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ON VECTOR EQUILIBRIUM PROBLEM WITH MULTIFUNCTIONS

Gue Myung Lee and In Ja Bu

Abstract. In this paper, a vector equilibrium problem (VEP) with multifunc-
tions is considered. Using the asymptotic cone of the solution set of (VEP),
we give conditions under which the solution set is nonempty and compact, and
then extend it to a random vector equilibrium problem with multifunctions.

1. INTRODUCTION

Let X be a nonempty convex and closed subset of R
n and Y = R

m. Let
F : X × X → 2Y be a multifunction and C : X → 2Y a multifucnction such that
C(x) is a convex cone in Y with intC(x) �= ∅ and C(x) �= Y for all x ∈ X . In
this paper, we consider the following vector equilibrium problem:

(VEP) Find x̄ ∈ X such that

F (x̄, x) ⊂ Y \ (−intC(x̄)) for any x ∈ X.

We denote the solution set of (VEP) by Ew. When C(x) is a constant convex
cone for any x ∈ X , the above problem (VEP) is reduced to the one studied in [1,
3, 8, 14]. If the above F is single-valued, then the problem (VEP) becomes the one
studied in [7, 12].

Recently, using asymptotic analysis, F. Flores-Bazán and F. Flores-Bazán [7]
obtained characterizations of nonemptiness and compactness of the solution set for
(VEP) when F is single-valued. Ansari and Flores-Bazán [1] extended the results
in [7] to (VEP) when C(x) is a constant cone.

In this paper, following the ideas in [7] and using asymptotic cones, we give
conditions under which the solution set of (VEP) is nonempty and compact. Also,
following the ideas in Kalmoun [9, 10], we extend the conditions to a random vector
equilibrium problem.
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2. NONEMPTINESS AND COMPACTNESS OF SOLUTION SET

In this section, we extend Lemma 3.2, Theorem 3.7 and Theorem 3.13 in [7]
to the vector equilibrium problem (VEP) with multifunctions so that we can obtain
conditions under which the solution set of (VEP) is nonempty and compact. Our
approach follows ideas of [7] in which vector equilibrium problems with single-
valued functions were considered.

We now recall some known definitions:

Definition 2.1. Let X be a nonempty convex subset of R
n and Y = Rm. Let

G : X → 2Y be a multifunction and C a convex cone in Y with C �= Y .

(1) ([15]) G is called upper (lower) C−convex on X if for any x1, x2 ∈ X, t ∈
[0, 1],

tG(x1) + (1 − t)G(x2) ⊂ G(tx1 + (1− t)x2) + C

(G(tx1 + (1 − t)x2) ⊂ tG(x1) + (1 − t)G(x2) − C, respectively)

holds. If G is both upper C-convex and lower C-convex, we say that G is
C-convex.

(2) ([13]) G is said to be upper (lower) C-lower semicontinuous at x̄ ∈ X if for
any open set V in R

m with G(x̄)∩ V �= ∅, there exists a neighborhood U of
x̄ such that for any x ∈ U ∩ X

G(x) ∩ (V + C) �= ∅
(G(x) ∩ (V − C) �= ∅, respectively).

If G is upper (lower) C-lower semicontinuous at every x ∈ X , then G is called
upper (resp. lower) C-lower semicontinuous on X .

If G is both upper C-lower semicontinuous on X and lower C-lower semicon-
tinuous on X , then G is said to be C-lower semicontinuous on X .

Example 2.1. Define a multifunction G : R → 2R by for any x ∈ R,
G(x) = [x2,∞). Then G is R+-convex.

Definition 2.2 [6]. Let K be a closed set in R
n. Then we define the asymptotic

cone of K as the closed set

K∞ = {x ∈ R
n | ∃tn ↓ 0, xn ∈ K, tnxn → x}.

It is known that K is bounded if and only if K∞ = {0}.

