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ON THE BANACH-STONE PROBLEM FOR Lp-SPACES

Chun-Yen Chou, Wu-Lang Day and Jyh-Shyang Jeang

Abstract. The Banach-Stone problem for Lp-spaces is to assert when a linear
isometry between Lp-spaces is a weighted composition operator. We shall
show that every σ-finite measure space with Sikorski’s property solves the
Banach-Stone probelm. In addition, we show that if X is a totally ordered and
Dedekind complete, then every σ-finite µ-separable measure space (X,B, µ)
has Sikorski’s property.

1. INTRODUCTION

Let X and Y be locally compact Hausdorff spaces. A classical Banach-Stone
Theorem (see, e.g., Behrends [2, p. 138]) states that every isometry T from the
Banach space C0(X) of continuous functions vanishing at infinity onto another
C0(Y ) is a weighted composition operator Tf = h · (f ◦ϕ), for all f in C0(X). In
this paper, we call such a map T a BS map. We ask similar questions for operators
between Lp-spaces. Given two measure spaces (X,B, µ) and (Y,A, ν), is every
linear isometry T : Lp(X) → Lq(Y ) a BS map?

In [1] (see also [13, p. 415]), an affirmative answer is given for linear isometries
T : Lp[0, 1] → Lp[0, 1] (1 ≤ p < ∞, p �= 2). In [10], Lamperti showed that, for
(X,B, µ) a σ-finite measure space, every linear isometry T : Lp(X) → Lp(X)
(1 ≤ p < ∞, p �= 2) is given by a still simple form TχB = h · χΦ(B) for all B in
B. We call such a map T a Lamperti map. Note that, in [10], it is not said if T is
a BS map or not, and this is still unknown for the time being.

Let (X,B, µ) and (Y,A, ν) be measure spaces and 1 ≤ p, q ≤ ∞. A map
T : Lp(X) → Lq(Y ) is called disjointness preserving if f · g = 0 a.e. [µ] implies
Tf · Tg = 0 a.e. [ν] for all f , g in Lp(X). We shall see that every (surjective
when p = q = ∞) linear isometry T : Lp(X) → Lq(Y ) (either 1 ≤ p, q < ∞, p �=
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2, q �= 2 or p = q = ∞, we will call such an pair (p, q) accessible) is disjointness
preserving. Therefore, it suffices to study merely bounded disjointness preserving
operators.

We shall prove that (i) every σ-finite measure space (X,B, µ) solves the Lam-
perti problem for Lp-spaces, that is, for an arbitrary measure space (Y,A, ν) and
an accessible (p, q), every (surjective when p = q = ∞) bounded disjointness
preserving operator T : Lp(X) → Lq(Y ) is a Lamperti map; (ii) every σ-finite
measure space (X,B, µ) with Sikorski’s property solves the Banach-Stone problem
for Lp-spaces, that is, for an arbitrary measure space (Y,A, ν) and an accessible
(p, q), every (surjective when p=q =∞) bounded disjointness preserving operator
T :Lp(X)→Lq(Y) is a BS map. Note that we have included the case p=q=∞here.

In [11], Lessard used a topological approach with some technical lifting theorems
to give the result: Every Lamperti map T : Lp(X,B, µ) → Lp(Y,A, ν) is a BS map,
if µ is tight. A finite Baire measure µ on a topological space X is said to be tight
if for every ε > 0, there exists a compact set K in X such that µ∗(K) > µ(X)− ε,
where µ∗ denotes the outer measure determined by µ.

We shall use an order theoretical approach to give a different sufficient condition
(see Proposition 8) for a measure space (X,B, µ) solving the Banach-Stone problem
for Lp-spaces. We note that (N, 2N, µ) is, in general, not tight and thus Lessard’s
theorem does not apply. However, Proposition 8 below does help. And as well-
known examples, Rn with Borel measure and Hilbert cube with an appropriate
measure, satisfy our conditions and solve the Banach-Stone problem.

