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EXISTENCE OF UNCONDITIONAL WAVELET PACKET BASES FOR
THE SPACES Lp (R) AND H1 (R)

Khalil Ahmad, Rakesh Kumar and Lokenath Debnath

Abstract. It is proved that the system {ω�,n,k : � = j −m;n = 2m, 2m + 1,
. . . , 2m+1 − 1; j, k ∈ Z

}
of wavelet packets is an unconditional basis for

Lp (R), 1 < p <∞ and H1 (R), where m = 0 if j ≤ 0 and m = 0, 1, 2, . . . , j
if j > 0, provided the orthonormal wavelet packets ωn and its derivative
ω′

n have a common radial decreasing L1-majorant satisfying the condition∫ ∞
0
sH (s) ds <∞.

1. INTRODUCTION

In his paper, Mallat [10] first formulated the remarkable idea of multiresolution
analysis (MRA) that deals with a general formalism for construction of an orthog-
onal basis of wavelet bases. A multiresolution analysis consists of a sequence of
embedded closed subspaces {Vj : j ∈ Z} for approximating L2 (R) functions (see
Debnath [6]). On the other hand, wavelet packets represent a simple but powerful
extension of wavelets and MRA. Orthogonal wavelet packets (also simply called
wave packets) introduced by Coifman et al. [3] are used to further decompose
wavelet components. Wickerhauser [14] thoroughly investigated discrete wavelet
packets and developed computer programs and implemented them. Several authors
including Mallat [10], Daubechies [5], and Meyer [11] have laid the foundation of
wavelet theory and its diverse applications through multiresolution analysis.

Gripenberg [7] introduced the subject of unconditionality of wavelet bases for
Lebesgue spaces Lp (R), 1 < p <∞. The constructive proofs of the unconditional
basis for H1 (R) have been given by Carleson [2] and Wojtaszczyk [15], where
the latter author has given an example of an unconditional basis for the Hardy
space H1 (R) as the Franklin system. In fact, a large class of wavelets which have
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unconditional basis for the Hardy space H1 (R) was discovered by Meyer [11]. It
was Strömberg [13] who first discovered unconditional bases for the spaces H1 (R)
and Lp (R), 1 < p <∞, and they are spline systems of higher order.

Motivated by the study of unconditionality of wavelet bases for the spaces
Lp (R), 1 < p < ∞, by Gripenberg [7], we are interested in extending the results
on unconditional wavelet packet basis for spaces in the context of wavelet packets.
In this paper, we prove the results on the existence of unconditional wavelet packet
bases for spaces H1 (R) and Lp (R), 1 < p < ∞ based on an approach similar to
that of Hernández and Weiss [9] and Meyer [11]. We have also used the atomic de-
composition of H1 (R) described by Coifman [4] and the Calderon-Zygmund theory
for boundedness of certain operators by Han and Swayer [8] to prove our results.

2. BASIC IDEAS AND RESULTS

For basic ideas, results on wavelets and multiresoltuion analysis, we refer to
Chapters 6 and 7 of Debnath [6].

We construct wavelet packets from multiresolution analysis. In general, consider
two sequences {αn}nεZ and {βn}nεZ in �2 (Z). Let H be a Hilbert space with
orthonormal basis {ek}k∈Z

. Then, the sequences

f2n =
√

2
∑
kεZ

α2n−k ek, f2n+1 =
√

2
∑
kεZ

β2n−k ek

are orthonormal bases of two orthogonal closed subspaces H1 and H0, respectively,
such that

H = H1 ⊕ H0.

Using this “splitting trick” we now define the basic wavelet packets associated with
a scaling function φ as defined in MRA.

Let ω0 = φ. The basic wavelet packets ωn, n = 0, 1, 2, . . . associated with the
scaling function φ are defined recursively by

(2.1) ω2n (x) =
√

2
∑
kεZ

hk ωn (2x− k) ,

and

(2.2) ω2n+1 (x) =
√

2
∑
k∈Z

gk ωn (2x− k) .

