TAIWANESE JOURNAL OF MATHEMATICS Vol. 10, No. 4, pp. 851-863, June 2006 This paper is available online at http://www.math.nthu.edu.tw/tjm/

## EXISTENCE OF UNCONDITIONAL WAVELET PACKET BASES FOR THE SPACES $L^{p}(\mathbb{R})$ AND $\mathcal{H}^{1}(\mathbb{R})$

Khalil Ahmad, Rakesh Kumar and Lokenath Debnath

**Abstract.** It is proved that the system  $\{\omega_{\ell,n,k} : \ell = j - m; n = 2^m, 2^m + 1, \dots, 2^{m+1} - 1; \quad j,k \in \mathbb{Z}\}$  of wavelet packets is an unconditional basis for  $L^p(\mathbb{R}), 1 and <math>\mathcal{H}^1(\mathbb{R})$ , where m = 0 if  $j \leq 0$  and  $m = 0, 1, 2, \dots, j$  if j > 0, provided the orthonormal wavelet packets  $\omega_n$  and its derivative  $\omega'_n$  have a common radial decreasing  $L^1$ -majorant satisfying the condition  $\int_0^\infty sH(s) \, ds < \infty$ .

## 1. INTRODUCTION

In his paper, Mallat [10] first formulated the remarkable idea of multiresolution analysis (MRA) that deals with a general formalism for construction of an orthogonal basis of wavelet bases. A multiresolution analysis consists of a sequence of embedded closed subspaces  $\{V_j : j \in \mathbb{Z}\}$  for approximating  $L^2(\mathbb{R})$  functions (see Debnath [6]). On the other hand, wavelet packets represent a simple but powerful extension of wavelets and MRA. Orthogonal wavelet packets (also simply called *wave packets*) introduced by Coifman et al. [3] are used to further decompose wavelet components. Wickerhauser [14] thoroughly investigated discrete wavelet packets and developed computer programs and implemented them. Several authors including Mallat [10], Daubechies [5], and Meyer [11] have laid the foundation of wavelet theory and its diverse applications through multiresolution analysis.

Gripenberg [7] introduced the subject of unconditionality of wavelet bases for Lebesgue spaces  $L^p(\mathbb{R})$ , 1 . The constructive proofs of the unconditional $basis for <math>\mathcal{H}^1(\mathbb{R})$  have been given by Carleson [2] and Wojtaszczyk [15], where the latter author has given an example of an unconditional basis for the Hardy space  $\mathcal{H}^1(\mathbb{R})$  as the Franklin system. In fact, a large class of wavelets which have

Communicated by H. M. Srivastava

2000 Mathematics Subject Classification: Primary 42C15; Secondary 46B15, 46E30.

Received March 21, 2004, revised July 2, 2004.

Key words and phrases: Multiresolution, Wavelets, Wavelet packets, Unconditional basis.

unconditional basis for the Hardy space  $\mathcal{H}^{1}(\mathbb{R})$  was discovered by Meyer [11]. It was Strömberg [13] who first discovered unconditional bases for the spaces  $\mathcal{H}^{1}(\mathbb{R})$  and  $L^{p}(\mathbb{R})$ , 1 , and they are spline systems of higher order.

Motivated by the study of unconditionality of wavelet bases for the spaces  $L^p(\mathbb{R})$ ,  $1 , by Gripenberg [7], we are interested in extending the results on unconditional wavelet packet basis for spaces in the context of wavelet packet. In this paper, we prove the results on the existence of unconditional wavelet packet bases for spaces <math>\mathcal{H}^1(\mathbb{R})$  and  $L^p(\mathbb{R})$ ,  $1 based on an approach similar to that of Hernández and Weiss [9] and Meyer [11]. We have also used the atomic decomposition of <math>\mathcal{H}^1(\mathbb{R})$  described by Coifman [4] and the Calderon-Zygmund theory for boundedness of certain operators by Han and Swayer [8] to prove our results.

## 2. BASIC IDEAS AND RESULTS

For basic ideas, results on wavelets and multiresoltuion analysis, we refer to Chapters 6 and 7 of Debnath [6].