2. THE LAMPERTI PROBLEM

Let (X,B, µ) and (Y,A, ν) be arbitrary measure spaces. We first show that
every isometry T : Lp(X) → Lq(Y ) is disjointness preserving for 1 ≤ p, q < ∞,
p, q �= 2. Indeed, it is easy to see that ‖f + g‖p + ‖f − g‖p = 2(‖f‖p + ‖g‖p) if
and only if f · g = 0 a.e. [µ] (ref. [13, p. 416]). Since T is an isometry, for all f, g

in Lp(X)

f · g = 0 a.e. [µ] ⇔ ‖f + g‖p + ‖f − g‖p = 2(‖f‖p + ‖g‖p)

⇔ ‖Tf + Tg‖q + ‖Tf − Tg‖q = 2(‖Tf‖q + ‖Tg‖q)

⇔ Tf · Tg = 0 a.e. [ν].

Hence T is disjointness preserving.
Recall that the function space L∞(X) is a commutative C∗-algebra with iden-

tity, equipped with the natural algebraic structure and the natural involution. By
the Gelfand-Naimark theorem (see, e.g., [4, p. 236], L∞(X) is isometrically ∗-
isomorphic to C(Σ), where Σ is the maximal ideal space of L∞(X). Note that Σ
is compact.
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Let Λ be the Gelfand transform from L∞(X) onto C(Σ). We write f̂ for Λ(f)
for simplicity of notations. For B in B, since χ2

B = χB , we have χ̂B
2 = χ̂B. Then

χ̂B is the characteristic function of a closed and open subset UB of Σ. Conversely,
if U is a closed and open subset of Σ, then χU ∈ C(Σ) and χU = f̂ for some f

in L∞(X). Moreover, f̂2 = f̂ and f2 = f in L∞(X). It follows that f = χB for
some B in B. Consequently, we have

Lemma 1. Every closed and open subset of Σ is of the form U B for some B
in B.

Let (X,B, µ) and (Y,A, ν) be measure space, and Σ1 (resp. Σ2) the maximal
ideal space of L∞(X) (resp. L∞(Y )). For any given map T : L∞(X) → L∞(Y ),
define T̂ : C(Σ1) → C(Σ2) by T̂ f̂ = T̂ f for all f in L∞(X). It is clear to get the
following proposition.

Proposition 1. T is a bounded linear operator if and only if T̂ is (and
‖T‖ = ‖T̂‖); T is a linear isometry if and only if T̂ is; T is disjointness preserving
if and only if T̂ is; and T is invertible if and only if T̂ is (in this case, T̂−1 = T̂−1).

Lemma 2. Every surjective linear isometry T : L∞(X) → L∞(Y ) is disjoint-
ness preserving.

Proof. It follows Banach-Stone Theorem and the proposition above.
It is plain that there exists a linear isometry T : L∞(X) → L∞(Y ) such that T is

not disjointness preserving. (Consider, e.g., T (x1, x2, . . . , ) = (x1+x2
2 , x1, x2, . . . )

from �∞ into �∞.)
For the Lamperti problem, Lamperti’s proof [10, p. 461] can be modified to

prove the following theorem.

Theorem 2. If (X,B, µ) is a σ-finite measure space, (Y,A, ν) an arbitrary
measure space and T : Lp(X) → Lq(Y ) (1 ≤ p, q < ∞ and p, q �= 2) a bounded
disjointness preserving linear operator, then T is a Lamperti map.

It remains to prove the case p = q = ∞ for Lamperti problem. We need the
following theorem.

Theorem 3. ([8]) If X and Y are compact Hausdorff space and T : C(X) →
C(Y ) is a surjective disjointness preserving linear operator, then there exists a
homeomorphism ϕ : Y → X and a function h in C(Y ) with h(y) �= 0 for all y in
Y such that Tf = h · (f ◦ ϕ) for all f in C(X).