It follows from the above definition that ω1 = ψ is a mother wavelet and the set
{ωn (x− k) : n = 0, 1, ........., k ∈ Z} is an orthonormal basis for the Hilbert space
L2 (R).
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Corresponding to some orthonormal scaling function φ = ω0, the family of
wavelet packets {ωn} defines a family of subspaces of L2 (R)as follows :

(2.3) Un
j = span

{
2j ωn

(
2jx− k

)
: k ∈ Z

}
; j ∈ Z, n = 0, 1, 2, .......

Observe that

U0
j = Vj, U1

j = Wj

so that the orthogonal decomposition can be written as

(2.4) U0
j+1 = U0

j ⊕ U1
j .

A generalization of this result for other values of n can be written as

(2.5) Un
j+1 = U2n

j ⊕ U2n+1
j , j ∈ Z.

Now, we state a lemma which will be used in the proof of the preceding results.

Lemma 2.1. For each j = 1, 2, 3, . . ., the decomposition trick (2.5) gives

(2.6)

Wj = U1
j = U 2

j−1 ⊕ U3
j−1

= U4
j−2 ⊕ U5

j−2 ⊕ U6
j−2 ⊕ U7

j−2

:

:

= U2k

j−k ⊕ U2k+1
j−k ⊕ U2k+2

j−k ⊕ · · · ⊕ U2k+1−1
j−k

:

:

= U2j

0 ⊕ U2j+1
0 ⊕ U2j+2

0 ⊕ · · · ⊕ U2j+1−1
0

where Un
j is defined by (2.3). Moreover, for each j = 1, 2, . . ..; k = 1, 2, . . . , j and

m = 0, 1, 2, . . ., 2k − 1, and the set
{
2

j−k
2 ωp

(
2j−kx− �

)
: � ∈ Z

}
is as orthonor-

mal basis of U p
j−k where p = 2k +m.

Let Qn
j be the orthogonal projection onto Un

j with kernel Qn
j (x, y) defined by

(2.7) Qn
j (x, y) =

∑
k∈Z

ωj,n,k (x) ωj,n,k (y) ; j ∈ Z, n = 0, 1, 2, 3, . . . ,

where ωj,n,k are the wavelet packets.
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Lemma 2.2. (Ahamd et al. [1]). If ωn ∈ L2 (R) are wavelet packets related to
the scaling function φ (ω0 = φ), then ω̂n (0) = 0, n = 1, 2, 3, . . ..

We refer to Singer [12] for the concepts of basis and unconditional basis in
Banach spaces.

Lemma 2.3. (see Hernández and Weiss [9]). For a basis {x j : j ∈ N} of a
Banach space (B, ‖.‖) the following statements are equivalent:

(i) {xj : j ∈ N} is an unconditional basis for B.

(ii) There exists a constant C > 0 such that ‖Sβ (x)‖ ≤ C ‖x‖ for all sequences
β = {βj}j∈N

with |βj| ≤ 1, where Sβ (x) =
∑

j∈N
βj fj (x)xj , for all x ∈

B.

(iii) There exists a constant C > 0 such that ‖S ε (x)‖ ≤ C ‖x‖ for all sequences
ε = {εj}j∈N

with εj = ±1.

(iv) There exists a constant C > 0 such that ‖Sβ (x)‖ ≤ C ‖x‖ for all finitely
non-zero sequences β = {βj}j∈N

with βj = 1 or 0.

Definition 2.4. For a given function f defined on R, we say that a bounded
function H : [0,∞) → R+ is a radial decreasing L1-majorant of f if |f (x)| ≤
H (|x|) and H satisfies the following conditions:

(2.8) (i) H ∈ L1 [0,∞) , (ii) H is decreasing, (iii) H (0) <∞.

Let RB denote a set of all radially bounded decreasing functions.