We construct wavelet packets from multiresolution analysis. In general, consider two sequences  $\{\alpha_n\}_{n\in\mathbb{Z}}$  and  $\{\beta_n\}_{n\in\mathbb{Z}}$  in  $\ell^2(\mathbb{Z})$ . Let  $\mathbb{H}$  be a Hilbert space with orthonormal basis  $\{e_k\}_{k\in\mathbb{Z}}$ . Then, the sequences

$$f_{2n} = \sqrt{2} \sum_{k \in \mathbb{Z}} \alpha_{2n-k} \ e_k, \qquad f_{2n+1} = \sqrt{2} \sum_{k \in \mathbb{Z}} \beta_{2n-k} \ e_k$$

are orthonormal bases of two orthogonal closed subspaces  $\mathbb{H}_1$  and  $\mathbb{H}_0,$  respectively, such that

$$\mathbb{H} = \mathbb{H}_1 \oplus \mathbb{H}_0.$$

Using this "splitting trick" we now define the basic wavelet packets associated with a scaling function  $\phi$  as defined in MRA.

Let  $\omega_0 = \phi$ . The basic wavelet packets  $\omega_n$ , n = 0, 1, 2, ... associated with the scaling function  $\phi$  are defined recursively by

(2.1) 
$$\omega_{2n}(x) = \sqrt{2} \quad \sum_{k \in \mathbb{Z}} h_k \, \omega_n \left( 2x - k \right),$$

and

(2.2) 
$$\omega_{2n+1}(x) = \sqrt{2} \quad \sum_{k \in \mathbb{Z}} g_k \,\omega_n \left(2x - k\right).$$

It follows from the above definition that  $\omega_1 = \psi$  is a mother wavelet and the set  $\{\omega_n (x-k) : n = 0, 1, \dots, k \in \mathbb{Z}\}$  is an orthonormal basis for the Hilbert space  $L^2(\mathbb{R})$ .

Corresponding to some orthonormal scaling function  $\phi = \omega_0$ , the family of wavelet packets  $\{\omega_n\}$  defines a family of subspaces of  $L^2(\mathbb{R})$  as follows :

(2.3) 
$$U_j^n = span \left\{ 2^j \,\omega_n \left( 2^j x - k \right) \, : \, k \in \mathbb{Z} \right\}; \, j \in \mathbb{Z}, \, n = 0, 1, 2, \dots$$

Observe that

$$U_j^0 = V_j, \qquad U_j^1 = W_j$$

so that the orthogonal decomposition can be written as

(2.4) 
$$U_{j+1}^0 = U_j^0 \oplus U_j^1$$
.

A generalization of this result for other values of n can be written as

(2.5) 
$$U_{j+1}^n = U_j^{2n} \oplus U_j^{2n+1}, \ j \in \mathbb{Z}.$$

Now, we state a lemma which will be used in the proof of the preceding results.

**Lemma 2.1.** For each j = 1, 2, 3, ..., the decomposition trick (2.5) gives

$$W_{j} = U_{j}^{1} = U_{j-1}^{2} \oplus U_{j-1}^{3}$$

$$= U_{j-2}^{4} \oplus U_{j-2}^{5} \oplus U_{j-2}^{6} \oplus U_{j-2}^{7}$$

$$\vdots$$

$$= U_{j-k}^{2^{k}} \oplus U_{j-k}^{2^{k}+1} \oplus U_{j-k}^{2^{k}+2} \oplus \cdots \oplus U_{j-k}^{2^{k+1}-1}$$

$$\vdots$$

$$= U_{0}^{2^{j}} \oplus U_{0}^{2^{j}+1} \oplus U_{0}^{2^{j}+2} \oplus \cdots \oplus U_{0}^{2^{j+1}-1}$$

where  $U_j^n$  is defined by (2.3). Moreover, for each j = 1, 2, ...; k = 1, 2, ..., j and  $m = 0, 1, 2, ..., 2^k - 1$ , and the set  $\left\{2^{\frac{j-k}{2}}\omega_p\left(2^{j-k}x - \ell\right) : \ell \in \mathbb{Z}\right\}$  is as orthonormal basis of  $U_{j-k}^p$  where  $p = 2^k + m$ . Let  $Q_j^n$  be the orthogonal projection onto  $U_j^n$  with kernel  $Q_j^n(x, y)$  defined by

(2.7) 
$$Q_{j}^{n}(x,y) = \sum_{k \in \mathbb{Z}} \omega_{j,n,k}(x) \overline{\omega_{j,n,k}(y)}; \ j \in \mathbb{Z}, \quad n = 0, 1, 2, 3, \dots,$$

where  $\omega_{j,n,k}$  are the wavelet packets.

**Lemma 2.2.** (Ahamd et al. [1]). If  $\omega_n \in L^2(\mathbb{R})$  are wavelet packets related to the scaling function  $\phi(\omega_0 = \phi)$ , then  $\hat{\omega}_n(0) = 0$ , n = 1, 2, 3, ...

We refer to Singer [12] for the concepts of basis and unconditional basis in Banach spaces.

