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THE SET OF COMMON FIXED POINTS OF A ONE-PARAMETER
CONTINUOUS SEMIGROUP OF NONEXPANSIVE MAPPINGS IS
F

(
1
2T (1) + 1

2T (
√

2)
)

IN STRICTLY CONVEX BANACH SPACES

Tomonari Suzuki

Abstract. In this paper, we prove the following. Let E be a strictly convex
Banach space. Let {T (t) : t ≥ 0} be a one-parameter strongly continuous
semigroup of nonexpansive mappings on a subset C of E. Then

⋂
t≥0

F
(
T (t)

)
= F

(
1
2
T (1) +

1
2
T (

√
2)

)

holds, where F
(
T (t)

)
is the set of fixed points of T (t) for each t ≥ 0.

1. INTRODUCTION

Throughout this paper we denote by N, Z, Q and R the set of all positive
integers, all integers, all rational numbers and all real numbers, respectively.

Let C be a subset of a Banach space E . A mapping T on C is called a
nonexpansive mapping if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. We denote by
F (T ) the set of fixed points of T . We know that F (T ) is nonempty in the case that
E is uniformly convex and C is bounded closed and convex; see [4, 5, 10, 15]. A
family of mappings {T (t) : t ≥ 0} is called a one-parameter strongly continuous
semigroup of nonexpansive mappings on C (nonexpansive semigroup, for short) if
the following are satisfied:

(sg 1) For each t ≥ 0, T (t) is a nonexpansive mapping on C;
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(sg 2) T (s + t) = T (s) ◦ T (t) for all s, t ≥ 0;

(sg 3) for each x ∈ C, the mapping t �→ T (t)x from [0,∞) into C is strongly
continuous.

We know that
⋂

t≥0 F
(
T (t)

)
is nonempty in the case when C is weakly compact

convex and every nonexpansive mapping on a closed convex subset of C has a fixed
point; see Bruck [8]. The author in [27] proved the following.

Theorem 1 ([27]). Let {T (t) : t ≥ 0} be a one-parameter strongly continuous
semigroup of nonexpansive mappings on a subset C of a Banach space E . Let α

and β be positive real numbers satisfying α/β /∈ Q. Then
⋂
t≥0

F
(
T (t)

)
= F

(
T (α)

) ∩ F
(
T (β)

)

holds.
Using this theorem, the author has proved many convergence theorems for non-

expansive semigroups. For example, the following is proved in [26].

Theorem 2 ([26]). Let C be a compact convex subset of a Banach space
E and let {T (t) : t ≥ 0} be a one-parameter strongly continuous semigroup of
nonexpansive mappings on C. Let α and β be positive real numbers satisfying
α/β /∈ Q. Let λ ∈ (0, 1), and let {θn} be a sequence in [0, 1] satisfying

lim inf
n→∞ θn = 0, lim sup

n→∞
θn > 0, and lim

n→∞(θn+1 − θn) = 0.

Define a sequence {xn} in C by x1 ∈ C and

xn+1 = (1− θn)λT (α)xn + θnλT (β)xn + (1− λ)xn

for n∈N. Then {xn} converges strongly to a common fixed point of {T (t) : t ≥0}.
The following proposition is a corollary of Bruck’s result in [7].

Proposition 1 (Bruck [7]). Let C be a subset of a strictly convex Banach space
E . Let S and T be nonexpansive mappings from C into E with F (S)∩F (T ) �= ∅.
Then for each λ ∈ (0, 1),

F (S) ∩ F (T ) = F
(
λS + (1− λ)T

)
holds, where λS + (1 − λ)T is a mapping from C into E defined by

(
λS + (1 −

λ)T
)
x = λSx + (1 − λ)Tx for x ∈ C.

