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ALMOST CONVERGENCE OF SEQUENCES IN BANACH SPACES
IN WEAK, STRONG, AND ABSOLUTE SENSES

Yuan-Chuan Li

Abstract. We introduce concepts of σ-lim sup and σ-lim inf for bounded se-
quences of real numbers and show a Cauchy criterion for sequences of vectors
which converge in the sense of aσ-limit (i.e., absolute almost convergence).
Then a sufficient condition on a bounded sequence {{x(m)

n }∞n=1}∞m=1 ⊂ �∞(X)
is given for the following equality to hold:

aσ- lim
m→∞ σ- lim

n→∞x(m)
n = σ- lim

n→∞ aσ- lim
m→∞ x(m)

n .

Finally, applying this result we show that σ- lim
n→∞f(sin(nθ)) and σ- lim

n→∞
f(cos(nθ)) exist whenever f is a weakly continuous function on [−1, 1] with
values in a reflexive Banach space.

1. INTRODUCTION

Let X be a real or complex normed linear space. Let πσ denote the set of all
Banach limits on �∞, the space of all bounded sequences in C with the sup-norm.
Recall that a Banach limit φ is a positive linear functional on �∞, which satisfies

φ ({an+k}) = φ ({an}) for all {an} and k = 1, 2, . . .

and maps convergent sequences to their limits. It is known that πσ is a weakly∗-
compact set.

In 1948, Lorentz [5] defined the σ-limit for a bounded sequence {an} ∈ �∞ as

σ- liman : = a

if φ ({an}) = a for all φ ∈ πσ . Some related researches on σ-limit can be found in
[1, 5, 6, 7, 8, 9]. In this paper, for convenience we shall sometimes write φ (an) or
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φn(an) instead of φ({an}).
In [4], we generalize the definition of σ-limit from �∞ to �∞(X), the space of

all bounded sequences in a general normed linear space X , equipped with the sup
norm. A bounded sequence {xn} in X is said to have a σ-limit x ∈ X (cf. [4])
if σ-lim〈xn, x

∗〉 = 〈x, x∗〉 for all x∗ ∈ X∗. It was shown [4, Theorem 3.2] that
a bounded sequence {xn} in X has a σ-limit x ∈ X if and only if it is weakly
almost-convergent to x, i.e., for every x∗ ∈ X∗

lim
n→∞

1
n+ 1

n∑
k=0

〈xk+m, x
∗〉 = 〈x, x∗〉

uniformly on m ≥ 0. In the same paper, we showed that if σ-limxn = x, then
x ∈ co{xn; n ≥ 0}. {xn} is said to be strongly almost-convergent to x (cf. [3]) if

s- lim
n→∞

1
n + 1

n∑
k=0

xk+m = x (convergence in norm)

uniformly on m ≥ 0. If σ-lim ||xn − x|| = 0, we will say that {xn} is absolutely
almost convergent or aσ-convergent to x, and will use the notation aσ-limxn = x

(Note that in [3] we have used the notation sσ-lim. To distinguish absolute almost-
convergence from strong almost-convergence, in this paper we adopt the notation
aσ-lim instead of sσ-lim). It is known [3] that

strong convergence ⇒ absolute almost-convergence
⇒ strong almost-convergence
⇒ weak almost-convergence.

These implications are strict. Related counter-examples can be found in [3] and
[4]. It is known [2] that {xn} strongly converges to x ∈ X if and only if {xn} is
strongly almost-convergent to x and ‖xn+1 − xn‖ → 0 as n→ ∞. Clearly, strong
almost-convergence implies (C, 1)-convergence. But there is no relation between
(C, 1)-convergence and weak almost-convergence.

Let Xσ := {{xn} ∈ �∞(X); σ- limxn = x for some x ∈ X}, and Xaσ :=
{{xn} ∈ �∞(X); aσ- limxn = x for some x ∈ X}. These two spaces are closed
linear subspaces of �∞(X). In particular, the space Caσ is a unital Banach sub-
algebra of �∞ and every Banach limit on Caσ is a multiplicative linear functional
on Caσ [3, Corollary 2.9].

Now we define notions of lim sup and lim inf in the sense of σ-limit and Cauchy
sequence in the sense of aσ-limit.

Definition 1.