**Lemma 2.3.** (see Hernández and Weiss [9]). For a basis  $\{x_j : j \in \mathbb{N}\}$  of a Banach space  $(\mathbb{B}, \|.\|)$  the following statements are equivalent:

- (i)  $\{x_j : j \in \mathbb{N}\}$  is an unconditional basis for  $\mathbb{B}$ .
- (*ii*) There exists a constant C > 0 such that  $||S_{\beta}(x)|| \le C ||x||$  for all sequences  $\beta = \{\beta_j\}_{j \in \mathbb{N}}$  with  $|\beta_j| \le 1$ , where  $S_{\beta}(x) = \sum_{j \in \mathbb{N}} \beta_j f_j(x) x_j$ , for all  $x \in \mathbb{B}$ .
- (*iii*) There exists a constant C > 0 such that  $||S_{\varepsilon}(x)|| \le C ||x||$  for all sequences  $\varepsilon = {\varepsilon_j}_{j \in \mathbb{N}}$  with  $\varepsilon_j = \pm 1$ .
- (iv) There exists a constant C > 0 such that  $||S_{\beta}(x)|| \le C ||x||$  for all finitely non-zero sequences  $\beta = \{\beta_j\}_{j \in \mathbb{N}}$  with  $\beta_j = 1$  or 0.

**Definition 2.4.** For a given function f defined on  $\mathbb{R}$ , we say that a bounded function  $H : [0, \infty) \to \mathbb{R}^+$  is a radial decreasing  $L^1$ -majorant of f if  $|f(x)| \le H(|x|)$  and H satisfies the following conditions:

 $(2.8) \quad \text{ (i)} \quad H \in L^1\left[0,\infty\right), \qquad \text{ (ii)} \quad H \text{ is decreasing}, \qquad \text{ (iii)} \quad H\left(0\right) < \infty.$ 

Let RB denote a set of all radially bounded decreasing functions.

**Lemma 2.5.** (see Han and Sawyer [8]). Let H be a function on  $[0, \infty)$  satisfying the conditions (2.8). Then

$$\sum_{k \in \mathbb{Z}} H\left(|x-k|\right) \ H\left(|y-k|\right) \le CH\left(\frac{|x-y|}{2}\right), \quad \text{for all } x, y \in \mathbb{R},$$

where C is a constant depending on H.

3. Unconditional Wavelet Packet Bases for the Spaces  $\mathcal{H}^{1}(\mathbb{R})$  and  $L^{p}(\mathbb{R})$ , (1

Throughout this section we consider the set

$$\{\omega_{\ell,n,k}: \ell = j - m; n = 2^m, 2^m + 1, 2^m + 2, \dots, 2^{m+1} - 1; j, k \in \mathbb{Z}\}$$

854

an orthonormal basis for the space which is to be considered, where m = 0 if  $j \le 0$ and m = 0, 1, 2, ..., j if j > 0. Now, we define a radial decreasing  $L^1$ -majorant H related to wavelet packets. Also, consider a bounded function  $H : [0, \infty) \to \mathbb{R}^+$ a common radial decreasing  $L^1$ -majorant of  $\omega_n$ , for all n, satisfying (2.8).

To study that wavelet packets form an unconditional basis for  $\mathcal{H}^{1}(\mathbb{R})$  and  $L^{p}(\mathbb{R}), 1 , we first define an operator <math>T_{\beta}$  by

(3.1) 
$$T_{\beta} f = \sum_{j \in \mathbb{Z}} \sum_{n=2^m}^{2^{m+1}-1} \sum_{k \in \mathbb{Z}} \beta_{\ell,n,k} < f, \ \omega_{\ell,n,k} > \omega_{\ell,n,k}$$

in  $\mathcal{H}^1(\mathbb{R})$  and in  $L^p(\mathbb{R})$ ,  $1 ; where <math>\ell = j - m$ , m = 0 if  $j \leq 0$  and m = 0, 1, 2, ..., j if j > 0. Also,  $\beta = \{\beta_{\ell,n,k}\}$  is a sequence such that  $\beta_{\ell,n,k} = 1$  for finite number of indices and  $\beta_{\ell,n,k} = 0$  for remaining indices. Now, we examine the boundedness of this operator  $T_\beta$ . The operator can be written as an integral operator of the form

(3.2) 
$$(T_{\beta} f)(x) = \int_{\mathbb{R}} K_{\beta}(x, y) f(y) \, dy,$$

where

(3.3) 
$$K_{\beta}(x,y) = \sum_{j \in \mathbb{Z}} \sum_{n=2^{m}}^{2^{m+1}-1} \sum_{k \in \mathbb{Z}} \beta_{\ell,n,k} \omega_{\ell,n,k} (x)$$

where  $\ell$  and m are defined in the beginning of this section.