In Proposition 1, the assumption of F (S) ∩ F (T ) �= ∅ is essential because we
know the following example.
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Example 1. Let E be a Banach space and fix v ∈ E with v �= 0. Define
nonexpansive mappings S and T on E by

Sx = x + v and Tx = x − v

for all x ∈ C. Then

F (S) = F (T ) = ∅ and F

(
1
2
S +

1
2
T

)
= E

holds.
In this paper, as motivated by above, we consider the following problem: Let

{T (t) : t ≥ 0} be a one-parameter strongly continuous semigroup of nonexpansive
mappings, let α and β be positive real numbers and let λ ∈ (0, 1). We may not
assume F

(
T (α)

) ∩ F
(
T (β)

) �= ∅. Then does

F
(
T (α)

) ∩ F
(
T (β)

)
= F

(
λT (α) + (1 − λ)T (β)

)
hold? Our answer is positive.

Our problem is meaningful as follows: Finding a common fixed point of two
mappings is much easier than that for infinite families of mappings. However, as
Theorem 2, that for two mappings is still difficult. That for single mappings is much
easier than that for two mappings. See [1-3, 6, 9, 11-14, 16-26, 29-36] and others.

2. PRELIMINARIES

We recall that a Banach space E is called strictly convex if ‖x + y‖/2 < 1 for
all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x �= y. We first prove the following lemma.

Lemma 1. Let E be a strictly convex Banach space. Let v, x, y, z ∈ E such
that v �= 0, y = z + βv, and

‖x − z‖ = ‖x − y‖ + ‖y − z‖ = α‖v‖
for some α > 0, β > 0. Then x = z + αv.

Proof. From ‖(x− y)+ (y− z)‖ = ‖x− y‖+ ‖y − z‖ and the strict convexity
of E , we have that {x− y, y− z} is linearly dependent. Since y − z = βv �= 0, we
can write x − y = γ(y − z) for some γ ≥ 0. Since

x − z = y + γ(y − z) − z = (1 + γ)βv,

we have
(1 + γ)β‖v‖ = ‖x − z‖ = α‖v‖
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and hence (1 + γ)β=α. Thus, we obtain x−z=αv. This completes the proof.

The following lemmas play important roles in the proof of our main result.

Lemma 2. Let α and β be positive real numbers with α/β /∈ Q. Define four
nondecreasing sequences {in}, {jn}, {kn}, and {�n} in N ∪ {0} as follows:

(i) i1 = k1 = 1 and j1 = �1 = 0;
(ii) in the case of inα − jnβ > knβ − �nα,

in+1 = in + �n, jn+1 = jn + kn, kn+1 = kn and �n+1 = �n

and in the case of inα − jnβ < knβ − �nα,

in+1 = in, jn+1 = jn, kn+1 = jn + kn and �n+1 = in + �n

for all n ∈ N.

Then the following hold:

(1) {inα − jnβ} and {knβ − �nα} are nonincreasing sequences in (0,∞) and
converge to 0; and

(2) limits of the four sequences {in}, {jn}, {kn}, and {�n} are ∞.

Proof. We note that inα − jnβ �= knβ − �nα by the assumption of α/β /∈ Q.
So, we can define four sequences {in}, {jn}, {kn}, and {�n} in N∪{0}. We shall
prove inα − jnβ > 0 and knβ − �nα > 0 by induction. We have

i1α − j1β = α > 0 and k1β − �1α = β > 0.

We assume that inα − jnβ > 0 and knβ − �nα > 0 for some n ∈ N. In the case
of inα − jnβ > knβ − �nα, from

in+1α − jn+1β = (in + �n)α − (jn + kn)β
= (inα − jnβ) − (knβ − �nα),

we have
0 < in+1α − jn+1β < inα − jnβ.

By the definition of the sequences, we have

kn+1β − �n+1α = knβ − �nα > 0.

In the case of inα − jnβ < knβ − �nα, from

kn+1β − �n+1α = (jn + kn)β − (in + �n)α
= (knβ − �nα) − (inα − jnβ),
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we have
0 < kn+1β − �n+1α < knβ − �nα.

We also have
in+1α − jn+1β = inα − jnβ > 0.