Theorem 4. Let (X,B, µ) and (Y,A, ν) be measure spaces. If T : L∞(X) →
L∞(Y ) is a bounded surjective disjointness preserving linear operator, then there
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exist a proper regular set homomorphism Φ : B → A with Φ(X) = Y and a
function h in L∞(Y ) with h �= 0 a.e. [ν] such that TξB = h · ξΦ(B) for all B in B.
In other words, T is a Lamperti map.

Proof. Let Σ1 (resp. Σ2) be the maximal ideal space of L∞(X) (resp. L∞(Y )).
Let T̂ : C(Σ1) → C(Σ2) be defined by T̂ f̂ = T̂ f for all f in L∞(X) (via the
Gelfand transform Λ). By Proposition 1, T̂ is a bounded surjective disjointness
preserving linear operator. By Theorem 3, there exist a homeomorphism ϕ : Σ2 →
Σ1 and a function h in L∞(X) with h �= 0 a.e. [ν] such that T̂ f̂ = ĥ · (f̂ ◦ϕ) for all
f in L∞(X). Let Φ : B → A be defined, modulo null sets, by Φ(B) = A if UA =
ϕ−1(UB) in the notations of Lemma 1. Φ is a proper regular set homomorphism.

It is easy to see that Φ preserves differences and finite unions, and ν(Φ(B)) = 0
if and only if µ(B) = 0. By the homeomorphism of ϕ, Φ is surjective and Φ(X) =
Y .

It remains to show that Φ preserves countable union. Suppose that {Bn}n

is a sequence of measurable sets in B, we need to show that Φ(
⋃∞

n=1 Bn) =⋃∞
n=1 Φ(Bn), or equivalently, ϕ−1(U∪Bn) =

⋃
ϕ−1(UBn) (= sup ϕ−1(UBn)).

Clearly, ϕ−1(U∪Bn) is an upper bounded of {ϕ−1(UBn)}n. Suppose that UA is
anothre upper bound of {ϕ−1(UBn)}n. Since Φ is surjective, there is a B in B such
that Φ(B) = A. By assumption, ϕ−1(UBn) ⊂ UA = ϕ−1(UB), then UBn ⊂ UB

for all n ∈ N. Since U∪Bn = sup UBn , we have ϕ−1(U∪Bn) ⊂ ϕ−1(UB) = UA.
Therefore, ϕ−1(U∪Bn) = sup ϕ−1(UBn). This establishes the claim.

Finally, observe that, for all B in B,

T̂ χB = T̂ χ̂B = ĥ · (χ̂B ◦ ϕ) = ĥ · (χUB
◦ ϕ) = ĥ · χϕ−1(UB)

= ĥ · χUΦ(B)
= ĥ · χ̂Φ(B) = ̂h · χΦ(B).

Hence, TχB = h · χΦ(B) for all B in B.
As an immediate consequence of Theorems 2 and 4, we have the following

Theorem 5. Every σ-finite measure space solves the Lamperti problem.

3. THE BANACH-STONE PROBLEM

In this section, we devote to the Banach-Stone problem. First, let us to see a
special case.

Proposition 6. If 1 ≤ p, q ≤ ∞, and T : �p → �q is a bounded disjointness
preserving operator, then there exist a map ϕ : N → N and a function h in � ∞

such that,
Tx = h · (x ◦ ϕ) for all x ∈ �p.



On the Banach-Stone Problem for Lp-Spaces 237

Proof. For each m in N, define em : N → N by em(n) = 1 if m = n, and
em(n) = 0 otherwise. For each n in N, define δn to be the linear functional on �q

sending en to 1, and em to 0 if m �= n. For each n in N, define Φ(n) = {m :
Tem(n) �= 0}. Since T is disjoint preserving, Φ(n) contains at most one element.

Let N0 = {n : Φ(n) = ∅}. It is easy to see that {n : δn ◦T = 0} ⊂ N0. On the
other hand, let n ∈ N0. Since the linear span of {em : m ∈ N} is weakast-dense
in �p, δn ◦ T = 0. Hence, N0 = {n : δn ◦ T = 0}.