Lemma 2.5. (see Han and Sawyer [8]). Let H be a function on [0,∞) satisfying
the conditions (2.8). Then

∑
k∈Z

H (|x− k|) H (|y − k|) ≤ CH

( |x− y|
2

)
, for all x, y ∈ R,

where C is a constant depending on H .

3. UNCONDITIONAL WAVELET PACKET BASES FOR THE SPACES H1 (R) AND Lp (R),
(1 < p <∞)

Throughout this section we consider the set
{
ω�,n,k : � = j −m ; n = 2m, 2m + 1, 2m + 2, . . . , 2m+1 − 1 ; j, k ∈ Z

}
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an orthonormal basis for the space which is to be considered, where m = 0 if j ≤ 0
and m = 0, 1, 2, . . . , j if j > 0. Now, we define a radial decreasing L1-majorant
H related to wavelet packets. Also, consider a bounded function H : [0,∞) → R

+

a common radial decreasing L1-majorant of ωn, for all n, satisfying (2.8).
To study that wavelet packets form an unconditional basis for H1 (R) and

Lp (R), 1 < p <∞, we first define an operator Tβ by

(3.1) Tβ f =
∑
j∈Z

2m+1−1∑
n=2m

∑
k∈Z

β�,n,k < f, ω�,n,k > ω�,n,k

in H1 (R) and in Lp (R), 1 < p < ∞; where � = j − m, m = 0 if j ≤ 0 and
m = 0, 1, 2, ..., j if j > 0. Also, β = {β�,n,k} is a sequence such that β�,n,k = 1
for finite number of indices and β�,n,k = 0 for remaining indices. Now, we examine
the boundedness of this operator Tβ. The operator can be written as an integral
operator of the form

(3.2) (Tβ f) (x) =
∫

R

Kβ (x, y)f (y) dy,

where

(3.3) Kβ (x, y) =
∑
j∈Z

2m+1−1∑
n=2m

∑
k∈Z

β�,n,k ω�,n,k (x)

where � and m are defined in the beginning of this section.
If the wavelet packets ωn are bounded by a radial decreasing L1-majorant H ,

then by using Lemma 2.5, we obtain the following estimate

(3.4)

|Kβ (x, y)| ≤
∑
j∈Z

2m+1−1∑
n=2m

∑
k∈Z

2�
∣∣ωn

(
2�x− k

)
ωn

(
2�y − k

)∣∣

≤
∑
j∈Z

2m+1−1∑
n=2m

∑
k∈Z

2� H
(∣∣2�x− k

∣∣)H (∣∣2�y − k
∣∣)

≤
∑
j∈Z

2m+1−1∑
n=2m

2� CH
(

2�|x−y|
2

)

= C
∑
j∈Z

2m2� H
(
2�−1 |x− y|)

= C
∑
j∈Z

2jH
(
2�−1 |x− y|)
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where C depends only on H and � = j − m, m = 0 if j ≤ 0 and m =
0, 1, 2, 3, . . . , j if j > 0.

Lemma 3.1. A Calderon-Zygmund operator T is a bounded linear operator
on L2 (R) such that

(Tf) (x) =
∫

R

K (x, y)f (y) dy,

where x /∈ supp (f) and the kernel K is a jointly measurable function satisfying

(3.5) |K (x, y)| ≤ C1

|x− y| ;

(3.6) |K (x0, y)−K (x, y)| ≤ C2 |x− x0|
|x− y|2 , if |x− x0| ≤ 1

2
|x− y| ;

(3.7) |K (x, y0) −K (x, y)| ≤ C3 |y − y0|
|x− y|2 , if |y − y0| ≤ 1

2
|x− y| .

Lemma 3.2. Let T be a Calderon-Zygmund operator such that
∫

R

T f (x) dx = 0 and
∫

R

T ∗ f (x) dx = 0,

whenever f ∈ L2 (R) ∩ L∞ (R) and
∫

R

f (x) dx = 0, where T ∗ is the dual of

T . Then, T extends to a bounded operator on H1 (R), BMO (R) and on Lp (R),
1 < p < ∞, with operator norm depending only on ‖T‖L2(R) and the constants
involved in the inequalities (3.5), (3.6) and (3.7).