By induction, we have inα − jnβ > 0 and knβ − �nα > 0 for n ∈ N. Also, we
have shown the nonincreasingness. That is, {inα − jnβ} and {knβ − �nα} are
nonincreasing sequences in (0,∞). So, these two sequences have the limits. We
put

s = lim
n→∞(inα − jnβ) and t = lim

n→∞(knβ − �nα).

We shall prove s = t = 0. We first assume that s < t. Then we can choose m ∈ N
such that

s ≤ imα − jmβ < t ≤ kmβ − �mα.

For n ∈ N with n ≥ m, since inα − jnβ < knβ − �nα, we have in+1 = in,
jn+1 = jn, kn+1 = jn + kn and �n+1 = in + �n. Thus,

inα − jnβ = imα − jmβ

for all n ∈ N with n ≥ m, and hence

0 < imα − jmβ = s.

For n ∈ N with n > m, we have

knβ − �nα = (jn−1 + kn−1)β − (in−1 + �n−1)α
= kn−1β − �n−1α − s

= kmβ − �mα − (n − m)s.

Since s > 0, we have t = limn(knβ−�nα) = −∞. This is a contradiction. Hence,
we obtain s ≥ t. Similarly we can prove s ≤ t. Therefore s = t. We next assume
that t > 0. Then we can choose m ∈ N satisfying

t ≤ imα − jmβ < 2t and t ≤ kmβ − �mα < 2t.

By the above argument, either of the following holds:

im+1α − jm+1β = (imα − jmβ) − (kmβ − �mα) < 2t − t = t

or
km+1β − �m+1α = (kmβ − �mα) − (imα − jmβ) < 2t − t = t.

This is a contradiction. Hence, we obtain s = t = 0. Therefore we have (1). Since
α/β /∈ Q, (2) follows from (1).
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Lemma 3. Let α and β be positive real numbers with α �= β and α/β ∈ Q.
Define four nondecreasing sequences {in}, {jn}, {kn}, and {�n} in N ∪ {0} as
follows:

(i) i1 = k1 = 1 and j1 = �1 = 0;
(ii) in the case of inα − jnβ = knβ − �nα,

in+1 = in, jn+1 = jn, kn+1 = kn and �n+1 = �n,

in the case of inα − jnβ > knβ − �nα,

in+1 = in + �n, jn+1 = jn + kn, kn+1 = kn and �n+1 = �n

and in the case of inα − jnβ < knβ − �nα,

in+1 = in, jn+1 = jn, kn+1 = jn + kn and �n+1 = in + �n

for n ∈ N;

Then the following hold:

(1) {inα− jnβ} and {knβ − �nα} are nonincreasing sequences in (0,∞); and

(2) there exists n0 ∈ N such that in0α − jn0β = kn0β − �n0α.

Proof. As in the proof of Lemma 2, we can prove (1). Since α/β ∈ Q, there
exist p, q ∈ N such that α/β = p/q. Put γ = β/q. Then α = pγ and β = qγ .
Hence

inα − jnβ = (inp − jnq)γ and knβ − �nα = (knq − �np)γ

for n ∈ N. Under the assumption that (2) does not hold, the proof of Lemma
2 shows that the sequences {inα − jnβ} and {knβ − �nα} converge to 0. This
contradicts the fact that inp − jnq, knq − �np ∈ N for all n ∈ N. Therefore (2)
holds.

3. MAIN RESULTS

In this section, we prove our main results.

Theorem 3. Let E be a strictly convex Banach space. Let {T (t) : t ≥ 0}
be a one-parameter strongly continuous semigroup of nonexpansive mappings on a
subset C of E . Let α and β be different positive real numbers. Then

F
(
T (α)

) ∩ F
(
T (β)

)
= {z ∈ C : λT (α)z + (1 − λ)T (β)z = z}
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holds for every λ ∈ (0, 1).