(a) Let {an} be a bounded sequence of real numbers. We define σ- lim sup
n→∞

an :=

sup
φ∈πσ

φ({an}) and σ- lim inf
n→∞ an := inf

φ∈πσ

φ({an}).
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(b) A sequence {xn} ∈ �∞(X) is said to be a aσ-Cauchy sequence if

σ- lim sup
n→∞

σ- lim sup
m→∞

||xn − xm|| = 0,

which, by (a), is equivalent to

ψn(φm(||xn − xm||)) = 0 for all φ, ψ ∈ πσ.

It is clear that a = σ- liman exists if and only if σ- lim lim sup
n→∞

an = σ-

lim lim inf
n→∞ an = a. In particular, for an ≥ 0, σ- liman = 0 if and only if σ- lim sup

n→∞
an = 0. Thus, for {xn} ∈ �∞(X), where X is a real Banach space, x = σ- limxn

exists if and only if

σ- lim sup
n→∞

〈xn, x
∗〉 = σ- lim inf

n→∞ 〈xn, x
∗〉 = 〈x, x∗〉

for all x∗ ∈ X∗; and x = aσ- limxn exists if and only if σ- lim sup
n→∞

‖xn − x‖ = 0,

i.e., φ({‖xn − x‖}) = 0 for all φ ∈ πσ .
If {xn} is a sequence in X , it is easy to see that {xn} is a Cauchy sequence if

and only if
lim sup

n→∞
lim sup
m→∞

||xn − xm|| = 0.

In Theorem 2.3 we prove an analogous Cauchy criterion in the sense of aσ-limit.
In Theorem 2.4, we give a sufficient condition on a sequence {{x(m)

n }∞n=0}∞m=0 in
�∞(X) for the following equality to hold

aσ- lim
m→∞σ- lim

n→∞ x(m)
n = σ- lim

n→∞ aσ- lim
m→∞ x(m)

n .

In Section 3, we first give two examples showing the existence of σ- lim
n→∞ sinm

(nθ), σ- lim
n→∞ cosm(nθ), and σ- lim

n→∞ eınθ for all θ ∈ R and m = 0, 1, 2, . . .. Us-
ing these facts and applying Theorem 2.4, we show (Theorem 3.3) that for any
weakly continuous function f : [−1, 1] → X both σ- lim

n→∞ f(sin(nθ)) and σ-
lim

n→∞ f(cos(nθ)) exists. It is also shown that if a function f : ∆ → C is continuous

on the closed disc ∆ of C and is analytic in the interior of ∆, then σ- lim
n→∞ f(eınθ)

exists.

2. Main Result

Recall that the canonical mapping J : X → X ∗∗ is defined by 〈x∗, Jx〉 :=
〈x, x∗〉 ≡ x∗(x) for all x ∈ X and x∗ ∈ X∗.
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Lemma 2.1. Let {xn} and {yn} be two bounded sequences in X . Suppose
there is a φ ∈ πσ such that

ψn(φm(||xn − ym||)) = 0 for all ψ ∈ πσ.

Then aσ-limxn = x for some x ∈ X and 〈x, x∗〉 = φm(〈ym, x
∗〉).

Proof. Define h(x∗) := φm(〈ym, x
∗〉) for x∗ ∈ X∗. It is clear that h ∈ X∗∗.

Then we have for every m = 1, 2, . . . and x∗ ∈ X∗

|〈x∗, Jxn − h〉| = |〈xn, x
∗〉 − φm(〈ym, x

∗〉)|
≤ φm(|〈xn − ym, x

∗〉|)
≤ φm(||xn − ym||)||x∗||.

This implies that ||Jxn − h|| ≤ φm(||ym − xn||). By the assumption, we have for
every ψ ∈ πσ

ψn(||Jxn − h||) ≤ ψn(φm(||ym − xn||)) = 0.

Therefore we have aσ-limJxn = h and hence {Jxn} is strongly almost-convergent
to h. This shows that h ∈ J(X). Hence h = Jx for some x ∈ X , which implies
that

φm(〈ym, x
∗〉) = h(x∗) = 〈x∗, Jx〉 = 〈x, x∗〉.

Since ||Jxn − h|| = ||Jxn − Jx|| = ||xn − x|| for all n ≥ 1, we must have

σ- lim ||xn − x|| = σ- lim ||Jxn − Jx|| = 0.

This proves that aσ-limxn = x and the proof is complete.

If we take xn = yn for all n in Lemma 2.1, we obtain the following Cauchy
criterion for the existence of the aσ-limit.

