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NONSMOOTH MULTIOBJECTIVE FRACTIONAL PROGRAMMING
WITH GENERALIZED INVEXITY

Do Sang Kim

Abstract. In this paper, we consider nonsmooth multiobjective fractional
programming problems involving locally Lipschitz functions. We introduce the
property of generalized invexity for fractional function. We present necessary
optimality conditions, sufficient optimality conditions and duality relations for
nonsmooth multiobjective fractional programming problems, which is for a
weakly efficient solution under suitable generalized invexity assumptions.

1. INTRODUCTION

Recently there has been an increasing interest in studying generalized convex-
ity for nonsmooth multiobjective programming problems involving locally Lipschitz
functions. In [2], Jeyakumar defined ρ-invexity for nonsmooth function, and Liu
[10, 11] used a parametric approach to obtain necessary and sufficient conditions
and established duality theorems for a class of nonsmooth generalized fractional
programming problems involving either nonsmooth pseudoinvex functions or non-
smooth (F, ρ)-convex functions. As a generalization of V-invex functions [3, 12],
Kuk et al. [6] defined the concept of V-ρ-invexity for vector valued functions.
Also, Kuk et al. [7] presented generalized Karush-Kuhn-Tucker necessary and suf-
ficient optimality theorems and established some duality theorems for nonsmooth
multiobjective fractional programs involving V-ρ-invex functions.

On the other hand, Khan and Hanson [4] have used the ratio invexity concept
in fractional programming problem. Recently, Reddy and Mukherjee [14] applied
a generalized ratio invexity concept for single objective fractional programming
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problems. After Liang et al. [8] introduce the concept of (F, α, ρ, d)-convexity
due to Preda [13] and present optimality and duality results for a class of nonlinear
fractional programming problems under generalized convexity and the properties of
sublinear functional and they [9] obtained optimality conditions and duality theorems
for multiobjective fractional programming under generalized convexity assumptions.
Very recently, Kim and Kim [5] established optimality and duality for nonsmooth
fractional programming under generalized ratio invexity assumptions in the scalar
case.

In this paper, we present some results about the multiobjective fractional ob-
jective function based on ρ-invexity assumptions. By using ρ-invexity of fractional
function, we obtain necessary and sufficient optimality conditions and duality the-
orems for nonsmooth multiobjective fractional programming problems.

Now, we consider the following nonsmooth multiobjective fractional program-
ming problem,

(NMFP) Minimize (f1(x)/g(x), · · · , fp(x)/g(x))

subject to h(x) � 0, x ∈ X0,

where X0 is an open set of IRn, fi : X0 → IR, g : X0 → IR, hj : X0 → IR and
lk : X0 → IR are locally Lipschitz functions. We let I(x) := {i | hi(x) = 0} for
any x ∈ X0. We assume in the sequel that fi(x) � 0 and g(x) > 0 for all x ∈ X0.

2. DEFINITIONS AND GENERALIZED INVEXITY OF FRACTIONAL FUNCTION

The following conventions for vector in Rn will be used :

x < y ⇐⇒ xi < yi, i = 1, 2, · · · , n;
x � y ⇐⇒ xi � yi, i = 1, 2, · · · , n;
x ≤ y ⇐⇒ xi � yi, i = 1, 2, · · · , n but x �= y;
x � y is the negation of x ≤ y.

The real valued function f is said to be locally Lpischitz if for any z ∈ Rn

there exists a positive constant K and a neighborhood N of z such that, for each
x, y ∈ N ,

|f(x) − f(y)| � K||x− y||,
where || · || denotes any norm in Rn. The Clarke [1] generalized subgradient of f
at x is denoted by

∂f(x) = {ξ : f0(x; d) � ξd, ∀d ∈ Rn}.
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Definition 2.1. A vector valued function f = (f1, · · · , fp) : X0 → Rp is said to
be ρ− invex at u ∈ X0 with respect to functions η and θ : X0×X0 → IRn if there
exists ρ ∈ lR such that for any x ∈ X0 and any ξi ∈ ∂fi(u), for i = 1, 2, · · · , p,

fi(x) − fi(u) � ξiη(x, u)+ ρ‖θ(x, u)‖2, for all i = 1, · · · , p.

Remark

(i) When p = 1 and ρ = 0, the definition of ρ-invexity reduces to the notion of
invexity in the sense of Jeyakumar [2].

(ii) When p = 1, the definition of ρ-invexity reduces to the notion of ρ-invexity
for the scalar function in Kim and Kim [5].

Definition 2.2. A real valued function f is said to be regular at x if for all
d ∈ Rn the one-sided directional derivative f ′(x; d) exists and f ′(x; d) = f0(x; d).