We first prove this theorem in the case of α/β /∈ Q. We will next pass to the
case of α/β ∈ Q. Before each proof, we consider a concrete case in order to give
the idea of the proof.

Set α = 1 and β =
√

2. Then α/β /∈ Q. We fix z ∈ C with

λT (1)z + (1 − λ)T (
√

2)z = z

for some λ ∈ (0, 1). We put

v = T (1)z − T (
√

2)z and d = ‖v‖

and we assume d > 0. We note that

T (1)z = z + (1− λ)v and T (
√

2)z = z − λv.

Since T (1) and T (
√

2 − 1) are nonexpansive, we have

d = ‖T (1)z − T (
√

2)z‖ = ‖T (1)z − T (1) ◦ T (
√

2 − 1)z‖
≤ ‖T (

√
2 − 1)z − z‖

and
‖T (

√
2)z − T (

√
2 − 1)z‖ ≤ ‖T (1)z − z‖ = (1 − λ)d.

Since ‖T (
√

2)z − z‖ = λd, we have

d ≤ ‖T (
√

2 − 1)z − z‖
≤ ‖T (

√
2 − 1)z − T (

√
2)z‖ + ‖T (

√
2)z − z‖

≤ (1− λ)d + λd = d

and hence

‖T (
√

2 − 1)z − z‖ = ‖T (
√

2 − 1)z − T (
√

2)z‖ + ‖T (
√

2)z − z‖ = d.

By Lemma 1, we have
T (

√
2− 1)z = z − v.

We also have

(2− λ)d = ‖T (1)z − T (
√

2 − 1)z‖ ≤ ‖T (2−
√

2)z − z‖

and
‖T (1)z − T (2−

√
2)z‖ ≤ ‖T (

√
2− 1)z − z‖ = d.
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Since ‖T (1)z − z‖ = (1− λ)d, we have

(2 − λ)d ≤ ‖T (2 −
√

2)z − z‖
≤ ‖T (2 −

√
2)z − T (1)z‖+ ‖T (1)z − z‖

≤ (2 − λ)d

and hence

‖T (2−
√

2)z − z‖ = ‖T (2−
√

2)z − T (1)z‖+ ‖T (1)z − z‖ = (2− λ)d.

By Lemma 1, we have

T (2−
√

2)z = z + (2 − λ)v.

We have

(3− λ)d = ‖T (2 −
√

2)z − T (
√

2 − 1)z‖ ≤ ‖T (3− 2
√

2)z − z‖
and

‖T (2−
√

2)z − T (3 − 2
√

2)z‖ ≤ ‖T (
√

2 − 1)z − z‖ = d.

Since ‖T (2−√
2)z − z‖ = (2− λ)d, we have

(3− λ)d ≤ ‖T (3− 2
√

2)z − z‖
≤ ‖T (3− 2

√
2)z − T (2 −

√
2)z‖+ ‖T (2−

√
2)z − z‖

≤ (3− λ)d

and hence

‖T (3− 2
√

2)z − z‖ = ‖T (3− 2
√

2)z − T (2−
√

2)z‖ + ‖T (2 −
√

2)z − z‖
= (3− λ)d.

By Lemma 1, we have

T (3 − 2
√

2)z = z + (3− λ)v.

Continuing this process, we obtain the following.

T (.414213562373)z ≈ T (
√

2 − 1)z = z − v

T (.585786437627)z ≈ T (2−
√

2)z = z + (2− λ)v

T (.171572875254)z ≈ T (3− 2
√

2)z = z + (3 − λ)v

T (.242640687119)z ≈ T (3
√

2 − 4)z = z − (4 − λ)v

T (.071067811865)z ≈ T (5
√

2 − 7)z = z − (7 − 2λ)v

T (.100505063388)z ≈ T (10− 7
√

2)z = z + (10− 3λ)v

T (.029437251523)z ≈ T (17− 12
√

2)z = z + (17− 5λ)v
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T (.041630560343)z ≈ T (17
√