Let n0 be a fixed natural number. Define ϕ : N → N by ϕ(n) = m where m

is the unique element in Φ(n) if n ∈ N \N0, and ϕ(n) = n0 if n ∈ N0.
If n ∈ N \ N0, then there is a scalar αn �= 0 such that δn ◦ T = αn · δϕ(n). To

see this, if n ∈ N\N0, then it is easy to see that ker (δn◦T ) is a nontrivial subspace
of �p. Since δn ◦ T and δϕ(n) are linear functionals defined on �p, it suffices to
show that ker (δn ◦ T ) = ker δϕ(n). Let x ∈ ker δϕ(n), that is, x(ϕ(n)) = 0.
Since Teϕ(n)(n) �= 0 and T is disjointness-preserving, we have Tx(n) = 0, that
is, x ∈ ker(δn ◦ T ). That is, ∅ �= ker δϕ(n) ⊂ ker (δn ◦ T ). Notice that ker δϕ(n)

and ker (δn ◦T ) have same codimension. Therefore, ker (δn ◦T ) = ker δϕ(n). This
establishes the claim.

Now, let h : N → K be defined by h(n) = αn if n ∈ N \ N0, and h(n) = 0
otherwise. Then δn◦T = h(n)·δϕ(n) and thus (Tx)(n) = h(n)·x(ϕ(n)) for all x in
�p and all natural numbers n. Also, |h(n)| = |h(n) · eϕ(n)(ϕ(n))| = |Teϕ(n)(n)| ≤
‖Teϕ(n)‖q ≤ ‖T‖ for all natural numbers n. Thus ‖h‖∞ = ‖T‖ and this completes
the proof.

Now, we consider the Banach-Stone problem in the general case. Observe that
the gap between Lamperti map and BS map is the extent to which whethera regular
set homomorphism can be induced by a point map. To be more precise, we introduce
the following notion.

For a measure space (X,B, µ) a member B of B is an atom of µ if µ(C) = µ(B)
or µ(C) = 0 for all C in B with C ⊂ B. We call (X,B, µ) an atom-free measure
space if µ posseses no atom. We call a measure subspace X ′ of X a maximal atom
free subspace if X ′ is atom-free and X \ X ′ is a disjoint union of atoms of µ.

We say that an atom-free measure space (X,B, µ) has Sikorski’s property if, for
an arbitrary measure space (Y,A, ν), every regular set homomorphism Φ : B → A
with Φ(X) = Y is induced by a measurable point map ϕ, that is, Φ(B) = ϕ−1(B)
for any B in B.

Remark. It is known (cf., [13, p. 397]) that ([0, 1],B[0,1], µ) has Sikorski’s
property, where B[0,1] is the Borel σ-algebra and µ is any σ-finite regular measure
on B[0,1].

Theorem 7. Every σ-finite measure space (X,B, µ) which has Sikorski’s
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property solves the Banach-Stone problem.

Proof. Let {ai}i∈I be an arbitrary maximal set of atoms of µ. Since µ is σ-
finite, I is at most countable. Let X1 =

⋃
i∈I ai, then X1 works exactly as a subset

of N. (For the Banach-Stone problem on N, see Proposition 6.) Thus, without
loss of generality, we may assume µ is atom-free. For an arbitrary measure space
(Y,A, ν), let T : Lp(X) → Lq(Y ) be a (surjective when p = q = ∞) bounded
disjointness preserving operator. It demands to show that T is a BS map. By
Theorem 5, there exist a regular set homomorphism Φ : B → A and a h ∈ Lq(Y )
such that TχB = h · χΦ(B) for all B in B with µ(B) < ∞.

There exists a measurable mapping ϕ : Y → X such that Φ(B) = ϕ−1(B) for
all B in B with µ(B) < ∞. Consequently, TχB = h · (χB ◦ ϕ).