Definition 2.3. A point u ∈ X0 is said to be a weakly efficient solution of
(NMFP) if there exist no x ∈ X0 such that

(
f1(x)
g(x)

, · · · ,
fp(x)
g(x)

)
<

(
f1(u)
g(u)

, · · · ,
fp(u)
g(u)

)

Theorem 2.1. If f and G = (−g, · · · ,−g) are ρ-invex at x0 with re-
spect to η and θ, and fi and −g are regular at x0, then the fractional function(

f1(x)
g(x)

, · · · ,
fp(x)
g(x)

)
is ρ-invex at x0 with respect to η̄ and θ̄, where η̄(x, x0) =

(g(x0)/g(x))η(x, x0), and θ̄(x, x0) = (1/g(x))1/2θ(x, x0).

Proof. Let x ∈ X0. By the ρ-invexity of f and G, we have

fi(x)/g(x)− fi(x0)/g(x0)

� (1/g(x))ξiη(x, x0) + ρ‖(1/g(x))1/2θ(x, x0)‖2

+(fi(x0)/(g(x)g(x0))(−ζη(x, x0) + ρ‖θ(x, x0)‖2),

for any x ∈ X0, any ξi ∈ ∂fi(x0) and any ζ ∈ ∂g(x0). Since fi(x) � 0 and
g(x) > 0,

fi(x)/g(x)− fi(x0)/g(x0)

� (g(x0)/g(x))(ξi/g(x0))η(x, x0) + (fi(x0)(−ζ)/(g2(x0))η(x, x0))

+ρ‖(1/g(x))1/2(1 + (fi(x0)/g(x0)))1/2θ(x, x0)‖2.

Since fi and −g are regular at x0, we obtain, for any δi ∈ ∂(fi(x0)/g(x0)),
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(fi(x)/g(x))− (fi(x0)/g(x0))

� (g(x0)/g(x))δiη(x, x0) + ρ‖(1/g(x))1/2(1 + (fi(x0)/g(x0)))1/2θ(x, x0)‖2.

Considering that 1 + fi(x0)/g(x0) � 1, we have

fi(x)
g(x)

− fi(x0)
g(x0)

� (
g(x0)
g(x)

)δiη(x, x0) + ρ‖( 1
g(x)

)1/2θ(x, x0)‖2.

Therefore, (f1(x)/g(x), · · · , fp(x)/g(x)) is ρ-invex with respect to η̄ and θ̄, where

η̄(x, x0) = (g(x0)/g(x))η(x, x0), θ̄(x, x0) = (1/g(x))1/2θ(x, x0).

3. OPTIMALITY CONDITIONS

In this section, we present Fritz John and Karush-Kuhn-Tucker necessary condi-
tions and establish Karush-Kuhn-Tucker sufficient conditions for a weakly efficient
solution of the multiobjective nonsmooth fractional programming problem (NMFP).

By Theorem 6.1.1 in [1], we can obtain the following Fritz John necessary
conditions.

Theorem 3.1. (Fritz John Necessary Conditions). If x0 ∈ X0 is a weakly
efficient solution of (NMFP), then there exist λ i � 0, i = 1, 2, · · · , p and µj �
0, j = 1, 2, · · · , m, such that

0 ∈
p∑

i=1

λi∂(fi(x0)/g(x0)) +
m∑

j=1

µj∂hj(x0),

equivalently, there exist ai ∈ ∂(fi(x0)/g(x0)), i = 1, · · · , p and bj ∈ ∂hj(x0), j =
1, · · · , m such that

(1) 0 =
p∑

i=1

λiai +
m∑

j=1

µjbj,

and

m∑
j=1

µjhj(x0) = 0,

(λ1, · · · , λp, µ1, · · · , µm) � 0,

(λ1, · · · , λp, µ1, · · · , µm) �= 0.

If (λ1, · · · , λp) = 0 in (1), then 0 =
∑m

j=1 µjbj and hence under the following
condition (2), which is a kind of constraint qualifications for (NMFP), we can
obtain the following Karush-Kuhn-Tucker necessary condtions.
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Theorem 3.2. (Karush-Kuhn-Tucker Necessary Conditions). Assume that for
bj ∈ ∂hj(x0), j = 1, · · · , m,

(2) there exists x∗∈X0 such that 〈bj, x
∗〉<0, j ∈ I(x0)={i|hi(x0)=0} .