If the wavelet packets  $\omega_n$  are bounded by a radial decreasing  $L^1$ -majorant H, then by using Lemma 2.5, we obtain the following estimate

$$|K_{\beta}(x,y)| \leq \sum_{j \in \mathbb{Z}} \sum_{n=2^{m}}^{2^{m+1}-1} \sum_{k \in \mathbb{Z}} 2^{\ell} |\omega_{n} (2^{\ell}x-k) \omega_{n} (2^{\ell}y-k)|$$

$$\leq \sum_{j \in \mathbb{Z}} \sum_{n=2^{m}}^{2^{m+1}-1} \sum_{k \in \mathbb{Z}} 2^{\ell} H (|2^{\ell}x-k|) H (|2^{\ell}y-k|)$$

$$\leq \sum_{j \in \mathbb{Z}} \sum_{n=2^{m}}^{2^{m+1}-1} 2^{\ell} CH (\frac{2^{\ell}|x-y|}{2})$$

$$= C \sum_{j \in \mathbb{Z}} 2^{m} 2^{\ell} H (2^{\ell-1} |x-y|)$$

$$= C \sum_{j \in \mathbb{Z}} 2^{j} H (2^{\ell-1} |x-y|)$$

where C depends only on H and  $\ell = j - m$ , m = 0 if  $j \leq 0$  and  $m = 0, 1, 2, 3, \ldots, j$  if j > 0.

**Lemma 3.1.** A Calderon-Zygmund operator T is a bounded linear operator on  $L^{2}(\mathbb{R})$  such that

$$(Tf)(x) = \int_{\mathbb{R}} K(x,y) f(y) \, dy,$$

where  $x \notin \text{supp}(f)$  and the kernel K is a jointly measurable function satisfying

(3.5) 
$$|K(x,y)| \le \frac{C_1}{|x-y|};$$

involved in the inequalities (3.5), (3.6) and (3.7).

(3.6) 
$$|K(x_0, y) - K(x, y)| \le \frac{C_2 |x - x_0|}{|x - y|^2}, \text{ if } |x - x_0| \le \frac{1}{2} |x - y|;$$

(3.7) 
$$|K(x, y_0) - K(x, y)| \le \frac{C_3 |y - y_0|}{|x - y|^2}, \text{ if } |y - y_0| \le \frac{1}{2} |x - y|.$$

**Lemma 3.2.** Let T be a Calderon-Zygmund operator such that

$$\int_{\mathbb{R}} T f(x) dx = 0 \quad and \quad \int_{\mathbb{R}} T^* f(x) dx = 0,$$

whenever  $f \in L^2(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$  and  $\int_{\mathbb{R}} f(x) dx = 0$ , where  $T^*$  is the dual of T. Then, T extends to a bounded operator on  $\mathcal{H}^1(\mathbb{R})$ ,  $BMO(\mathbb{R})$  and on  $L^p(\mathbb{R})$ ,  $1 , with operator norm depending only on <math>||T||_{L^2(\mathbb{R})}$  and the constants

**Theorem 3.3.** Let  $\omega_n$  be other ormal wavelet packets such that  $\omega_n$  and  $\omega'_n$  (derivative of  $\omega_n$ ) have a common radial decreasing  $L^1$ -majorant H, for all n, satisfying

$$\int_{\mathbb{R}} s H(s) \, ds < \infty.$$

Then, the operators  $T_{\beta}$  defined by (3.2) and (3.3) are bounded in  $\mathcal{H}^1(\mathbb{R})$ , BMO ( $\mathbb{R}$ ) (dual of  $\mathcal{H}^1(\mathbb{R})$ ) and  $L^p(\mathbb{R})$ ,  $1 , with norm bounded by a constant independent of the finitely non-zero sequence <math>\beta$  consisting of zeroes and ones.