In case of p = q = ∞, it is known that Φ(X) = Y by Theorem 4. By the
Sikorski’s property, the claim is done.

For the case, 1 ≤ p, q < ∞ and p, q �= 2, it is not necessarily true that
Φ(X) = Y . Let Y0 = Φ(X) be a measurable set. Let A0 = {Y0 ∩A : A ∈ A} and
ν0 = ν|A0 . Define Φ : B → A0 by Φ0(B) = Y0∩Φ(B) for all B in B. It is easy to
see that Φ0 is a regualr set homomorphism satisfying Φ0(X) = Y0. By assumption,
there exists a measurable mapping ϕ0 : Y0 → X such that Φ(B) = ϕ−1

0 (B) for all
B in B. It follows that, for all B in B with µ(B) < ∞, (TχB)|Y0 = (h·χΦ(B))|Y0 =
h|Y0 · χΦ0(B) = h0 · χϕ−1(B) = h0 · (χB ◦ ϕ0) where h0 = h|Y0 : Y0 → K. Since
the support of (TχX) is contained in Φ(X) = Y0, we can redefine h : Y → K by
h(y) = h0(y) on Y0 and h(y) = 0 otherwise. We can also extend ϕ0 to ϕ : Y → X

by ϕ(y) = ϕ0(y) on Y0 and ϕ(y) = x0 otherwise for some fixed x0 in X . Then
both h and ϕ are measurable and TχB = h · (χB ◦ ϕ). This establishes the claim.

Now, if s is any simple function which vanishes outside a set of finite measure,
we have Ts = h · (s ◦ ϕ) by the linearity of T . Let f be in Lp(X). By passing to
a sequence of simple functions which approximate f , we have Tf = h · (f ◦ ϕ).
Hence, T is a BS map.

In the following, we shall give a σ-finite measure space which has Sikorski’s
property.

Definition 3.1. A totally ordered space (X,≤) is said to be Dedekind complete
if every bounded below nonempty subset has an infimum in X . A σ-algebra B is
called the order σ-algebra of X if it is generated by all order intervals (a, b) =
{x ∈ X : a < x < b}. A totally ordered measure space is a totally ordered space
with the order σ-algebra. A measure space (X,B, µ) is said to be µ-separable
if (X,B, µ) is totally ordered and contains a countable subset D of X such that
(a, b) ∩ D �= ∅ for all a, b in X with µ((a, b)) �= 0. In this case, D is called an
order-µ-dense subset of X .

Proposition 8. Let (X,≤) be totally ordered and Dedekind complete. If
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(X,B, µ) is a σ-finite µ-separable measure space, then (X,B, µ) has Sikorski’s
property.

Proof. Let {ai}i∈I be an arbitrary maximal set of atoms of µ. Since µ is
σ-finite, I is at most countable. Let X ′ = X \⋃

i∈I ai. X ′ is a maximal atom-free
measure subspace of X . It suffices to show that X ′ has Sikorski’s property. Without
loss of generality, we may assume X is atom-free.

Given a measure space (Y,A, ν) and a regular set homomorphism Φ : B → A
with Φ(X) = Y . Let D be a countable order-µ-dense subset of X . Since X is
an atom-free,

⋂
α∈D(−∞, α) is a null set and

⋃
α∈D(−∞, α) = X . For each α

in D, define Bα = Φ(−∞, α). Then Bα ⊂ Bβ , α ≤ β, and
⋂

α∈D Bα = ∅,⋃
α∈D Bα = Y . Let ϕ : Y → X be defined by ϕ(y) = inf{α ∈ D : y ∈ Bα} for

all y in Y . Since X is (Dedekind) complete, ϕ is well-defined.
For all x in X (we may assume (−∞, x) �= ∅), it is easy to see that {y ∈ Y :

ϕ(y) < x} =
⋃

γ<x, γ∈D Bγ . Since D is order-µ-dense in X , the set (−∞, x) \⋃
γ<x, γ∈D(−∞, γ) is at most a null set in X .