Theorem 3.3. Let ωn be othronormal wavelet packets such that ωn and ω′
n

(derivative of ωn) have a common radial decreasing L1-majorant H , for all n,
satisfying ∫

R

sH (s) ds <∞.

Then, the operators Tβ defined by (3.2) and (3.3) are bounded in H1 (R), BMO (R)
(dual of H1 (R)) and Lp (R), 1 < p <∞, with norm bounded by a constant inde-
pendent of the finitely non-zero sequence β consisting of zeroes and ones.
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Proof. Since the system {ω�,n,k} is an orthonormal basis for L2 (R), it is easy
to see that the operator Tβ is bounded, i.e.,

‖Tβf‖2
L2(R) =

∑
j∈Z

2m+1−1∑
n=2m

∑
k∈Z

|β�,n,k < f, ω�,n,k >|2

≤
∑
j∈Z

2m+1−1∑
n=2m

∑
k∈Z

|< f, ω�,n,k >|2 = ‖f‖2
L2(R) ,

where � = j −m, m = 0 for j ≤ 0 and m = 0, 1, 2, ..., j for j > 0.
For any f ∈ L2 (R), we have

∫
R

Tβ f (x) dx = 0 =
∫

R

T ∗
β f (x) dx,

since Tβ f and T ∗
β f are finite linear combinations of the ω�,n,k

′s.
Moreover, in view of Lemma 2.2, we have

0 = ω̂n (0) =
∫

R

ωn (x) dx, for n > 1.

Now, to prove the theorem, it is required to show that Tβ is a Calderon-Zygmund
operator and then the theorem will follow by using Lemma 3.2. In order to show
that Tβ is a Calderon-Zygmund operator, it is sufficient to show that Kβ satisfies
conditions (3.5), (3.6) and (3.7). To prove (3.5), we use (3.4) and obvious estimates,
to obtain

(3.8)

|Kβ (x, y)| ≤ C
∑
j∈Z

2jH
(
2j−m−1 |x− y|)

≤ C

0∑
j=−∞

2jH
(
2j−1 |x− y|)

+C
∞∑

j=1

2jH
(
2j−m−1 |x− y|) .

Now, we consider to decompose Wj spaces for some j = M , for sufficiently large
M . Then, all Wj spaces, for which j ≤ M , will decompose up to last formula
in (2.6) and other Wj spaces, for which j > M , will decompose according to
intermediate formula in (2.6). So inequality (3.8) takes the form
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|Kβ (x, y)| ≤ C

0∑
j=−∞

2jH
(
2j−1 |x− y|) +C

M∑
j=1

2jH
(
2−1 |x− y|)

+ C

∞∑
j=M+1

2jH
(
2j−M−1 |x− y|)

≤ C

0∑
j=−∞

2jH
(
2j−M−1 |x− y|) +C

M∑
j=1

2jH
(
2j−M−1 |x− y|)

+ C

∞∑
j=M+1

2jH
(
2j−M−1 |x− y|)

= C

∞∑
j=−∞

2jH
(
2j−M−1 |x− y|)

≤ 2 C
∫ ∞

0

H
(
2−M−1 t |x− y|) dt

=
C 2M+2

|x − y| ‖H‖L1(0,∞) .

To prove (3.6) we assume x < x0. Now, we prove

(3.9)
∣∣∣∣ ∂∂xKβ (x, y)

∣∣∣∣ ≤ C

|x− y|2 for y ∈ R.

It is easy to see that the inequality (3.9) implies (3.6). To see this we apply Mean
Value Theorem to obtain a point x′ ∈ (x0, x) such that

|Kβ (x0, y)−Kβ (x, y)| ≤ |x0 − x|
∣∣∣∣∂Kβ (x′, y)

∂x

∣∣∣∣

≤ C |x0 − x|
|x′ − y|2 .

