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A NOTE ON UNITARY BASES AND NONCOMMUTATIVE WAVELETS

Wei Guo

Abstract. We use unitary operators in a finite von Neumann algebra as
orthonormal basis for certain Hilbert space. Possible applications in non-
commutative wavelets and computer graphics are discussed.

1. INTRODUCTION

This is a continuation of our study of unitary bases and non commutative
wavelets. In this paper, we shall use our unitary bases in an operator algebra to the
study of representations of two dimensional functions and discuss certain conver-
gence. Classically, tensor product is used to construct two (or higher) dimensional
wavelets from one (or lower) dimensional ones by tensor product. Our construction
in this article is based on crossed products. More specifically, we use an irrational
rotation action of Z (viewed as the group of functions of the form e2πinθ, n ∈ Z)
on functions on the unit circle (may be identified with the unit interval [0, 1]). Then
we use an approximate representation of functions f(x, y), (x, y) ∈ [0, 1]× [0, 1],
of two variables into the irrational rotation algebra. Then the unitary basis in the
(non-commutative) irrational algebra gives rise to an (approximate) orthonormal
basis for functions f(x, y) of two variables. In other words, we may view the
irrational rotation algebra as a continuous matrix algebra with continuous indices
(t, θ) ∈ [0, 1] × [0, 1]. The unitary basis constructed (see our previous paper [4])
here can be described by functions with “thin” supports (in matrix terms, they are
certain band matrices). This coincides with the known fact that many of the non-
commutative (operator) algebras can be viewed as continuous matrix algebras. The
difference between our construction and the classical tensor product construction is
that our lower dimensional wavelets are viewed as diagonally supported functions.
For applications, we may use some classical wavelets, such as the Haar wavelets,
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for our base unitary supported on the main diagonal. Then the other unitary operator
induced by the action can be viewed as a matrix (with values only 0 and 1) with
support on a diagonal line (parallel to the main diagonal). In a forth coming paper,
we will study the algorithm and convergence properties of our approximation, as
well as some applications in cryptography and computer graphics. For some basic
topics related to this paper, we refer to [1, 2] and [5].

2. IRRATIONAL ROTATION ALGEBRAS

In our previous paper [4], we have used the embedding of irrational rotation
algebras as dense subalgebras of the hyperfinite factor R of type II1. In this section
we describe more details of this class of algebras and study their representations.
First, recall the definition of such algebras. Consider a * algebra generated by two
unitary elements U and V such that they satisfy a relation UV = e2πiθV U , where
θ is a real number between 0 and 1. We use Aθ to denote such a * algebra with
generators U and V with the relation described above. When θ is a rational number,
the algebra Aθ is a finite dimensional algebra. In this case, we write θ = m

n for
m, n ∈ N and co-prime, one easily shows that Aθ is isomorphic to the full matrix
algebra Mn(C). But when θ is irrational, Aθ is an infinite-dimensional algebra.
Let I be the unit of Aθ and define a linear functional τ on Aθ by τ(I) = 1 and
τ(UmV n) = 0 whenever n, m ∈ Z and at lease one of them is non zero (since
U, V are unitary elements, U∗ = U−1 and V ∗ = V −1). This τ is a trace on Aθ ,
i.e., τ(AB) = τ(BA) for all A, B ∈ Aθ, and induces an inner product on Aθ:
〈A, B〉 = τ(B∗A). The completion of Aθ with respect to the norm given by this
inner product is denoted by L2(Aθ, τ). Then Aθ acts on the Hilbert space L2(Aθ, τ)
by left multiplication. The (operator) norm closure of Aθ is the so-called irrational
rotation C*-algebra, denoted by Rθ . The strong operator closure of Aθ (or Rθ)
always gives rise to the unique hyperfinite II1 factor R. The action of R on the
unit vector I gives rise to an embedding of R into L2(Aθ, τ). Sometimes, we may
use L2(R, τ) instead of L2(Aθ, τ) to denote the same Hilbert space.

In the rest of this paper, we shall assume that θ is a given irrational number.
Then the following lemma is immediate (see, e.g., [4]).

Lemma 2.1. The set {UmV n : m, n ∈ Z} forms an orthonormal basis of the
Hilbert space L2(Aθ, τ).

We shall identify elements of R with vectors in L2(R, τ), which, in turn, are
�2-sums with respect to the above orthonormal basis. But not every element in
L2(R, τ) gives rise to a bounded linear operator by the left multiplication on Aθ

(viewed as a dense subspace of L2(R, τ)).
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The following two results are of some interests to the structure of the factor R
in relation to its generators U and V .

Proposition 2.2. If A(I + U−1V ) = 0 for some A ∈ R, then A = 0.