If x0 ∈ X0 is a weakly efficient solution of (NMFP), then there exist λ i � 0, i =
1, 2, · · · , p and µj � 0, j = 1, 2, · · · , m, such that

(KTC) 0 ∈
p∑

i=1

λi∂(fi(x0)/g(x0)) +
m∑

j=1

µj∂hj(x0),

m∑
j=1

µjhj(x0) = 0,

(λ1, · · · , λp, µ1, · · · , µm) � 0, (λ1, · · · , λp) �= 0.

Remark. If hj , j = 1, · · · , m are convex functions, the well-known Slater
condition implies (2)

Theorem 3.3. (Karush-Kuhn-Tucker Sufficient Conditions). Let (x0, λ, µ) sat-
isfy the conditions of (KTC). Assume that f and G are ρ-invex at x 0 with respect
to η and θ and fi and −g are regular functions at x 0, and h is ρ′-invex at x0 with
respect to η̄ and θ̄ with ρ

∑p
i=1 λi + ρ′

∑m
j=1 µj � 0. Then x0 is a weakly efficient

solution of (NMFP ).

Proof. Suppose that x0 is not a weakly efficient solution. Then there exists
x ∈ X0 such that

fi(x)
g(x)

<
fi(x0)
g(x0)

, for i = 1, · · · , p.

Since f and G are ρ-invex at x0 and fi and −g are regular, we have

aiη̄(x, x0) + ρ||θ̄(x, x0)||2 < 0, for some ai ∈ ∂

(
fi(x0)
g(x0)

)
.

From λ ≥ 0, we obtain
p∑

i=1

λiaiη̄(x, x0) + ρ

p∑
i=1

λi||θ̄(x, x0)||2 < 0.

By using Karush-Kuhn-Tucker conditions and ρ
∑p

i=1 λi + ρ′
∑m

j=1 µj � 0, we
have

(3)
m∑

j=1

µjbj η̄(x, x0) + ρ′
m∑

j=1

µj||θ̄(x, x0)||2 > 0, for some bj ∈ ∂hj(x0).
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Since h is ρ′-invex at x0 with respect to η̄ and θ̄,

m∑
j=1

µjhj(x)−
m∑

j=1

µjhj(x0) �
m∑

j=1

µjbj η̄(x, x0) + ρ′
m∑

j=1

µj ||θ̄(x, x0)||2.

Hence
m∑

j=1

µjbj η̄(x, x0) + ρ′
m∑

j=1

µj||θ̄(x, x0)||2 � 0.

This inequality contradicts (3). Therefore, x0 is a weakly efficient solution.

4. DUALITY THEOREMS

In this section, we formulate the dual models and establish the duality theorems
for a weakly efficient solution of the multiobjective nonsmooth fractional program-
ming problem (NMFP).

We consider Mond-Weir dual problem to (NMFP):

(NMFD)M Maximize (f1(u)/g(u), · · · , fp(u)/g(u))

subject to 0 ∈
p∑

i=1

λi∂(fi(u)/g(u)) +
m∑

j=1

µj∂hj(u),

m∑
j=1

µjhj(u) � 0,

(λ, µ) � 0,

λT e = 1, e = (1, · · · , 1) ∈ Rp

Theorem 4.1. (Weak Duality). Let x be feasible for (NMFP) and (u, λ, µ)
feasible for (NMFD)M . Assume that f and G are ρ-invex at u with respect to η
and θ and fi and −g are regular functions at u, and h is ρ ′-invex at u with respect
to η̄ and θ̄ with ρ + ρ′ ∑m

j=1 µj � 0.
Then the following holds:

(
f1(x)
g(x)

, · · · ,
fp(x)
g(x)

)
≮

(
f1(u)
g(u)

, · · · ,
fp(u)
g(u)

)
.

Proof. Suppose that

fi(x)
g(x)

<
fi(u)
g(u)

, for i = 1, · · · , p.
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Since f and G are ρ-invex at x0 and fi and −g are regular, we have

aiη̄(x, u) + ρ||θ̄(x, u)||2 < 0, for some ai ∈ ∂

(
fi(u)
g(u)

)
.

From λ ≥ 0, we obtain
p∑

i=1

λiaiη̄(x, u) + ρ

p∑
i=1

λi||θ̄(x, u)||2 < 0.

Since (u, λ, µ) is feasible for (NMFD)M and ρ + ρ′
∑m

j=1 µj � 0, we have

(4)
m∑

j=1

µjbjη̄(x, u) + ρ′
m∑

j=1

µj||θ̄(x, u)||2 > 0, for some bj ∈ ∂hj(u).

By the ρ′-invexity of h with respect to η̄ and θ̄, for some bj ∈ ∂hj(u),

m∑
j=1

µjhj(x) −
m∑

j=1

µjhj(u) �
m∑

j=1

µjbj η̄(x, u) + ρ′
m∑

j=1

µj ||θ̄(x, u)||2.

