jϕ̂(u)[g(y)− ρTy], and g(y) = Jϕ̂(u)[g(u)− ρTu].
It is clear form Lemma 2.2 that u ∈ H is a solution of problem (1) if and only

if u ∈ H is the zero of the equation

(6) R(u) = g(u)− Jϕ̂(u)[g(y)− ρTy] = 0.

By suitable rearrangement of terms, we can rewrite (6) as

(7) R(u)− ρTu + ρTg−1Jϕ̂(u)[g(y)− ρTy] = 0.

Motivated and inspired by Xu [22], we extend Noor’s Algorithm 3.7 [18] to
develop a new modified iterative algorithm for solving problem (1) in an arbitrary
real Hilbert space H.

Algorithm 2.1. Let T be g-pseudomonotone and g be a homeomorphism. Let
ϕ(·, ·) : H × H → R

⋃{+∞} be a bifunction which not only is skew-symmetric
and continuous with respect to both arguments but also is proper, convex and lower
semicontinuous with respect to the first argument. For a given u0 ∈ H , compute
the approximate solution un+1 by the following iterative scheme:

(i) Compute

(8) g(yn) = Jϕ̂(un)[g(un) − ρnTun], n = 0, 1, 2, ...
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where ρn (prediction) satisfies

ρn〈Tun − Tg−1Jϕ̂(un)[g(yn) − ρnTyn], R(un)〉 ≤ σ‖R(un)‖2, σ ∈ (0, 1) .

(ii) Compute

(9) g(ũn+1) = g(un)− αnd(un), n = 0, 1, 2, ...,

where d(un) = R(un) + ρnTJϕ̂(un)[g(yn) − ρTyn], αn = 〈R(un), D(un)〉
/‖d(un)‖2,

R(un) = g(un)− Jϕ̂(un)[g(yn)− ρnTyn], Jϕ̂(un) = (I + ρn∂ϕ(·, g(un)))−1 and

D(un) = R(un)− ρnTun + ρnTg−1Jϕ̂(un)[g(yn) − ρnTyn].

(iii) Select two relaxation parameters βn, γn ∈ [0, 1] with βn+γn ≤ 1 and compute
the (n + 1)th iterate

(10) g(un+1) := (1− βn − γn)g(ũn+1) + βng(un) + γnen

where {en} is an error sequence in H introduced to take into account possible
inexact computation.

Theorem 2.1. [18]. Let ū ∈ H be a solution of problem (1). If T : H → H
is g-pseudomonotone and the bifunction ϕ(·, ·) : H × H → R

⋃{+∞} is skew-
symmetric, then

(11) 〈g(u)− g(ū), d(u)〉 ≥ 〈R(u), D(u)〉 ≥ (1− σ)‖R(u)‖2 ∀u ∈ H.

Proof. See inequality (22) in the proof of Noor ([18], Theorem 3.1).

Theorem 2.2. Let ū ∈ H be a solution of problem (1) and let ũn+1 be the
approximate solution obtained from Algorithm 2.1. Then,

(12) ‖g(ũn+1) − g(ū)‖2 ≤ ‖g(un) − g(ū)‖2 − (1 − σ)2‖R(un)‖4/‖d(un)‖2.

Proof. Following the idea of the proof of Noor ([18], Theorem 3.2), we give
the proof of the theorem. From (9), (11) and the definition of αn, we obtain

‖g(ũn+1) − g(ū)‖2 = ‖g(un) − g(ū)− αnd(un)‖2

= ‖g(un) − g(ū)‖2 − 2αn〈g(un) − g(ū), d(un)〉 + α2
n‖d(un)‖2

≤ ‖g(un) − g(ū)‖2 − 2αn〈R(un), D(un)〉+ α2
n‖d(un)‖2 (using (11))
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= ‖g(un) − g(ū)‖2 − 2αn〈R(un), D(un)〉

+αn · 〈R(un), D(un)〉
‖d(un)‖2

· ‖d(un)‖2 (using the definition of αn)

= ‖g(un) − g(ū)‖2 − αn〈R(un), D(un)〉

= ‖g(un) − g(ū)‖2 − [〈R(un), D(un)〉]2
‖d(un)‖2

(using the definition of αn)

≤ ‖g(un) − g(ū)‖2 − (1− σ)2‖R(un)‖4

‖d(un)‖2
(using (11))

from which the result follows.