Proof. Since A ∈ L2(R, τ), we can write A =
∑

m,n λm,nUmV n, for λm,n ∈
C and

∑
m,n |λm,n|2 < ∞. Then

A(I + U−1V ) =
∑
m,n

λm,nUmV n +
∑
m,n

λm,nUmV nU−1V

=
∑
m,n

λm,nUmV n +
∑
m,n

λm,ne2πinθUm−1V n+1

= 0,

so that λm,n = −λm+1,n−1e
2πi(n−1)θ for all integers m, n. Since |e2πinθ| = 1, one

of λm,n being non-zero would yield infinitely many non-zero λm,n with the same
modulus. Then A would not be in L2(R, τ), so that λm,n must be 0 for all integers
m, n.

Theorem 2.3. The element U + V generates R as a von Neumann algebra.

Proof. We will show that U and V are in the weak-operator closure of the
algebra generated by U + V and its adjoint U−1 + V −1. Let B be the abelian
von Neumann subalgebra of R generated by U−1V , and M the von Neumann
subalgebra of R generated by U + V and its adjoint U−1 + V −1.

First we show that M contains B. It is not hard to see that M and B both
contain the identity I of R. Since (U + V )(U−1 + V −1) = 2I + V U−1 + UV −1

and (U−1+V −1)(U +V ) = 2I +U−1V +V −1U , we have that V U−1+UV −1 and
U−1V + V −1U are contained in M. But we have the equalities V U−1 + UV −1 =
e2πiθU−1V + UV −1 and U−1V + V −1U = U−1V + e2πiθUV −1. The linear com-
binations of these two elements give us that U−1V is in M, so that M contains B.

Using function calculus in B (B is ∗-isomorphic to L∞(0, 1)), we know that
I +U−1V generates B as a von Neumann algebra. Then there are elements An in B
such that (I +U−1V )An tends to I in strong operator topology. Since U +V ∈ M
by our assumption, we have that (U+V )An = U(I+U−1V )An tends to U strongly.
This implies that U lies in M. The same method yields that V lies in M. This
completes the proof of our result.

It is well known (see, e.g., [4]) that R contains many other dense subalgebras
such as the class of UHF C*-algebras. Thus the ascending union of certain finite
dimensional matrix subalgebras of R is dense in R. In the following section, we
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shall study the approximations of elements in R by matrices and representations of
functions of two variables by elements in R.

3. REPRESENTATIONS OF FUNCTIONS OF TWO VARIABLES IN R

Suppose that the hyperfinite II1 factor R has a dense subalgebra given by the
ascending union of full matrix algebras Mnj (C) with j = 1, 2, . . . and nj |nj+1.
We have used this fact to construct unitary basis for R with nice properties (see
[4]). In the first part of this section, we shall construct an approximate embedding
of the functions of two variables into the hyperfinite II1 factor R. In the second
part, we discuss the convergence of this approximation.

For simplicity, we shall consider continuous functions on the domain [0, 1] ×
[0, 1]. We define a matrix-like multiplication, denoted by �, for two such functions
f(s, t) and g(s, t) as follows:

(f � g)(s, t) =
∫ 1

0

f(s, x)g(x, t)dx.

This type of multiplication is studied in integral operator theory. When f is given
and g varies, the integral operator induced by f is trace-class (and thus a compact
operator) in the usual Hilbert space structure for functions on [0, 1] × [0, 1] (with
respect to Lebesgue measure). Let H = L2([0, 1]× [0, 1]), Tr denote the usual trace
for operators acting on H. Let T (H) be the algebra of all trace class operators on
H. Then 〈A, B〉 = Tr(B∗A) defines an inner product on T (H). Suppose {ei}∞i=1

is an orthonormal basis for H. Then {ei ⊗ ej}i,j form an orthonormal basis for
T (H), where, for any x in H, ei ⊗ ej(x) = 〈x, ei〉ej . Here we shall not study, in
details, the decomposition of functions on [0, 1]× [0, 1] with respect to these types
of bases in T (H). In stead, we shall use the convergence given by the normalized
trace on R. For any large n (here we assume that n = nj for some j), we partition
the square [0, 1]× [0, 1] into n2 small squares each of which has side length 1/n.
We may approximate a continuous function f by a local constant function f0 such
that f0 is constant, denoted by aj,k , in each small square ( j

n , j+1
n ) × ( k

n , k+1
n ) for

all 0 ≤ j, k ≤ n − 1. Now we may identify f0 with the matrix A = (aj,k)j,k. For
the given n, A ∈ Mn(C) ⊆ R. From Lemma 2.1,

A =
∑

j,k∈Z

λj,kU
jV k,

where U, V are the unitary generators of R given above and λj,k = τ(AV −kU−j).
The convergence of the above sum is in strong-operator topology and thus in trace-
norm.
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Classically, the convergence in wavelet decomposition of functions is in usual
Lebesque measure of the underlying domain. Our above representation of functions
on the unit square converge, in the approximation by finite linear combinations of
the base elements, with respect to a singular measure on the unit square. More
precisely the unit square has a uniform singular measure. Here we describe more
details of the convergence.