2 − 24)z = z − (24− 7λ)v

T (.012193308820)z ≈ T (29
√

2 − 41)z = z − (41− 12λ)v

T (.017243942703)z ≈ T (58− 41
√

2)z = z + (58− 17λ)v

T (.005050633883)z ≈ T (99− 70
√

2)z = z + (99− 29λ)v

T (.007142674936)z ≈ T (99
√

2 − 140)z = z − (140− 41λ)v

T (.002092041053)z ≈ T (169
√

2− 239)z = z − (239− 70λ)v

T (.002958592830)z ≈ T (338− 239
√

2)z = z + (338− 99λ)v

T (.000866551777)z ≈ T (577− 408
√

2)z = z + (577− 169λ)v

T (.001225489276)z ≈ T (577
√

2− 816)z = z − (816− 239λ)v

T (.000358937499)z ≈ T (985
√

2− 1393)z = z − (1393− 408λ)v

T (.000507614279)z ≈ T (1970− 1393
√

2)z = z + (1970− 577λ)v

T (.000148676780)z ≈ T (3363− 2378
√

2)z = z + (3363− 985λ)v

T (.000210260719)z ≈ T (3363
√

2 − 4756)z = z − (4756− 1393λ)v

This contradicts to the compactness of {T (t)z : t ∈ [0, 1]}. Therefore we obtain
d = 0.

Now, we give the proof.

Proof of Theorem 3 in the case of α/β /∈ Q. We define four nondecreasing
sequences {in}, {jn}, {kn}, and {�n} in N ∪ {0} as in Lemma 2. Now, we fix
z ∈ C with

λT (α)z + (1− λ)T (β)z = z

for some λ ∈ (0, 1). We note that

{T (t)z : t ∈ [0, 1]}

is compact and hence bounded. We put

v = T (α)z − T (β)z and d = ‖v‖

and we assume d > 0. We shall prove

(1) T (inα − jnβ)z = z + (1− λ) in v + λ jn v,

and

(2) T (knβ − �nα)z = z − λ kn v − (1− λ) �n v
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by induction. It is obvious that

T (i1α − j1β)z = T (α)z = z + (1 − λ) v = z + (1− λ) i1 v + λ j1 v,

and

T (k1β − �1α)z = T (β)z = z − λ v = z − λ k1 v − (1− λ) �1 v.

We assume that (1) and (2) hold for some n ∈ N. We note that

‖T (inα − jnβ)z − z‖ = (1 − λ) in d + λ jn d,

‖T (knβ − �nα)z − z‖ = λ kn d + (1 − λ) �n d,

and

‖T (inα − jnβ)z − T (knβ − �nα)z‖ = (1− λ) (in + �n) d + λ (jn + kn) d.

In the case of
inα − jnβ > knβ − �nα,

we have

‖T (inα − jnβ)z − T (knβ − �nα)z‖
≤ ∥∥T

(
(inα − jnβ) − (knβ − �nα)

)
z − z

∥∥
= ‖T (in+1α − jn+1β)z − z‖

and

‖T (inα − jnβ)z − T (in+1α − jn+1β)z‖
=

∥∥T (inα − jnβ)z − T
(
(inα − jnβ) − (knβ − �nα)

)
z
∥∥

≤ ‖T (knβ − �nα)z − z‖.
Since

(1− λ) (in + �n) d + λ (jn + kn) d

≤ ‖T (in+1α − jn+1β)z − z‖
≤ ‖T (in+1α − jn+1β)z − T (inα − jnβ)z‖ + ‖T (inα − jnβ)z − z‖
= ‖T (in+1α − jn+1β)z − T (inα − jnβ)z‖ + (1 − λ) in d + λ jn d

≤ λ kn d + (1 − λ) �n d + (1 − λ) in d + λ jn d ,
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we have

‖T (in+1α − jn+1β)z − z‖
= ‖T (in+1α − jn+1β)z − T (inα − jnβ)z‖ + ‖T (inα − jnβ)z − z‖
= (1− λ) (in + �n) d + λ (jn + kn) d.