We give assumptions which will be used for next theorems.
Let X be a nonempty convex and closed subset of R

n and Y = R
m.
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(H0) Let C : X → 2Y be a multifunction such that C(x) is a nonempty convex
cone in Y with intC(x) �= ∅ and C(x) �= Y for all x ∈ X .

(H1) F : X × X → 2Y be a multifunction satisfying the following conditions:

(A1) for all x ∈ X, F (x, x) ⊂ [C(x) ∩ (−C(x))].

(A2) for all x, y∈X, F (x, y)⊂Y\(−intC(x)) implies F (y, x)⊂Y \intC(y).

(A3) for all x ∈ X, y 
→ F (x, y) is C(x)-convex and upper C(x)-lower semi-
continuous on X .

(A4) for all x, y∈X , the set {ξ∈ [x, y] :F (ξ, y)⊂ Y \(−intC(ξ))} is closed.
Here [x, y] stands for the closed line segment joining x and y.

We give an existence theorem for the problem (VEP) in compact setting: its
proof can be done by using methods in [2, 4, 11] and so we omit its proof.

Theorem 2.1. Let X be a nonempty convex and compact subset of R
n and Y =

R
m. Let C : X → 2Y be a multifunction satisfying (H 0) and let F : X ×X → 2Y

be a multifunction satisfying (H 1). Then Ew is nonempty and closed.

In order to give conditions for the soution set Ew of the problem (VEP) in
noncompact setting to be nonempty and compact, we consider the asymptotic cone
Ew

∞ of Ew and its related set R0 defined as follows:

R0 :=
⋂

y∈X{v ∈ X∞ : F (y, z + λv) ⊂ Y \ intC(y)

∀λ > 0, ∀z ∈ X with F (y, z) ⊂ −C(y)}.

First we give relationships between Ew
∞ and R0.

Proposition 2.1. Let X be a nonempty convex and closed subset of Rn and
Y = R

m. Let C : X → 2Y be a multifunction satisfying (H 0) and F : X×X → 2Y

a multifunction satisfying (A 2) and (A3). Then Ew
∞ ⊂ R0. If, in addition, (A4)

holds and there exists x∗ ∈ X such that

F (y, x∗) ⊂ −C(y) for all y ∈ X,

then Ew
∞ = R0.

Proof. Let v ∈ (Ew)∞. Then there exists tn ↓ 0, vn ∈ Ew such that
tnvn → v. Let y be any fixed in X . Since vn ∈ Ew, we have

F (vn, y) ⊂ Y \ (−intC(vn)) for all n ∈ N.
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By (A2), we have

F (y, vn) ⊂ Y \ intC(y) for all n ∈ N.

Take any z ∈ X satisfying F (y, z) ⊂ −C(y). Let λ > 0 be any fixed. For n
sufficiently large, by the lower C(y)-convexity of F (y, ·),

F (y, (1− λtn)z + λtnvn)) ⊂ (1− λtn)F (y, z) + λtnF (y, vn) − C(y)

⊂ −C(y) + [Y \ intC(y)] − C(y)

⊂ Y \ intC(y).

Since (1−λtn)z+λtnvn → z+λv and F (y, ·) is upper C(y)-lower semicontinuous,
F (y, z + λv) ⊂ Y \ intC(y). Thus v ∈ R0. Hence (Ew)∞ ⊂ R0

Assume that there exists x∗ ∈ X such that F (y, x∗) ⊂ −C(y) for all y ∈ X. Let
v ∈ R0. Then v ∈ X∞ for all y ∈ X and F (y, x∗+λv) ⊂ Y \intC(y) for all λ > 0.
Let y ∈ X and λ > 0 be any fixed. Consider yt := ty+(1−t)(x∗+λv), t ∈ (0, 1).
Since x∗ ∈ X and v ∈ X∞, yt ∈ X . Since F (yt, ·) is upper C(yt)-convex,

tF (xt, y) + (1 − t)F (yt, x
∗ + λv) ⊂ F (yt, yt) + C(yt)

Since F (yt, yt) ⊂ C(yt), F (yt, x
∗+λv) ⊂ Y \intC(y) and C(yt)+Y \(−intC(yt)) ⊂

Y \ (−intC(yt)), we have

F (yt, y) ⊂ Y \ (−intC(yt)).