We shall consider a local constant function f , where, in each small square
( j

n , j+1
n ) × ( k

n , k+1
n ) for all 0 ≤ j, k ≤ n − 1, f take a constant value aj,k. Again,

we use a matrix A = (aj,k)j,k to denote this function. Conversely, any matrix can be
viewed as a local constant function in a similar way. Then we view A as an element
in R. Thus A =

∑
l,m∈Z λl,mU lV m, where U, V are irrational unitary generators

of R with the given irrational number θ. In applications, especially in numerical
computations, we use rational numbers p

q to approximate θ, where p, q are positive
integers. In general, q is very large. We may choose q an integer multiple of n (or
q = n when n is a large number). Now we let U be the q × q diagonal unitary
with diagonal entries given by e2πi/q, e2·2πi/q, . . . , eq·2πi/q, V be the unitary matrix
with (j, j − p)-entry 1 and 0 else where (here j = 1, . . . , q and j − p is identified
with j − p + q when j − p < 1). Since A is an n × n matrix and q is a multiple
of n, we may view A as a q × q matrix where each constant aj,k is identified with
q
n × q

n scalar matrix. Let τ be the normalized trace on all q × q matrices. Then
A =

∑q
l,m=1 λl,mU lV m, where λl,m = τ(AV −mU−l). In applications, when A

is an approximation to a (continuous) function f , now we may use the finite sum∑q
l,m=1 λl,mU lV m to replace such an approximation. When f is continuous, we

may use the matrix (f(j/q, k/q))j,k instead of A. More computation will be given
in a forthcoming paper.

Note that the convergence given by the normalized trace τ on q×q matrices is
not equivalent to Lebesque measure on the unit square, but comparable to Lebesque
measure multiplied by the constant q. Thus our method works the best for small
valued functions f so that

∑q
j,k=1 |f(j/q, k/q)|2 is comparable to (or smaller than) q.

Numerically, we do not need to obtain the local constant approximation for
continuous functions. We can obtain the coefficients λj,k directly from the function
f and the unitary elements U and V .

4. CONTINUOUS MATRIX REPRESENTATION

In this section, we initiate another representation. We shall use ideas of simple
maximal abelian subalgebras of R to construct another embedding of the functions
into R. The idea comes from the continuous matrix representation for factors of
type II1 (due to Ambrose and Singer). This works when the factor has a “simple”
maximal abelian subalgebra (or, masa). A masa A in a II1 factor M is called
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simple if there is a vector x in L2(M, τ) such that AxA span a dense subspace
of L2(M, τ). One easily shows that R has a simple masa. In fact, we have the
following theorem (see [3]):

Theorem 4.1. Let R and U, V be given as above. Suppose U and V are the
maximal abelian subalgebras of R generated by U and V respectively. Choose
any unitary element W in V so that all the coefficients λ n in W =

∑
n∈Z λnV n

are non zero. Then R is the closed linear span of UWU . Thus the linear span of
UWU is dense in L2(R, τ) and U is a simple masa.

If we identify U with L∞[0, 1] and U ⊗ U with L∞[0, 1]⊗ L∞[0, 1] with vari-
ables given by (s, t), then we may define a map Ψ : f(s)g(t) 
→ f(s)Wg(t),
which extends linearly to L∞[0, 1]⊗L∞[0, 1]. Again we realize all functions given
by finite sums of simple tensor products as elements in R. Using linear basis
{UnWUm : n, m ∈ Z}, we can approximate functions of two variables by finite
linear combinations of these base elements. Note that Ψ is only a one-to-one corre-
spondence between L∞[0, 1]⊗L∞[0, 1] and certain elements in R. The elements in
R are not viewed as “local constant” functions directly. This may give us ideas to
develop certain methods in cryptography. The convergence of this approximation is
unknown (for a large class of functions, it might be comparable to the convergence
on the unit square given by the usual Lebesgue measure).

The advantage of this representation is that only one unitary varies with its
powers and the other can be chosen fixed. The disadvantage is that we do not have
an orthonormal basis in general. Thus it is hard to compute the linear coefficients
in the approximation. We do not know if one can choose certain nice vectors to
replace W so the coefficients can be easily computed in the linear approximation.
The continuity property of Ψ is another interesting problem. We end this article with
the following question: Can one choose an element X in R or L2(R, τ) (replacing
the above W ) so that the map Ψ extends to C([0, 1]× [0, 1])?
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