Existence of Unconditional Wavelet Packet Bases for the Spaces  $L^p(\mathbb{R})$  and  $\mathcal{H}^1(\mathbb{R})$  857

*Proof.* Since the system  $\{\omega_{\ell,n,k}\}$  is an orthonormal basis for  $L^2(\mathbb{R})$ , it is easy to see that the operator  $T_\beta$  is bounded, i.e.,

$$\begin{aligned} \|T_{\beta}f\|_{L^{2}(\mathbb{R})}^{2} &= \sum_{j \in \mathbb{Z}} \sum_{n=2^{m}}^{2^{m+1}-1} \sum_{k \in \mathbb{Z}} |\beta_{\ell,n,k} < f, \ \omega_{\ell,n,k} >|^{2} \\ &\leq \sum_{j \in \mathbb{Z}} \sum_{n=2^{m}}^{2^{m+1}-1} \sum_{k \in \mathbb{Z}} |\langle f, \ \omega_{\ell,n,k} >|^{2} = \|f\|_{L^{2}(\mathbb{R})}^{2}, \end{aligned}$$

where  $\ell = j - m$ , m = 0 for  $j \le 0$  and m = 0, 1, 2, ..., j for j > 0. For any  $f \in L^2(\mathbb{R})$ , we have

$$\int_{\mathbb{R}} T_{\beta} f(x) \, dx = 0 = \int_{\mathbb{R}} T_{\beta}^* f(x) \, dx,$$

since  $T_{\beta} f$  and  $T_{\beta}^* f$  are finite linear combinations of the  $\omega_{\ell,n,k}$ 's. Moreover, in view of Lemma 2.2, we have

$$0 = \hat{\omega}_n(0) = \int_{\mathbb{R}} \omega_n(x) \, dx, \quad \text{for } n > 1.$$

Now, to prove the theorem, it is required to show that  $T_{\beta}$  is a Calderon-Zygmund operator and then the theorem will follow by using Lemma 3.2. In order to show that  $T_{\beta}$  is a Calderon-Zygmund operator, it is sufficient to show that  $K_{\beta}$  satisfies conditions (3.5), (3.6) and (3.7). To prove (3.5), we use (3.4) and obvious estimates, to obtain

(3.8)  

$$|K_{\beta}(x, y)| \leq C \sum_{j \in \mathbb{Z}} 2^{j} H\left(2^{j-m-1} |x-y|\right)$$

$$\leq C \sum_{j=-\infty}^{0} 2^{j} H\left(2^{j-1} |x-y|\right)$$

$$+C \sum_{j=1}^{\infty} 2^{j} H\left(2^{j-m-1} |x-y|\right)$$

Now, we consider to decompose  $W_j$  spaces for some j = M, for sufficiently large M. Then, all  $W_j$  spaces, for which  $j \leq M$ , will decompose up to last formula in (2.6) and other  $W_j$  spaces, for which j > M, will decompose according to intermediate formula in (2.6). So inequality (3.8) takes the form

.

$$\begin{aligned} |K_{\beta}(x, y)| &\leq C \sum_{j=-\infty}^{0} 2^{j} H\left(2^{j-1} |x-y|\right) + C \sum_{j=1}^{M} 2^{j} H\left(2^{-1} |x-y|\right) \\ &+ C \sum_{j=M+1}^{\infty} 2^{j} H\left(2^{j-M-1} |x-y|\right) \\ &\leq C \sum_{j=-\infty}^{0} 2^{j} H\left(2^{j-M-1} |x-y|\right) + C \sum_{j=1}^{M} 2^{j} H\left(2^{j-M-1} |x-y|\right) \\ &+ C \sum_{j=M+1}^{\infty} 2^{j} H\left(2^{j-M-1} |x-y|\right) \\ &= C \sum_{j=-\infty}^{\infty} 2^{j} H\left(2^{j-M-1} |x-y|\right) \\ &\leq 2 C \int_{0}^{\infty} H\left(2^{-M-1} t |x-y|\right) dt \\ &= \frac{C 2^{M+2}}{|x-y|} \|H\|_{L^{1}(0,\infty)}. \end{aligned}$$

To prove (3.6) we assume  $x < x_0$ . Now, we prove

(3.9) 
$$\left|\frac{\partial}{\partial x}K_{\beta}\left(x,\,y\right)\right| \leq \frac{C}{\left|x-y\right|^{2}} \quad \text{for } y \in \mathbb{R}.$$

It is easy to see that the inequality (3.9) implies (3.6). To see this we apply Mean Value Theorem to obtain a point  $x' \in (x_0, x)$  such that

$$\begin{aligned} \left| K_{\beta}\left(x_{0}, \, y\right) - K_{\beta}\left(x, \, y\right) \right| &\leq \left| x_{0} - x \right| \left| \frac{\partial K_{\beta}\left(x', \, y\right)}{\partial x} \right| \\ &\leq \frac{C \left| x_{0} - x \right|}{\left| x' - y \right|^{2}}. \end{aligned}$$