Since yt converges to x∗ + λv as t → 0+, it follows from (A4) that

F (x∗ + λv, y) ⊂ Y \ (−intC(x∗ + λv)).

Thus for all λ>0, x∗+λv∈Ew. Hence v∈(Ew)∞. Consequently, Ew
∞=R0.

Now we give conditions assuring the nonemptiness and compactness of the
solution set Ew of the problem (VEP).

Theorem 2.2. Let X be a nonempty convex and closed subset of Rn and
Y = R

m. Let C : X → 2Y be a multifunction satisfying (H 0) and F : X×X → 2Y

a multifunction satisfying (H 1). If R0 = {0}, Ew is nonempty and compact.
Moreover, if there exists x∗ ∈ X such that

F (y, x∗) ⊂ −C(y) for all y ∈ X,

then Ew is nonempty and compact if and only if R 0 = {0}.
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Proof. For every n ∈ N, such that Xn := {x ∈ X : ‖x‖ ≤ n}. Then we may
suppose that Xn �= ∅ for all n ∈ N. Also, Xn is a nonempty convex and compact
subset of R

n. By Theorem 2.1, for all n ∈ N, there exists xn ∈ Xn such that

(2.1) F (xn, y) ⊂ Y \ (−intC(xn)) for any y ∈ Xn.

Suppose to the contrary that {xn} is not bounded. Then, up to a subsequence,
‖xn‖ → ∞ and xn

‖xn‖ → v for some v ∈ X . Then v ∈ X∞ and v �= 0. Let y ∈ X

be any fixed. Then it is clear that F (xn, y) ⊂ Y \ (−intC(xn)) for n sufficiently
large. By assumption (A2), we have

F (y, xn) ⊂ Y \ intC(y)

for n sufficiently large. Take z ∈ X such that

F (y, z) ⊂ −C(y).

By the lower C(y)-convexity of F (y, ·), for any λ > 0 and n sufficiently large,

F
(
y, (1− λ

‖xn‖)z + λ
‖xn‖xn

)
⊂ (1− λ

‖xn‖ )F (y, z) + λ
‖xn‖F (y, xn) − C(y)

⊂ −C(y) + [Y \ intC(y)] − C(y)
⊂ Y \ intC(y).

Since (1 − λ
‖xn‖ )z + λ

‖xn‖xn → z + λv and F (y, ·) is upper C(x)-lower semicon-
tinuous, F (y, z + λv) ⊂ Y \ intC(y). Hence v ∈ R0. However, it contradicts
the assumption that R0 = {0}. Thus {xn} is bounded. Therefore, up to a sub-
sequence, xn → x̄ for some x̄ ∈ X . Let x be any fixed in X . Then it follows
from (2.1) that for n sufficiently large, F (xn, x) ⊂ Y \ (−intC(xn)), and hence,
by (A2), F (x, xn) ⊂ Y \ intC(x). Since F (x, ·) is upper C(x)-lower semicon-
tinuous, F (x, x̄) ⊂ Y \ intC(x). We argue exactly as in proof of Proposition
2.1 to obtain that F (x̄, x) ⊂ Y \ (−intC(x̄)) for any x ∈ X . Hence x̄ ∈ Ew.
Thus Ew is nonempty. By Proposition 2.1, (Ew)∞ ⊂ R0. So, by assumption,
(Ew)∞ = {0} and hence Ew is bounded. Now we will prove that Ew is closed.
Let {zn} be a sequence in Ew converging to some z ∈ X . Then for all n ∈ N

and all y ∈ X , F (zn, y) ⊂ Y \ (−intC(xn)). Thus, by (A2), for all n ∈ N and
all y ∈ X , F (y, zn) ⊂ Y \ intC(y). Since F is upper C(y)-lower semicontin-
uous, F (y, z) ⊂ Y \ intC(y) for all y ∈ X . By same argument as in proof of
Proposition 2.1, F (z, y) ⊂ Y \ (−intC(z)). Thus z ∈ Ew and hence Ew is closed.
Consequently, Ew is nonempty and compact.