By Lemma 1, we obtain

(3)
T (in+1α − jn+1β)z = z + (1− λ) (in + kn) v + λ (jn + �n) v

= z + (1− λ) in+1 v + λ jn+1 v.

Since kn = kn+1 and �n = �n+1, we have

(4) T (kn+1β − �n+1α)z = z − λ kn+1 v − (1− λ) �n+1 v.

In the case of inα − jnβ < knβ − �nα, we can similarly prove (3) and (4). So, by
induction, (1) and (2) hold for all n ∈ N. Since limits of {in}, {jn}, {kn}, and
{�n} are ∞, {T (t)z : t ∈ [0, α + β]} is unbounded subset. This is a contradiction.
So, we have d = 0. This implies

T (α)z = T (β)z = z.

This completes the proof.

We shall state the idea of the proof in the case of α/β ∈ Q. Set

α =
5π

6
and β =

4π

7
.

Then α/β = 35/24 ∈ Q. Put γ = β/24. Then we have

α = 35γ and β = 24γ.

We fix z ∈ C with

λT (5π/6)z + (1 − λ)T (4π/7)z = z

for some λ ∈ (0, 1). We put

v = T (5π/6)z − T (4π/7)z and d = ‖v‖
and we assume d > 0. Then we have the following.

T (11γ)z = T (α − β)z = z + v

T (13γ)z = T (2β − α)z = z − (1 + λ)v
T (2γ)z = T (3β − 2α)z = z − (2 + λ)v
T (9γ)z = T (3α − 4β)z = z + (3 + λ)v
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T (7γ)z = T (5α− 7β)z = z + (5 + 2λ)v
T (5γ)z = T (7α− 10β)z = z + (7 + 3λ)v
T (3γ)z = T (9α− 13β)z = z + (9 + 4λ)v
T (γ)z = T (11α− 16β)z = z + (11 + 5λ)v

Since T (γ) is nonexpansive, we have

(13 + 6λ)d = ‖T (γ)z − T (2γ)z‖ ≤ ‖T (γ)z − z‖ = (11 + 5λ)d.

This is a contradiction. Therefore we obtain d = 0.
Now, we give the proof.

Proof of Theorem 3 in the case of α/β ∈ Q. We define four nondecreasing
sequences {in}, {jn}, {kn}, and {�n} in N ∪ {0} as in Lemma 3. We put

m = min{n ∈ N : inα − jnβ = knβ − �nα} − 1.

We note that either

imα − jmβ = 2(kmβ − �mα) or kmβ − �mα = 2(imα − jmβ)

holds. Now, we fix z ∈ C with

λT (α)z + (1 − λ)T (β)z = z

for some λ ∈ (0, 1). We put

v = T (α)z − T (β)z and d = ‖v‖

and we assume d > 0. Then from the proof of the case of α/β /∈ Q, we know that

T (imα − jmβ)z = z + (1 − λ) im v + λ jm v,

and
T (kmβ − �mα)z = z − λ km v − (1 − λ) �m v.

In the case of
imα − jmβ > kmβ − �mα,

we have
imα − jmβ = 2 (kmβ − �mα).
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So, we obtain

(1 − λ) (im + �m) d + λ (jm + km) d

= ‖T (imα − jmβ)z − T (kmβ − �mα)z‖
=

∥∥T
(
2(kmβ − �mα)

)
z − T (kmβ − �mα)z

∥∥
≤ ‖T (kmβ − �mα)z − z‖
= λ km d + (1− λ) �m d.

This is a contradiction. In the case of

imα − jmβ < kmβ − �mα,

we have
kmβ − �mα = 2 (imα − jmβ).

So, we obtain

(1− λ) (im + �m) d + λ (jm + km) d

= ‖T (imα − jmβ)z − T (kmβ − �mα)z‖
≤ ‖T (imα − jmβ)z − z‖
= (1− λ) im d + λ jm d.