Observe that (3.6) implies that  $y \notin (x_0, x)$ . If  $y \ge x$ , it is clear that

$$|x'-y| \ge |x-y| \ge \frac{1}{2} |x-y|.$$

If  $y \le x_0$ , we use (3.6) to obtain

$$|x'-y| \ge |x_0-y| \ge |x-y| - |x-x_0| \ge \frac{1}{2}|x-y|.$$

858

Hence

$$|K_{\beta}(x_0, y) - K_{\beta}(x, y)| \leq \frac{4C |x_0 - x|}{|x - y|^2},$$

provided  $|x - x_0| \le \frac{1}{2} |x - y|$ . Now, using Lemma 2.5 and the fact that H is decreasing, we obtain

$$\begin{split} \frac{\partial}{\partial x} K_{\beta}(x, y) \bigg| &= \left| \sum_{j \in \mathbb{Z}} \sum_{n=2^{m}}^{2^{m+1}-1} \sum_{k \in \mathbb{Z}} \beta_{\ell,n,k} \ 2^{2\ell} \ \omega_{n}' \left( 2^{\ell}x - k \right) \overline{\omega_{n} \left( 2^{\ell}y - k \right)} \right| \\ &\leq \sum_{j \in \mathbb{Z}} \sum_{n=2^{m}}^{2^{m+1}-1} \sum_{k \in \mathbb{Z}} 2^{2\ell} H \left( \left| 2^{\ell}x - k \right| \right) H \left( \left| 2^{\ell}y - k \right| \right) \\ &\leq C \sum_{j \in \mathbb{Z}} 2^{2\ell+m} \sum_{k \in \mathbb{Z}} H \left( \left| 2^{\ell}x - k \right| \right) H \left( \left| 2^{\ell}y - k \right| \right) \\ &\leq C \sum_{j \in \mathbb{Z}} 2^{2j-m} H \left( 2^{j-m-1} \left| x - y \right| \right) \\ &\leq C \sum_{j=-\infty}^{0} 2^{2j-M} H \left( 2^{j-1} \left| x - y \right| \right) + C \sum_{j=1}^{M} 2^{2j} H \left( 2^{-1} \left| x - y \right| \right) \\ &+ C \sum_{j=M+1}^{\infty} 2^{2j-M} H \left( 2^{j-M-1} \left| x - y \right| \right) , \\ &\left( \text{for } m = M \text{ a large enough value} \right) \\ &\leq C \sum_{j=-\infty}^{0} 2^{2j} H \left( 2^{j-M-1} \left| x - y \right| \right) + C \sum_{j=1}^{M} 2^{2j} H \left( 2^{j-M-1} \left| x - y \right| \right) \\ &+ C \sum_{j=M+1}^{\infty} 2^{2j} H \left( 2^{j-M-1} \left| x - y \right| \right) \\ &= C \sum_{j=-\infty}^{\infty} 2^{2j} H \left( 2^{j-M-1} \left| x - y \right| \right) \\ &\leq 2 C \int_{0}^{\infty} t H \left( 2^{-M-1} \left| x - y \right| \right) dt \\ &= 2 C \int_{0}^{\infty} \frac{2^{M+1}}{\left| x - y \right|} s H \left( s \right) \frac{2^{M+1}}{\left| x - y \right|} ds \\ &= \frac{2^{2M+3}}{\left| x - y \right|^2} \int_{0}^{\infty} s H \left( s \right) ds \end{split}$$

This proves (3.9) and, consequently, (3.6) follows. Inequality (3.7) follows from a similar argument as in (3.6). Hence  $T_{\beta}$  is a Calderon-Zygmund operator. By using Lemma 3.2, the proof of the theorem follows.

Now, we prove the unconditionality of some wavelet packet basis for  $L^{p}(\mathbb{R})$ , 1 .

**Theorem 3.4.** Let  $\omega_n$  be orthonormal wavelet packets such that  $\omega_n$  and  $\omega'_n$  have a common radial decreasing  $L^1$ -majorant H satisfying

$$\int_0^\infty s H(s) \, ds \ < \ \infty.$$

Then, the system  $\{\omega_{\ell,n,k} : \ell = j - m; n = 2^m, 2^m + 1, ..., 2^{m+1} - 1; j, k \in \mathbb{Z}\}$  is an unconitional basis for  $L^p(\mathbb{R}), 1 , where <math>m = 0$  if  $j \leq 0$  and m = 0, 1, 2, ..., j if j > 0.