3. CONVERGENCE ANALYSIS

Now, we are ready to establish the sufficient and necessary condition for the
convergence of the approximate solutions xn generated by Algorithm 2.1 to an
exact solution of problem (1) in an arbitrary real Hilbert spaceH . Let Ω denote the
solution set of problem (1) and define

g(Ω) = {g(u) : u ∈ Ω}.

Theorem 3.1. Let {un} be a sequence of approximate solutions generated
by Algorithm 2.1. Let {en} be a bounded sequence in H and {βn}, {γn} be real
sequences in [0, 1] satisfying the following conditions:

(i) {βn + γn} is bounded away from 1, namely 0 ≤ βn + γn ≤ 1 − δ for some
δ ∈ (0, 1);

(ii)
∑∞

n=0 γn < ∞.

Assume that Ω �= ∅ and that g(Ω) is bounded. Then {un} converges to a
solution of problem (1) if and only if lim inf n→∞ d(g(un), g(Ω)) = 0 where d(y, D)
denotes the distance of y to set D; i.e., d(y, D) = inf x∈D d(y, x).

Proof. “Necessity”. Suppose that {un} converges to a solution ū ∈ Ω of
problem (1). Then from the continuity of g,we have

d(g(un), g(Ω)) = inf
u∈Ω

d(g(un), g(u)) ≤ d(g(un), g(ū)) → 0 as n → ∞.

This shows that lim infn→∞ d(g(un), g(Ω)) = limn→∞ d(g(un), g(Ω)) = 0.

“Sufficiency.” Suppose that lim infn→∞ d(g(un), g(Ω)) = 0. In order to show
the convergence of {un} to a solution of problem (1), we divide the proof into
several steps.
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Step 1. We claim that for each ū ∈ Ω, limn→∞ ‖g(un) − g(ū)‖ exists and in
particular, {g(un)} is bounded. Indeed, since it is well known that

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ [0, 1] , we have

(13)

‖g(un+1) − g(ū)‖2

= ‖(1−βn−γn)(g(ũn+1)−g(ū))+βn(g(un)−g(ū))+γn(en−g(ū))‖2

≤ (1−βn−γn)‖g(ũn+1)−g(ū)‖2+βn‖g(un)−g(ū)‖2+γn‖en−g(ū)‖2.

Substituting (12) into (13) and from condition (i), we get

(14)

‖g(un+1) − g(ū)‖2

≤ (1 − βn − γn)[‖g(un)− g(ū)‖2 − (1 − σ)2‖R(un)‖4

‖d(un)‖2
]

+βn‖g(un) − g(ū)‖2 + γn‖en − g(ū)‖2

= (1 − γn)‖g(un) − g(ū)‖2 − (1 − βn − γn) · (1 − σ)2‖R(un)‖4

‖d(un)‖2

+γn‖en − g(ū)‖2

≤ ‖g(un)− g(ū)‖2 − δ(1 − σ)2‖R(un)‖4

‖d(un)‖2
+ γn‖en − g(ū)‖2

and hence

(15)

‖g(un+1)− g(ū)‖2 ≤ ‖g(un) − g(ū)‖2 + γn‖en − g(ū)‖2

≤ ‖g(un) − g(ū)‖2 + γn[‖en‖ + ‖g(ū)‖]2

≤ ‖g(un) − g(ū)‖2 + M2γn,

where M = supn≥0 ‖en‖ + sup{‖g(u)‖ : u ∈ Ω} < ∞. Since {en} is bounded, it
follows from

∑∞
n=0 γn < ∞ that limn→∞ ‖g(un)− g(ū)‖exists. Thus, {g(un)} is

bounded.

Step 2. We claim that {un} converges to some ũ ∈ H . Indeed, from (15) we
can see that

‖g(um+n)− g(ū)‖2 ≤ ‖g(um)− g(ū)‖2 +M2 ·
m+n−1∑

j=m

γj ∀m ≥ 0, n ≥ 1, ū ∈ Ω.
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Since lim infn→∞ d(g(un), g(Ω)) = 0, there must exist a subsequence {uni} ⊂
{un} such that

lim
ni→∞ d(g(uni), g(Ω)) = lim

n→∞ inf d(g(un), g(Ω)) = 0

which together with
∑∞

j=0 γj < ∞ implies that there must exist a positive integer
N0 ≥ 1 such that when ni, n ≥ N0,

(16) d(g(uni), g(Ω)) <
ε

8
and M2 ·

∞∑
j=n

γj <
ε

8
.