Conversely, assume that Ew is nonempty and compact, and that there exists
x∗ ∈ X such that F (y, x∗) ⊂ −C(y) for all y ∈ X. Let v ∈ R0. Then for all
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y ∈ X and all λ > 0, F (y, x∗ +λv) ⊂ Y \ intC(y). By same argument as in proof
of Proposition 2.1, we have, for all y ∈ X and all λ > 0,

F (x∗ + λv, y) ⊂ Y \ (−intC(x∗ + λv)).

Thus for all λ>0, x∗+λv∈Ew. Since Ew is bounded, v=0. Hence R0={0}.

3. RANDOM VECTOR EQUILIBRIUM PROBLEM WITH MULTIFUNCTIONS

In this section, we will extend the first part of Theorem 2.2 to a random vector
equilibrium problem with multifunctions. Our approach follows ideas of [9, 10]
in which random vector equilibrium problems with single-valued functions were
considered.

Let (Ω,A) be a measurable space where A is a σ-algebra of subsets of Ω. Let
E be a topological space and let B(E) be the σ-algebra of all Borel sets of E . Let
A⊗B(E) be σ-algebra generated by all subsets of the form of A×B, where A ∈ A
and B ∈ B(E).

Definition 3.1 [5]. Let (Ω,A) be a measurable space and Y is a complete
separable metric space. Consider a multifunction F : Ω → 2 Y .

(1) If there exists a measurable function f : Ω → Y such that f(ω) ∈ F (ω) for
all ω ∈ Ω, then F is said to have a measurable selection f .

(2) If there is a countable family of measurable selections (f i) such that (fi(ω))
is dense in F (ω), i.e., F (ω) = ∪i≥1fi(ω), for each ω ∈ Ω, then F is said to
have a Castaing representation.

Lemma 3.1 [5]. Assume that (Ω,A) is a complete measurable space and Y

is a complete separable metric space. If F : Ω → 2Y is a multifunction such
that GrF ∈ A ⊗ B(Y), where GrF is the graph of F , then F has a Castaing
representation.

Let (Ω,A, µ) be a complete σ-finite measurable space and X a convex and
closed subset of R

n. Let Y = Rm. Let C : Ω × X → 2Y be a multifunction such
that for any (ω, x) ∈ Ω × X , C(ω, x) is a convex cone in Y with intC(ω, x) �= ∅
and C(ω, x) �= Y . Let F : Ω × X × X → 2Y be a multifunction.

Now we consider the following random vector equilibrium problem (RVEP):

(RVEP) Find a function γ : Ω → X such that

F (ω, γ(ω), y)⊂ Y \ −intC(ω, γ(ω)) for any (ω, y) ∈ Ω × X.

As in [10], for each ω ∈ Ω, γ(ω) is called a deterministic solution of (RVEP) and
the function γ is said to be a random solution of (RVEP) when it is measurable.
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We obtain the random version of the first part of Theorem 2.2 as follows:

Theorem 3.1. Let (Ω,A, µ) be a complete σ-finite measurable space and X a
nonempty convex and closed subset of R

n. Let Y = R
m. Let C : Ω × X → 2Y

be a multifunction such that for any (ω, x) ∈ Ω × X , C(ω, x) is a convex cone
in Y with intC(ω, x) �= ∅ and C(ω, x) �= Y . Suppose that the multifunction
F : Ω × X × X → 2Y satisfies the following conditions:

(RF1) for any y ∈ X,

{(ω, x) ∈ Ω × X : F (ω, x, y) ⊂ Y \ (−intC(ω, x))} ∈ A⊗ B(X ).
(RF2) for all ω ∈ Ω, x ∈ X,

F (ω, x, x) ⊂ [C(ω, x) ∩ (−C(ω, x))].
(RF3) for all ω ∈ Ω, x, y ∈ X,

F (ω, x, y) ⊂ Y \ (−intC(ω, x)) implies F (ω, y, x) ⊂ Y \ intC(ω, y).
(RF4) for all ω ∈ Ω, x ∈ X, y 
→ F (ω, x, y) is

C(ω, x)-convex and C(ω, x)-lower semicontinuous on X.