*Proof.* In order to prove the theorem, first of all we show that the system under consideration is a basis for  $L^p(\mathbb{R})$ ,  $1 . For this let, <math>S_{r,s} f$  be the "rectangular" partial sum of the wavelet packet expansions of f, i.e.,

(3.10) 
$$S_{r,s} f = \sum_{|j| < r} \sum_{n=2^m}^{2^{m+1}-1} \sum_{|k| < s} < f, \ \omega_{\ell,n,k} > \omega_{\ell,n,k},$$

where  $f \in L_p(\mathbb{R})$ ,  $1 . This operator is well defined in view of Theorem 3.3. Now, we show that for given <math>f \in L^p(\mathbb{R})$ ,  $1 and <math>\varepsilon > 0$ , we can find r and s large enough so that

$$\|f - S_{r,s} f\|_{L^p(\mathbb{R})} < \varepsilon.$$

Let  $C = \sup ||T_{\beta}|| < \infty$ , where  $T_{\beta}$ 's are the operators defined in Theorem 3.3 and the superemum is taken over all admissible sequences  $\beta = \{\beta_{\ell,n,k}\}$  considered in Theorem 3.3. Since  $L^2(\mathbb{R}) \cap L^p(\mathbb{R})$  is dense in  $L^p(\mathbb{R})$ , we can find  $g \in$  $L^2(\mathbb{R}) \cap L^p(\mathbb{R})$  such that

$$\|f-g\|_{L^p(\mathbb{R})} < \frac{\varepsilon}{C+3}.$$

We can write

(3.11) 
$$\|f - S_{r,s} f\|_{L^{p}(\mathbb{R})} \leq \|f - g\|_{L^{p}(\mathbb{R})} + \|g - S_{r,s} g\|_{L^{p}(\mathbb{R})} + \|S_{r,s} (g - f)\|_{L^{p}(\mathbb{R})}$$

The last summand on the right hand side of (3.11) is smaller than  $\frac{\varepsilon C}{C+3}$  in view of Theorem 3.3. Now, we estimate  $\|g - S_{r,s} g\|_{L^p(\mathbb{R})}$  for  $g \in L^2(\mathbb{R}) \cap L^p(\mathbb{R})$ .

860

By duality, and the density of  $L^{2}(\mathbb{R}) \cap L^{p}(\mathbb{R})$ , (where  $\frac{1}{p} + \frac{1}{q} = 1$ ), we can find  $h \in L^{2}(\mathbb{R}) \cap L^{q}(\mathbb{R})$  such that

$$(3.12) \|g - S_{r,s} g\|_{L^{p}(\mathbb{R})} \leq \left| \int_{\mathbb{R}} \left\{ g\left(x\right) - S_{r,s} g\left(x\right) \right\} \overline{h\left(x\right)} \, dx \right| + \frac{\varepsilon}{C+3}$$

Using the Schwarz inequality, we deduce

$$\left| \int_{\mathbb{R}} \left\{ g\left(x\right) - S_{r,s} g\left(x\right) \right\} \overline{h\left(x\right)} \, dx \right| = \left| \int_{\mathbb{R}} g\left(x\right) \left\{ \overline{h\left(x\right)} - \overline{S_{r,s} h\left(x\right)} \right\} \, dx \right| \\ \leq \|g\|_{L^{2}(\mathbb{R})} < \|h - S_{r,s} h\|_{L^{2}(\mathbb{R})} \, .$$

Since the system considered is an orthonormal basis for  $L^{2}(\mathbb{R})$ , we can find r and s large enough so that

$$\|h - S_{r,s} h\|_{L^{2}(\mathbb{R})} < \frac{\varepsilon}{\|g\|_{L^{2}(\mathbb{R})} (C+3)}.$$

Hence

$$\|f - S_{r,s}f\|_{L^p(\mathbb{R})} \le \frac{\varepsilon}{C+3} + \frac{\varepsilon}{C+3} + \frac{\varepsilon}{C+3} + \frac{\varepsilon C}{C+3} = \varepsilon.$$

From the orthonormality of the system under consideration, it follows that the representation

(3.13) 
$$f = \sum_{j \in \mathbb{Z}} \sum_{n=2^m}^{2^{m+1}-1} \sum_{k \in \mathbb{Z}} C_{\ell,n,k} \ \omega_{\ell,n,k}$$

with convergence in  $L^p(\mathbb{R})$ , 1 is unique. Now, multiplying both the sides $by <math>\overline{\omega_{\ell,n,k}}$  and integrating, we obtain  $C_{\ell,n,k} = \langle f, \omega_{\ell,n,k} \rangle$ . The unconditionality of the basis follows from Theorem 3.3 and Lemma 2.3.