Observe that (3.6) implies that y /∈ (x0, x). If y ≥ x, it is clear that

∣∣x′ − y
∣∣ ≥ |x− y| ≥ 1

2
|x− y| .

If y ≤ x0, we use (3.6) to obtain

∣∣x′ − y
∣∣ ≥ |x0 − y| ≥ |x− y| − |x− x0| ≥ 1

2
|x − y| .
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Hence

|Kβ (x0, y) −Kβ (x, y)| ≤ 4C |x0 − x|
|x − y|2 ,

provided |x− x0| ≤ 1
2 |x− y|.

Now, using Lemma 2.5 and the fact that H is decreasing, we obtain

∣∣∣∣ ∂∂x Kβ (x, y)
∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈Z

2m+1−1∑
n=2m

∑
k∈Z

β�,n,k 22� ω′
n

(
2�x − k

)
ωn (2�y − k)

∣∣∣∣∣∣
≤

∑
j∈Z

2m+1−1∑
n=2m

∑
k∈Z

22�H
(∣∣∣2�x− k

∣∣∣)H (∣∣∣2�y − k
∣∣∣)

≤ C
∑
j∈Z

22�+m
∑
k∈Z

H
(∣∣∣2�x− k

∣∣∣)H (∣∣∣2�y − k
∣∣∣)

≤ C
∑
j∈Z

22j−mH
(
2j−m−1 |x− y|)

≤ C
0∑

j=−∞
22j−MH

(
2j−1 |x− y|) +C

M∑
j=1

22jH
(
2−1 |x− y|)

+ C

∞∑
j=M+1

22j−MH
(
2j−M−1 |x− y|) ,

(for m = M a large enough value)

≤ C

0∑
j=−∞

22jH
(
2j−M−1 |x−y|)+C

M∑
j=1

22jH
(
2j−M−1 |x−y|)

+C
∞∑

j=M+1

22jH
(
2j−M−1 |x− y|)

= C

∞∑
j=−∞

22jH
(
2j−M−1 |x− y|)

≤ 2 C
∫ ∞

0

t H
(
2−M−1t |x− y|) dt

= 2 C
∫ ∞

0

2M+1

|x− y| s H (s)
2M+1

|x− y| ds

=
22M+3

|x− y|2
∫ ∞

0

s H (s) ds
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This proves (3.9) and, consequently, (3.6) follows. Inequality (3.7) follows from a
similar argument as in (3.6). Hence Tβ is a Calderon-Zygmund operator. By using
Lemma 3.2, the proof of the theorem follows.

Now, we prove the unconditionality of some wavelet packet basis for Lp (R),
1 < p <∞.

Theorem 3.4. Let ωn be orthonormal wavelet packets such that ωn and ω′
n

have a common radial decreasing L1-majorant H satisfying
∫ ∞

0

s H (s) ds < ∞.

Then, the system
{
ω�,n,k : � = j −m; n = 2m, 2m + 1, ...., 2m+1 − 1; j, k ∈ Z

}
is an unconitional basis for L p (R), 1 < p < ∞, where m = 0 if j ≤ 0 and
m = 0, 1, 2, ..., j if j > 0.

Proof. In order to prove the theorem, first of all we show that the system
under consideration is a basis for Lp (R), 1 < p < ∞. For this let, Sr,s f be the
“rectangular” partial sum of the wavelet packet expansions of f, i.e.,

(3.10) Sr,s f =
∑
|j|<r

2m+1−1∑
n=2m

∑
|k|<s

< f, ω�,n,k > ω�,n,k,

where f ∈ Lp (R), 1 < p < ∞. This operator is well defined in view of Theorem
3.3. Now, we show that for given f ∈ Lp (R), 1 < p <∞ and ε > 0, we can find
r and s large enough so that

‖f − Sr,s f‖Lp(R) < ε.