(RF5) for all ω ∈ Ω, x, y ∈ X, the set
{ξ ∈ [x, y] : F (ω, ξ, y) ⊂ Y \ (−intC(ω, ξ))} is closed.

(RF6) for each ω ∈ Ω,

Rω
0 := ∩y∈X{v ∈ X∞ : F (ω, y, z + λv) ⊂ Y \ intC(ω, y)

∀λ > 0, ∀z ∈ X with F (ω, y, z) ⊂ −C(y)} = {0}.
Then there exists a countable family of measurable functions {γi}i≥1 : Ω → X
such that

(1) F (ω, γi(ω), y) ⊂ Y \ (−intC(ω, γi(ω))) for any (ω, y) ∈ Ω × X ;
(2) ∪i≥1γi(ω) = {x ∈ X : F (ω, x, y) ⊂ Y \ (−intC(ω, x)) for all y ∈ X} for

any ω ∈ Ω; and
(3) ∪i≥1γi(ω) is compact for any ω ∈ Ω.

Proof. By Theorem 2.2, for each ω ∈ Ω, there exists xω ∈ X such that

F (ω, xω, y) ⊂ Y \ (−intC(ω, xω)) for any y ∈ X.

Since X is separable, there exists a sequence {yn} in X such that

{y1, y2, · · · } = X.

Define a multifunction S : Ω → X by for any ω ∈ Ω,

S(ω) = ∩y∈X{x ∈ X : F (ω, x, y) ⊂ Y \ (−intC(ω, x))}.
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Then it follows from Theorem 2.2 that for each ω ∈ Ω, S(ω) is nonempty and
compact. Now we will prove that

∞⋂
n=1

{x ∈ X : F (ω, x, yn) ⊂ Y \ (−intC(ω, x))} ⊂ S(ω).

Indeed, suppose to the contrary that

(3.1) x ∈
∞⋂

n=1

{x ∈ X : F (ω, x, yn) ⊂ Y \ (−intC(ω, x))}

but x �∈ S(ω). Since x �∈ S(ω), there exists y ∈ X such that

F (ω, x, y) ∩ (−intC(ω, x)) �= ∅.

Moreover, there exists a subsequence {ynk
} of {yn} such that ynk

→ y. Since
F (ω, x, ·) is lower C(ω, x)-lower semicontinuous, F (ω, x, ynk

)∩ (−intC(ω, x)) �=
∅ for k sufficiently large. This contradicts (3.1). Thus GrS =

⋂∞
n=1{(ω, x) ∈ Ω×

X : F (ω, x, yn) ⊂ Y \ (−intC(ω, x))}. By assumption (RF1), GrS ∈ A⊗ B(X ),
GrS is the graph of the multifunction S. By Lemma 3.1, the multifunction S has a
Castaing representation, i.e., there exists a countable family of measurable selections
{γi}i≥1 of S such that for any ω ∈ Ω, S(ω) = ∪i≥1γi(ω). Hence the conclusions
of Theorem 3.1 hold.

Additional Note:
During the revision of this paper, the authors became aware that Ansari and

Flores-Bazán [1] also considered the problem (VEP) in Banach space setting where
C(x) is a constant cone. They obtained several necessary and/or sufficient condi-
tions for the solution set to be nonempty and compact.

REFERENCES

1. Q. H. Ansari and F. Flores-Bazán, Recession methods for generalized vector equilib-
rium problems, preprint.

2. Q. H. Ansari, I. V. Konnov and J. C. Yao, On generalized vector equilibrium problems,
Nonlinear Analysis 47 (2001), 543-554.
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