Corollary 2.2. Let {xn} be a bounded sequence in X . Suppose there is a
φ ∈ πσ such that

ψn(φm(||xn − xm||)) = 0 for all ψ ∈ πσ.

Then aσ-limxn = x for some x ∈ X .

If the sequence {xn} ∈ Xaσ has the aσ-limit x, then φ({‖xn − x‖}) = 0 for
all φ ∈ πσ , so that σ- lim sup

n→∞
‖xn − x‖ = 0. Hence

σ- lim sup
n→∞

σ- lim sup
m→∞

||xn − xm||
≤ σ- lim sup

n→∞
σ- lim sup

m→∞
||xn − x|| + σ- lim sup

n→∞
σ- lim sup

m→∞
||x− xm||

= σ- lim sup
n→∞

||xn − x||+ σ- lim sup
m→∞

||x− xm|| = 0.



Almost Convergence of Sequences in Banach Spaces in Weak, Strong, and Absolute Senses 213

So, a aσ-convergent sequence {xn} must be a aσ-Cauchy sequence. Combining
this fact and Corollary 2.2, we have the following theorem.

Theorem 2.3. A sequence {xn} ∈ �∞(X) is aσ-convergent if and only if it is
a aσ-Cauchy sequence in X .

Theorem 2.4. Suppose X is a Banach space. If {w(m)}∞m=1 (w(m) :=
{x(m)

n }∞n=1 ∈ Xσ) is a sequence in Xσ such that

aσ- lim
m→∞ w(m) = w for some w = {xn} ∈ �∞(X).

For each m ∈ N let ym := σ- lim
n→∞x

(m)
n . Then aσ- lim

m→∞x
(m)
n = xn for all n ∈ N,

w ∈ Xσ, and aσ- lim
m→∞ ym = σ- lim

n→∞xn, that is,

(2.1) aσ- lim
m→∞σ- lim

n→∞ x(m)
n = σ- lim

n→∞ aσ- lim
m→∞ x(m)

n .

In particular, if {w (m)}∞m=1 is a sequence in Xσ converging to a bounded sequence
w = {xn} ∈ �∞(X) in sup-norm, then w ∈ Xσ and

(2.2) s- lim
m→∞σ- lim

n→∞x(m)
n = σ- lim

n→∞xn.

Proof. Since ||x(m)
n − xn|| ≤ ||w(m) − w||∞ for all m, k = 1, 2, . . . and aσ-

lim
m→∞ w(m) = w, we have aσ- lim

m→∞x
(m)
n = xn for all n = 1, 2, . . .. It follows

from the closedness of Xσ (cf. [3, Theorem 2.6]) that w = aσ- lim
m→∞ w(m) =∈ Xσ.

Hence x := σ- lim
n→∞ xn exists. By Theorem 2.3, {w(m)} is a aσ-Cauchy sequence.

Therefore we have for all x∗ ∈ X∗, m, n, l = 1, 2, . . .

〈ym −x, x∗〉 = 〈ym −x(m)
n , x∗〉+ 〈x(m)

n −x(l)
n , x∗〉+ 〈x(l)

n −xn, x
∗〉+ 〈xn−x, x∗〉.

This implies

Re〈ym − x, x∗〉
≤ Re〈ym − x

(m)
n , x∗〉+ ||x(m)

n − x
(l)
n || · ||x∗||

+Re〈x(l)
n − xn, x

∗〉+ Re〈xn − x, x∗〉
≤ Re〈ym − x

(m)
n , x∗〉+ ||w(m) − w(l)||∞ · ||x∗||

+Re〈x(l)
n − xn, x

∗〉+ Re〈xn − x, x∗〉.
Therefore we have for every φ, ψ ∈ πσ
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(2.3)

Re〈ym − x, x∗〉
≤ ψn(Re〈ym − x

(m)
n , x∗〉) + σ- lim

l→∞
||w(m) − w(l)||∞ · ||x∗||

+ψn(Reφl(〈x(l)
n − xn, x

∗〉)) + ψn(Re〈xn − x, x∗〉)
= Reψn(〈ym − x

(m)
n , x∗〉) + ||w(m) − w||∞ · ||x∗||

+Reψn(φl(〈x(l)
n − xn, x

∗〉)) + Reψn(〈xn − x, x∗〉)
= 0 + ||w(m) − w||∞ · ||x∗||+ 0 + 0.

Since x∗ ∈ X∗ is arbitrary, it follows from the Hahn-Banach theorem that (2.3)
implies

(2.4) ||ym − x|| ≤ ||w(m) − w||∞ for all m ≥ 1.