**Theorem 3.5.** Let  $\omega_n$  be orthonormal wavelet packets for  $L^2(\mathbb{R})$  such that  $\omega_n$ and  $\omega'_n$  have a common radial decreasing  $L^1$ -majorant H satisfying

$$\int_{0}^{\infty}s\,H\left(s\right)ds\,<\,\infty.$$

Then, the system  $\{\omega_{\ell,n,k} : \ell = j - m; n = 2^m, 2^m + 1, ..., 2^{m+1} - 1; j, k \in \mathbb{Z}\}$ is an unconditional basis for  $\mathcal{H}^1(\mathbb{R})$ , where m = 0 if  $j \leq 0$  and m = 0, 1, 2, ..., jif j > 0.

*Proof.* The proof of this theorem is similar to that of Theorem 3.4. For this, we need to show that the system under consideration is a basis for  $\mathcal{H}^1(\mathbb{R})$ . Inequality

(3.11) is true with  $L^p$ -norm replaced by  $\mathcal{H}^1$ -norm and choosing g to be finite linear combination of atoms. Since  $\mathcal{H}^*(\mathbb{R}) = BMO(\mathbb{R})$ , we can find a bounded function  $h \in BMO(\mathbb{R})$  such that (3.12) is true by replacing  $\|.\|_{L^p(\mathbb{R})}$  by  $\|.\|_{\mathcal{H}^1(\mathbb{R})}$ . By choosing sufficiently large M, we have

(3.14) 
$$\|g - S_{r,s} g\|_{\mathcal{H}^{1}(\mathbb{R})} \leq \left| \int_{\mathbb{R}} \left\{ g\left(x\right) - S_{r,s} g\left(x\right) \right\} \mathcal{X}_{\left[-M, M\right]}\left(x\right) \overline{h\left(x\right)} \, dx + \frac{\varepsilon}{C+3}. \right.$$

We observe that  $\mathcal{X}_{[-M,M]} h \in L^2(\mathbb{R})$  and, thus, the proof follows from the proof of Theorem 3.4.

## REFERENCES

- 1. K. Ahmad, R. Kumar and L. Debnath, On Fourier transforms of wavelet packets, *Zeit. Anal. Anwendungen.* **20** (2001), 579-588.
- 2. L. Carleson, An explicit unconditional basis in  $\mathcal{H}^1$ , Bull. Sci. Math. 104 (1980), 405-416.
- 3. R. R. Coifman, Y. Meyer, S. Quake, M. V. Wickerhauser, *Signal processing and compression with wavelet packets*, Technical report, Yale University, (1990).
- 4. R. R. Coifman, A real variable characterization of  $\mathcal{H}^p$ , *Studia Math.* **51** (1974), 269-274.
- 5. I. Daubechies, Orthonormal bases of compactly supported wavelets, *Comm. Pure Appl. Math.*, **41** (1988), 909-996.
- 6. L. Debnath, *Wavelet Transforms and Their Applications*, Birkhauser Verlag, Boston, 2002.
- 7. G. Gripenberg, Wavelet bases in  $L^p(\mathbb{R})$ , Studia Math. 106 (1993), 175-187.
- 8. Y. Han and E. Sawyer, Para-accreative functions, the weak boudedness property and Tb Theorem, *Rev. Mat. Iberoamericana* **6** (1990), 17-41.
- 9. E. Hernández and G. Weiss, *A first Course on Wavelets*, CRC Press, Boca Raton, (1996).
- 10. S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of  $L^2(\mathbb{R})$ , *Trans. Amer. Math. Soc.* **315** (1989) 69-87.
- 11. Y. Meyer, Wavelets and Operators, Cambridge University Press, Cambridge, (1992).
- 12. I. Singer, Bases in Banach Spaces I, Springer-Verlag, Berlin, (1970).
- 13. J. O. Strömberg, A modified Franklin system and higher order spline systems on  $\mathbb{R}^n$  as unconditional bases for Hardy spaces, in Proc. of Conf. In Honor of A. Zygmund (W. Beckner et al., Eds.), Vol. II, Wadsworth, (1981), 475-493.

Existence of Unconditional Wavelet Packet Bases for the Spaces  $L^{p}(\mathbb{R})$  and  $\mathcal{H}^{1}(\mathbb{R})$  863

- 14. M. V. Wickerhauser, *Adapted Wavelet Analysis from Theory to Software*, A. K. Peters, Ltd., New York, (1994).
- 15. P. Wojtaszczyk, The Franklin system and unconditional basis in  $\mathcal{H}^1$ , *Arkiv für Mat.*, **20** (1982), 293-300.

Khalil Ahmad and Rakesh Kumar Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India E-mail: khalil\_ahmad49@yahoo.com

Lokenath Debnath Department of Mathematics, University of Texas - Pan American, 1201 W. University Drive, Edinburg, TX 78539, U.S.A. E-mail: debnathl@panam.edu