This is also a contradiction. So, we have d = 0. This implies

T (α)z = T (β)z = z.

This completes the proof.

Theorem 4. Let E be a strictly convex Banach space. Let {T (t) : t ≥ 0}
be a one-parameter strongly continuous semigroup of nonexpansive mappings on a
subset C of E . Let α and β be positive real numbers satisfying α/β /∈ Q. Then

⋂
t≥0

F
(
T (t)

)
= {z ∈ C : λT (α)z + (1− λ)T (β)z = z}

holds for every λ ∈ (0, 1).

Proof. Fix λ ∈ (0, 1). It is obvious
⋂
t≥0

F
(
T (t)

) ⊂ {z ∈ C : λT (α)z + (1− λ)T (β)z = z}.
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We assume that z ∈ C satisfies

λT (α)z + (1 − λ)T (β)z = z.

Then from Theorem 3, we have T (α)z = T (β)z = z. So, from Theorem 1, z is a
common fixed point of {T (t) : t ≥ 0}. This completes the proof.

As a direct consequence, we obtain the following.

Corollary 1. Let E be a strictly convex Banach space. Let {T (t) : t ≥ 0}
be a one-parameter strongly continuous semigroup of nonexpansive mappings on a
subset C of E . Then

⋂
t≥0

F
(
T (t)

)
= F

(
1
2
T (1) +

1
2
T (

√
2)

)

holds.

4. TWO-PARAMETER SEMIGROUPS

In this section, we discuss two-parameter nonexpansive semigroups. A family of
mappings {T (p) : p ∈ [0,∞)2} is called a two-parameter nonexpansive semigroup
on C if the following are satisfied:

(sg 1) For each p ∈ [0,∞)2, T (p) is a nonexpansive mapping on C.

(sg 2) T (p + q) = T (p) ◦ T (q) for all p, q ∈ [0,∞)2;

(sg 3) for each x ∈ C, the mapping p �→ T (p)x from [0,∞)2 into C is continuous.

The author proved in [28] the following theorem, which is the natural general-
ization of Theorem 1.

Theorem 5 ([28]). Let {T (p) : t ∈ [0,∞)2} be a two-parameter nonexpansive
semigroup on a subset C of a Banach space E . Let p 1, p2 ∈ [0,∞)2 such that
{p1, p2} is linearly independent in the usual sense. Let α 1, α2 ∈ R such that
{1, α1, α2} is linearly independent over Q, that is, ν0 + ν1α1 + ν2α2 = 0 implies
ν0 = ν1 = ν2 = 0 for ν0, ν1, ν2 ∈ Z. Suppose p0 = α1p1 + α2p2 ∈ [0,∞)2. Then

⋂
p∈[0,∞)2

F
(
T (p)

)
= F

(
T (p0)

) ∩ F
(
T (p1)

) ∩ F
(
T (p2)

)

holds.
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It is a natural problem whether or not the conclusion which is similar to Theorem
4 holds. Of course, under the assumption of

⋂
p∈[0,∞)2 F

(
T (p)

) �= ∅, it holds.
However, our answer of this problem is negative.

Example 2 ([28]). Put E = C = R, e1 = (1, 0) ∈ R2 and e2 = (0, 1) ∈ R2.
Define a two-parameter nonexpansive semigroup {T (p) : p ∈ [0,∞)2} on C by

T (λ1e1 + λ2e2)x = x + λ1 − λ2

for λ1, λ2 ∈ [0,∞) and x ∈ E . Define a nonexpansive mapping S on C by

Sx =
√

2 +
√

3 + 1
6

T (
√

2e1 +
√

3e2)x +
3−√

2
6

T (e1)x +
2 −√

3
6

T (e2)x

for x ∈ C. Then ⋂
p∈[0,∞)2

F
(
T (p)

)
= ∅ � C = F (S)

holds.

Proof. We note that F
(
T (e1)

)
= ∅ and Sx = x for all x ∈ C.
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