Since x is a feasible solution of (NMFP), we obtain
m∑

j=1

µjbj η̄(x, u) + e′
m∑

j=1

µj ||θ̄(x, u)||2 � 0.

This inequality contradicts (4). Hence the weak duality theorem holds.

Theorem 4.2. (Strong Duality). Let x̄ is a weakly efficient solution of (NMFP).
Assume that there exists x∗ ∈ X0 such that 〈bj, x

∗〉 < 0, j ∈ I(x̄) and bj ∈
∂hj(x0), j = 1, · · · , m. Then (x̄, λ̄, µ̄) is feasible for (NMFD) M . Moreover, if
f, G and h satisfy the conditions of Theorem 4.1, then (x̄, λ̄, µ̄) is a weakly efficient
solution of (NMFD) M .

Proof. From the Karush-Kuhn-Tucker necessary condition, there exist λ̄i �
0, i = 1, · · · , p and µ̄j � 0, j = 1, · · · , m such that

0 ∈
p∑

i=1

λ̄i∂(fi(x̄)/g(x̄)) +
m∑

j=1

µ̄j∂hj(x̄),

m∑
j=1

µ̄jhj(x̄) = 0,

(λ̄1, · · · , λ̄p) �= 0.
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Thus (x̄, λ̄, µ̄) is feasible for (NMFD)M . So by Theorem 4.1, (x̄, λ̄, µ̄) is a weakly
efficient solution of (NMFD)M .

We propose the following Wolfe dual problem to (NMFP).

(5)

(NMFD)W Maximize (f1(u)/g(u) +
m∑

j=1

µjhj(u), · · · ,

fp(u)/g(u) +
m∑

j=1

µjhj(u))

subject to 0 ∈
p∑

i=1

λi∂(fi(u)/g(u))+
m∑

j=1

µj∂hj(u),

(λ1, · · · , λp, µ1, · · · , µm) � 0,

λT e = 1, e = (1, · · · , 1) ∈ Rp

Theorem 4.3. (Weak Duality). Let x be feasible for (NMFP) and (u, λ, µ)
feasible for (NMFD)W . Assume that f and G are ρ-invex at u with respect to η

and θ and fi and −g are regular functions at u, and h is ρ ′-invex at u with respect
to η̄ and θ̄ with ρ + ρ′ ∑m

j=1 µj � 0.
Then the following holds:(

f1(x)
g(x)

, · · · ,
fp(x)
g(x)

)

≮


f1(u)

g(u)
+

m∑
j=1

µjhj(u), · · · ,
fp(u)
g(u)

+
m∑

j=1

µjhj(u)


 .

Proof. Suppose that

fi(x)
g(x)

<
fi(u)
g(u)

+
m∑

j=1

µjhj(u), for i = 1, · · · , p.

Since x is feasible for (NMFP),

fi(x)
g(x)

+
m∑

j=1

µjhj(x) <
fi(u)
g(u)

+
m∑

j=1

µjhj(u), for i = 1, · · · , p.

By the ρ-invexity of f and G and ρ′-invexity of h, we have

aiη̄(x, u) + ρ||θ̄(x, u)||2 +
m∑

j=1

µjbj η̄(x, u) + ρ′
m∑

j=1

µj ||θ̄(x, u)||2 < 0,
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for some ai ∈ ∂
(

fi(u)
g(u)

)
and some bj ∈ ∂hj(u). From λ ≥ 0 and ρ+ρ′

∑m
j=1 µj �

0, we obtain ( p∑
i=1

λiai +
m∑

j=1

µjbj

)
η̄(x, u) < 0.

This contradicts (5). Hence the weak duality theorem holds.

Theorem 4.4. (Strong Duality). Let x̄ is a weakly efficient solution of (NMFP).
Assume that there exists x∗ ∈ X0 such that 〈bj, x

∗〉 < 0, j ∈ I(x̄) and bj ∈
∂hj(x0), j = 1, · · · , m. Then (x̄, λ̄, µ̄) is feasible for (NMFD)W . Moreover, if f, G
and h satisfy the conditions of Theorem 4.3, then (x̄, λ̄, µ̄) is a weakly efficient
solution of (NMFD)W .

Proof. From the Karush-Kuhn-Tucker necessary condition, there exist λ̄i �
0, i = 1, · · · , p and µ̄j � 0, j = 1, · · · , m such that

0 ∈
p∑

i=1

λ̄i∂(fi(x̄)/g(x̄)) +
m∑

j=1

µ̄j∂hj(x̄),

m∑
j=1

µ̄jhj(x̄) = 0,

(λ̄1, · · · , λ̄p) �= 0.