Thus, there must exist u∗ ∈ Ω such that d(g(uN0, g(u∗)) < ε
8 . Hence this implies

that whenever n ≥ N0 + 1 and m ≥ 1,

‖g(un) − g(u∗)‖2 ≤ ‖g(uN0) − g(u∗)‖2 + M2 ·
n−1∑

j=N0

γj

≤ ‖g(uN0) − g(u∗)‖2 + M2 ·
∞∑

j=N0

γj

<
ε

8
+

ε

8
=

ε

4
,

and

‖g(um+n) − g(u∗)‖2 ≤ ‖g(uN0) − g(u∗)‖2 + M2 ·
m+n−1∑
j=N0

γj

≤ ‖g(uN0) − g(u∗)‖2 + M2 ·
∞∑

j=N0

γj

<
ε

8
+

ε

8
=

ε

4
.

Therefore, we derive

|g(um+n)− g(un)‖2 = ‖g(um+n) − g(u∗) + g(u∗) − g(un)‖2

≤ 2‖g(um+n) − g(u∗)‖2 + 2‖g(un)− g(u∗)‖2

< 2 · ε

4
+ 2 · ε

4
= ε, ∀n ≥ N0 + 1, m ≥ 1.

This shows that {g(un)} is a Cauchy sequence in H which is complete. Thus
limn→∞ g(un) exists. Since g : H → H is a homeomorphism from H onto itself,
there is no doubt that g−1 : H → H is continuous. Thus limn→∞ un exists and
hence we may assume that

lim
n→∞ un = ũ ∈ H.
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Step 3. We claim that ũ ∈ H is a solution of problem (1). Indeed, from (14)
it follows that

(17)

δ(1− σ)2‖R(un)‖4

‖d(un)‖2

≤ ‖g(un) − g(ū)‖2 − ‖g(un+1) − g(ū)‖2 + γn‖en − g(ū)‖2

≤ ‖g(un) − g(ū)‖2 − ‖g(un+1) − g(ū)‖2 + M2 · γn.

Since limn→∞ ‖g(un) − g(ū)‖ exists and limn→∞ γn = 0, from (17) we get

lim
n→∞

δ(1− σ)2‖R(un)‖4

‖d(un)‖2
= 0,

and hence limn→∞ ‖R(un)‖ = 0. Note that R(u) is continuous. Thus from
limn→∞ un = ũ, it follows that R(ũ) = 0. Therefore, ũ ∈ H is a solution of
problem (1) by invoking Lemma 2.2.

Theorem 3.2. Let {un} be a sequence of approximate solutions generated
by Algorithm 2.1. Let {en} be a bounded sequence in H and {βn}, {γn} be real
sequence in [0, 1] satisfying conditions (i) and (ii) in Theroem 3.1. Assume that
Ω �= ∅. If H is a finite-dimensional space, then {un} converges to a solution of
problem(1).

Proof. At first, take an arbitrary ū ∈ Ω. Then from(14), it follows that

(18)

‖g(un+1) − g(ū)‖2

≤ ‖g(un)− g(ū)‖2 − δ(1− σ)2‖R(un)‖4

‖d(un)‖2
+ γn‖en − g(ū)‖2

≤ ‖g(un)− g(ū)‖2 − δ(1− σ)2‖R(un)‖4

‖d(un)‖2
+ M2 · γn.

From (18) and Lemma 2.3, we know that limn→∞ ‖g(un)−g(ū)‖ exists and hence
{g(un)} is bounded. This implies that {un} is bounded. Also, from (18) we
conclude that

∞∑
n=0

δ(1− σ)2‖R(un)‖4

‖d(un)‖2
≤ ‖g(u0)− g(ū)‖2 + M2 ·

∞∑
n=0

γn < ∞

which hence implies that
lim

n→∞ R(un) = 0.
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Let û be a cluster point of {un} and let the subsequence {unj} converge to û. Since
R(u) is continuous, we have

R(û) = lim
nj→∞R(unj ) = 0

and û is a solution of problem (1) by invoking Lemma 2.2. Thus, it follows from
the continuity of g that

lim
n→∞ ‖g(un)− g(û)‖ = lim

nj→∞ ‖g(unj) − g(û)‖ = 0.

According to the continuity of g−1, we deduce that {un} converges to the
solution û of problem (1).
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