Let C = sup ‖Tβ‖ < ∞, where Tβ ’s are the operators defined in Theorem 3.3
and the superemum is taken over all admissible sequences β = {β�,n,k} considered
in Theorem 3.3. Since L2 (R) ∩ Lp (R) is dense in Lp (R), we can find g ∈
L2 (R) ∩ Lp (R) such that

‖f − g‖Lp(R) <
ε

C + 3
.

We can write

(3.11)
‖f − Sr,s f‖Lp(R) ≤ ‖f − g‖Lp(R)

+ ‖g − Sr,s g‖Lp(R) + ‖Sr,s (g − f)‖Lp(R) .

The last summand on the right hand side of (3.11) is smaller than εC
C+3 in view

of Theorem 3.3. Now, we estimate ‖g − Sr,s g‖Lp(R) for g ∈ L2 (R) ∩ Lp (R).
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By duality, and the density of L2 (R) ∩ Lp (R), (where 1
p + 1

q = 1), we can find
h ∈ L2 (R) ∩ Lq (R) such that

(3.12) ‖g − Sr,s g‖Lp(R) ≤
∣∣∣∣
∫

R

{g (x) − Sr,s g (x)}h (x) dx
∣∣∣∣ +

ε

C + 3
.

Using the Schwarz inequality, we deduce∣∣∣∣
∫

R

{g (x) − Sr,s g (x)}h (x) dx
∣∣∣∣ =

∣∣∣∣
∫

R

g (x)
{
h (x) − Sr,s h (x)

}
dx

∣∣∣∣
≤ ‖g‖L2(R) < ‖h − Sr,s h‖L2(R) .

Since the system considered is an orthonormal basis for L2 (R), we can find r and
s large enough so that

‖h − Sr,s h‖L2(R) <
ε

‖g‖L2(R) (C + 3)
.

Hence

‖f − Sr,s f‖Lp(R) ≤ ε

C + 3
+

ε

C + 3
+

ε

C + 3
+

ε C

C + 3
= ε.

From the orthonormality of the system under consideration, it follows that the rep-
resentation

(3.13) f =
∑
j∈Z

2m+1−1∑
n=2m

∑
k∈Z

C�,n,k ω�,n,k

with convergence in Lp (R), 1 < p <∞ is unique. Now, multiplying both the sides
by ω�,n,k and integrating, we obtain C�,n,k = 〈f, ω�,n,k〉. The unconditionality of
the basis follows from Theorem 3.3 and Lemma 2.3.

Theorem 3.5. Let ωn be orthonormal wavelet packets for L2 (R) such that ωn

and ω′
n have a common radial decreasing L1-majorant H satisfying

∫ ∞

0

s H (s) ds < ∞.

Then, the system
{
ω�,n,k : � = j −m; n = 2m, 2m + 1, ...., 2m+1 − 1; j, k ∈ Z

}
is an unconditional basis for H 1 (R), where m = 0 if j ≤ 0 and m = 0, 1, 2, ..., j
if j > 0.

Proof. The proof of this theorem is similar to that of Theorem 3.4. For this, we
need to show that the system under consideration is a basis for H1 (R). Inequality
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(3.11) is true with Lp-norm replaced by H1-norm and choosing g to be finite linear
combination of atoms. Since H∗ (R) = BMO (R), we can find a bounded function
h ∈ BMO (R) such that (3.12) is true by replacing ‖.‖Lp(R) by ‖.‖H1(R). By
choosing sufficiently large M , we have

(3.14)
‖g − Sr,s g‖H1(R) ≤

∣∣∣∣
∫

R

{g (x)− Sr,s g (x)}X[−M, M ] (x) h (x) dx
∣∣∣∣

+
ε

C + 3
.

We observe that X[−M, M ] h ∈ L2 (R) and, thus, the proof follows from the proof
of Theorem 3.4.
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