By the assumption aσ- lim
m→∞ w(m) = w, we have that

σ- lim sup
m→∞

||ym − x|| ≤ σ- lim sup
m→∞

||w(m) − w||∞ = 0.

Therefore aσ- lim
m→∞ ym = x. This proves (2.1). If the sequence {w(m)} converges

to w = {xn} in sup-norm, then s- lim
m→∞ x

(m)
n = xn and (2.4) implies s- lim

m→∞ ym =
x, i.e., (2.2) holds. This completes the proof.

3. APPLICATIONS

In this section, for a nonempty compact subset Ω of C, we shall denote by
C(Ω) the Banach space consisting of all continuous complex-valued functions and
CIR(Ω) := {f ∈ C(Ω)|f is real-valued } equipped with the sup-norm || · ||∞.

Example 1. (a) If θ ∈ 2πZ, then eınθ = 1 for all n ∈ Z, so σ- lim
n→∞ eınθ = 1.

(b) If θ �∈ 2πZ, then eıθ �= 1 and we have for every φ ∈ πσ

eıθφn(eınθ) = φn(eı(n+1)θ) = φn(eınθ).

This implies φn(eınθ) = 0 for φ ∈ πσ and hence σ- lim
n→∞ eınθ = 0.

Example 2. For every m = 0, 1, 2, . . . and for every θ ∈ R, both σ-
lim

n→∞ sinm(nθ) and σ- lim
n→∞ cosm(nθ) exist.
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It is obvious for the case m = 0. So, we may assumem = 1, 2, . . .. By Example
1, we obtain that

σ- lim
n→∞ sinm(nθ)

= σ- lim
n→∞(

eınθ − e−ınθ

2ı
)m

= σ- lim
n→∞

1
(2ı)m

m∑
j=0

(
m

j

)
(−1)m+jeınjθe−ın(m−j)θ

= σ- lim
n→∞

1
(2ı)m

m∑
j=0

(
m

j

)
(−1)m+jeın(2j−m)θ

=
1

(2ı)m

m∑
j=0

(
m

j

)
(−1)m+jσ- lim

n→∞ eın(2j−m)θ

exists. Similarly,

σ- lim
n→∞ cosm(nθ) =

1
2m

m∑
j=0

(
m

j

)
σ- lim

n→∞ eın(2j−m)θ

exists.
Now, we consider the case that θ ∈ R is such that kθ �∈ 2πZ for every nonzero

integer k. If m is a positive odd integer, then

σ- lim
n→∞ sinm(nθ) =

1
(2ı)m

m∑
j=0

(
m

j

)
(−1)m+jσ- lim

n→∞ eın(2j−m)θ = 0;

if m is a nonnegative even integer and m = 2k, then

σ- lim
n→∞ sinm(nθ) =

1
22k(−1)k

(
2k
k

)
(−1)k =

1
22k

(
2k
k

)
.

Similarly, we have

σ- lim
n→∞ cosm(nθ) =

0 if m is a positive odd integer
1

22k

(2k
k

)
if m = 2k is a nonnegative even integer.

Theorem 3.1. For every θ ∈ R, both σ- lim
n→∞ f(sin(nθ)) and σ- lim

n→∞ f(cos(nθ))

exist for all f ∈ C[−1, 1]. In particular, σ- lim
n→∞ | sin(nθ)| and σ- lim

n→∞ | cos(nθ)|
exist.

Proof. Since the σ-limit is linear, we may assume that f is a real-valued
function. Define h(θ) := sin(θ) or cos(θ) for θ ∈ R. Let E := {f ∈ CIR[−1, 1]|σ-
lim

n→∞ f(h(nθ)) exists }. By last two examples, E contains all polynomials and E
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is a linear subspace of CIR[−1, 1]. Since the set of all polynomials is dense in
CIR[−1, 1] by the famous Weierstrass theorem, it suffices to show that E is closed.
Let {fm} be a sequence in E convergent to some element f ∈ CIR[−1, 1]. Then
{fm(h(nθ))}∞n=1, m = 1, 2, . . ., is a sequence in Rσ convergent to {f(h(nθ))} in
sup-norm. It follows from Theorem 2.4 that {f(h(nθ))} ∈ Rσ and

lim
m→∞ σ- lim

n→∞ fm(h(nθ)) = σ- lim
n→∞ lim

m→∞ fm(h(nθ)) = σ- lim
n→∞ f(h(nθ)).