Thus (x̄, λ̄, µ̄) is feasible for (NMFD)W . So by Theorem 4.3, (x̄, λ̄, µ̄) is a weakly
efficient solution of (NMFD)W .

We formulate the following general dual problem to primal problem (NMFP).

(6)

(NMFD)G Maximize (f1(u)/g(u) +
∑
j∈I0

µjhj(u), · · · ,

fp(u)/g(u) +
∑
j∈I0

µjhj(u))

subject to 0 ∈
p∑

i=1

λi∂(fi(u)/g(u))+
m∑

j=1

µj∂hj(u),

∑
j∈Iα

µjhj(u) � 0, α = 1, · · · , r,

(λ1, · · · , λp, µ1, · · · , µm) � 0,

λT e = 1, e = (1, · · · , 1) ∈ Rp
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where Iα ⊂ M = {1, · · · , m}, α = 0, 1, · · · , r with ∪r
α=0Iα = M and Iα∩Iβ = ∅

if α �= β.

Theorem 4.5. (Weak Duality). Let x be feasible for (NMFP) and (u, λ, µ)
feasible for (NMFD)G . Assume that f and G are ρ-invex at u with respect to η

and θ and fi and −g are regular fuctions at u and h is ρ ′-invex at u, j ∈ Jα(α =
0, 1, · · · , r) with respect to η̄ and θ̄ with ρ + ρ′ ∑m

j=1 µj � 0.
Then the following holds:(

f1(x)
g(x)

, · · · ,
fp(x)
g(x)

)

≮


f1(u)

g(u)
+

∑
j∈I0

µjhj(u), · · · ,
fp(u)
g(u)

+
∑
j∈I0

µjhj(u)


 .

Proof. Suppose that

fi(x)
g(x)

<
fi(u)
g(u)

+
∑
j∈I0

µjhj(u), for i = 1, · · · , p.

Since x is feasible for (NMFP) and
∑

j∈Iα
µjhj(u) � 0,

fi(x)
g(x)

+
∑
j∈I0

µjhj(x) +
∑
j∈Iα

µjhj(x) <
fi(u)
g(u)

+
∑
j∈I0

µjhj(u) +
∑
j∈Iα

µjhj(u), for i = 1, · · · , p.

Hence

fi(x)
g(x)

+
m∑

j=1

µjhj(x) <
fi(u)
g(u)

+
m∑

j=1

µjhj(u), for i = 1, · · · , p.

By the ρ-invexity of f and G and ρ′-invexity of h, we have

aiη̄(x, u) + ρ||θ̄(x, u)||2 +
m∑

j=1

µjbj η̄(x, u) + ρ′
m∑

j=1

µj ||θ̄(x, u)||2 < 0,

for some ai ∈ ∂
(

fi(u)
g(u)

)
and some bj ∈ ∂hj(u). From λ ≥ 0 and ρ+ρ′

∑m
j=1 µj �

0, we obtain ( p∑
i=1

λiai +
m∑

j=1

µjbj

)
η̄(x, u) < 0.
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This contradicts (6). Hence the proof is completed.

Theorem 4.6. (Strong Duality). Let x̄ is a weakly efficient solution of (NMFP).
Assume that there exists x∗ ∈ S such that 〈bj, x

∗〉 < 0, j ∈ I(x̄) and bj ∈
∂hj(x0), j = 1, · · · , m. Then (x̄, λ̄, µ̄) is feasible for (NMFD)G . Moreover, if f, G

and h satisfy the conditions of Theorem 4.5, then (x̄, λ̄, µ̄) is a weakly efficient
solution of (NMFD)G.

Proof. From the Karush-Kuhn-Tucker necessary condition, there exist λ̄i �
0, i = 1, · · · , p and µ̄j � 0, j = 1, · · · , m such that

0 ∈
p∑

i=1

λ̄i∂(fi(x̄)/g(x̄)) +
m∑

j=1

µ̄j∂hj(x̄),

m∑
j=1

µ̄jhj(x̄) = 0,

(λ̄1, · · · , λ̄p) �= 0.

Since
∑

j∈I0
µ̄jhj(x̄) +

∑
j∈Iα

µ̄jhj(x̄) = 0, we have
∑

j∈Iα
µ̄jhj(x̄) � −∑

j∈I0

µ̄jhj(x̄) � 0. Thus (x̄, λ̄, µ̄) is feasible for (NMFD)G. So by Theorem 4.5, (x̄, λ̄, µ̄)
is a weakly efficient solution of (NMFD)G.
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