By the facts
⋃

γ<x, γ∈D(−∞, γ) ⊂ (−∞, x) and Φ is regular set homomor-
phism, we have that

⋃
γ<x, γ∈D Bγ = Φ(

⋃
γ<x, γ∈D(−∞, γ)) = Φ(−∞, x). Then

Φ(−∞, x) = {y ∈ Y : ϕ(y) < x} = ϕ−1(−∞, x). Therefore, the family
B′ = {B ⊂ X : Φ(B) = ϕ−1(B)} contains all order intervals in X . However
B′ is a σ-algebra. It follows that B ⊆ B′, i.e., Φ(B) = ϕ−1(B) for all B in B.
And then ϕ is measurable. This complete the proof.

By Theorem 7 and Proposition 8, we get a generalization of Banach’s result.

Theorem 9. Every σ-finite µ-separable measure space (X,B, µ), that (X,≤)
is totally ordered and Dedeking complete, solves the Banach-Stone problem.

To end this paper, we give some examples.

Example 10. Let Rn be equipped with usual norm ‖ · ‖ and µ which is
Lebesgue measure restricted to the Borel σ-algebra. Define “<” such that a =
(a1, a2, . . . , an) < (b1, b2, . . . , bn) = b if and only if ‖a‖ < ‖b‖ or, otherwise,
there exists an i such that aj = bj for all j < i and ai < bi. Then Rn becomes to
be totally ordered and Dedekind complete. Moreover, the σ-algebra B generated by
all the order intervals induced by < is exactly the usual Borel σ-algebra for Rn. Let
D be the set {(d1, d2, . . . , dn)|di ∈ Q for all i}. Then D is countable and order-
µ-dense in X . Thus X is µ-separable. Hence (X,B, µ)solves the Banach-Stone
problem.

Example 11. For the Hilbert cube (that is, {x ∈ l2 : |xn| ≤ 1
n} in norm

topology) with usual norm ‖·‖, define “<” s.t. a = (a1, a2, . . . ) < (b1, b2, . . .) = b
if and only if ‖a‖ < ‖b‖ or, otherwise, there exists an i such that aj = bj for all
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j < i and ai < bi. Then the Hilbert cube becomes a Dedekind complete totally
ordered space and the σ-algebra B generated by all the order intervals induced by <
is exactly the usual Borel σ-algebra for Hilbert cube. Let µ be any σ-finite measure
such that µ(Sr) = 0 when Sr is a maximal atom-free part of the intersection of
{x ∈ l2 : ‖x‖2 = r} and the Hilber cube. Let D be the set {(d1, d2, . . .)|di ∈
Q for all i} together with all atoms. Then D is countable and order-µ-dense in X .
Thus X is µ-separable. Hence solves the Banach-Stone problem.

Let (X,B, µ) be a measure space. In case p = 2, even though (X,B, µ) has
Sikorski’s property, not every (surjective) linear isometry T : L2(X) → L2(X) is
a BS map. It may also happen that T is not disjointness preserving and not even a
Lamperti map.

Example 12. Consider X = [−π, π]. Let e1(x) = 1√
2π

and e2n(x) = cosnx√
π

,
e2n+1(x) = sin nx√

π
for n = 1, 2, . . . . Let {p1(x), p2(x), p3(x), . . .} be the collection

of Legendre polynomials (they can be easily computed by the Gram-Schmidt precess
that, for example, p1(x) = 1√

2π
, p2(x) =

√
3

2π3 x and p3(x) = 1
� (x

2 − 2π3

3 ), where

� =
√

2π5

5 − 8π6

9 + 4π7

9 ). Then the two families of functions {e1(x), e2(x), e3(x),
. . .} and {p1(x), p2(x), p3(x), . . .} are both orthonormal bases of L2[−π, π]. Let
T : L2[−π, π] → L2[−π, π] be the surjective linear isometry such that Tpn = en

for all n = 1, 2, . . . .
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