This completes the proof.

Theorem 3.2. Let ∆ be the closed disc {λ ∈ C; |λ| ≤ 1} and let A(∆)
be the algebra of all continuous functions f : ∆ → C that can be approximated
uniformly by polynomials on ∆ (cf. [10, p. 410]). Then σ- lim

n→∞ f(eınθ) exists for
all θ ∈ R. Furthermore, if, in addition, kθ �∈ 2πZ for every nonzero integer k, then
σ- lim

n→∞ f(eınθ) = f(0).

Proof. Let θ ∈ R be arbitrary. If f is a polynomial, it follows from Example
1 that σ- lim

n→∞ f(eınθ) exists. Suppose f is continuous on ∆ and is analytic in the
interior of ∆. Then there is a sequence {fm} of polynomials such that fm → f uni-
formly on ∆. Therefore for every m ≥ 1 {fm(eınθ)}∞n=1 ∈ Cσ and {fm(eınθ)}∞n=1

converges to {f(eınθ)}∞n=1 uniformly as m → ∞. Since Cσ is a Banach space,
this implies {f(eınθ)}∞n=1 ∈ Cσ . Therefore σ- lim

n→∞ f(eınθ) exists. Now, we sup-
pose kθ �∈ 2πZ for every nonzero integer k. By Example 1, we have we have
σ- lim

n→∞ fm(eınθ) = fm(0) for all m ≥ 1. It follows from Theorem 2.4 that

σ- lim
n→∞ f(eınθ) = σ- lim

n→∞ lim
m→∞ fm(eınθ)

= lim
m→∞σ- lim

n→∞ fm(eınθ)

= lim
m→∞ fm(0) = f(0).

This completes the proof.

Remark. Indeed, A(∆) ≡ {f : ∆ → C| f is continuous on ∆ and is analytic
in the interior of ∆}. For, if f : ∆ → C is continuous on ∆ and is analytic in
the interior of ∆, and if 0 < r < 1, then the function fr(z) := f(rz) is analytic
on {z ∈ C; |z| < 1

r }. Therefore fr can be approximated (uniformly on ∆) by
a sequence of polynomials. Since fr → f uniformly on ∆ as r ↗ 1, we must
have that f can be approximated by a sequence of polynomials uniformly on ∆.
In Theorems 3.1 and 3.2, we have |σ- lim

n→∞ f(h(nθ))| ≤ ||f ||∞, the sup-norm of f
(see [4, Theorem 3.2]). This fact is used in the proof of the next theorem.

Theorem 3.3. Suppose X is a reflexive Banach space and θ ∈ R.
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(i) If f : [−1, 1] → X is weakly continuous, then both σ- lim
n→∞ f(sin(nθ)) and

σ- lim
n→∞ f(cos(nθ)) exist.

(ii) If f : ∆ → X is weakly continuous on ∆ and f is analytic in the interior of
∆, then

σ- lim
n→∞ f(eınθ) exists.

Furthermore, if, in addition, kθ �∈ 2πZ for every nonzero integer k, then
σ- lim

n→∞ f(eınθ) = f(0).

Proof. Fix a θ ∈ R. Suppose a function f is as mentioned in part (i) (resp.
(ii)) and suppose h(t) := sin(t) or cos(t) (resp. h(t) := eıt), t ∈ R. For every
x∗ ∈ X∗, we define

F (x∗) := σ- lim
n→∞〈f(h(nθ)), x∗〉.

By Theorems 3.1 and 3.2, F is well-defined. Since the σ-limit is linear, so is F .
On the other hand, we have

|F (x∗)| = |σ- lim
n→∞〈f(h(nθ)), x∗〉| ≤ ||f ||∞ · ||x∗||

for all x∗ ∈ X∗. Since X is reflexive, this implies that F = Jx for some x ∈ X .
Therefore we have for every x∗ ∈ X∗

σ- lim
n→∞〈f(h(nθ)), x∗〉 = 〈x∗, Jx〉 = 〈x, x∗〉.

This proves that
σ- lim

n→∞ f(h(nθ)) = x.

Now, we suppose kθ �∈ 2πZ for every nonzero integer k. It follows from
Theorem 3.2 that for every x∗ ∈ X∗

σ- lim
n→∞〈f(eınθ), x∗〉 = 〈f(0), x∗〉.

Therefore σ- lim
n→∞ f(h(nθ)) = f(0). This completes the proof.
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