RETRIEVE A SPERNER MAP FROM A SPERNER MATROID

Shyh-Nan Lee and Mau-Hsiang Shih

Abstract

A retrievel of a Sperner map from a Sperner matroid is illustrated. As an application, a new proof of a completion theorem of Lovasz's matroid version of Sperner's lemma is given.

1. Introduction

The purpose of this note is to give a simple procedure which allows us to retrieve a Sperner map from a Sperner matroid.

2. Retrieving a Sperner Map on the Basis of a Sperner Matroid

Let K be a triangulation of a d-simplex $a_{0} a_{1} \ldots a_{d}$ in a Euclidean space, and $V(K)$ the vertex set of K. A map $\varphi: V(K) \rightarrow\{0,1, \ldots, d\}$ is said to be a Sperner map if for each $i_{0}, i_{1}, \ldots, i_{k}$ with $0 \leq i_{0}<i_{1}<\ldots<i_{k} \leq d$ and for each $v \in V(K) \cap a_{i_{0}} a_{i_{1}} \ldots a_{i_{k}}, \varphi(v) \in\left\{i_{0}, i_{1}, \ldots, i_{k}\right\}$. A matroid M on $V(K)$ is called a Sperner matroid over K if for each $S \subset\left\{a_{0}, a_{1}, \ldots, a_{d}\right\}$ and for each $v \in V(K) \cap \operatorname{conv}(S), v \in \operatorname{cl}_{M}(S)$, where $\operatorname{conv}(S)$ stands for the convex hull of S and $c l_{M}(S)$ denotes the closure of S in M. Let M be a Sperner matroid over K such that $\left\{a_{0}, a_{1}, \ldots, a_{d}\right\}$ forms a basis of M. Put

$$
\begin{equation*}
F_{j} \equiv c l_{M}\left(\left\{a_{0}, a_{1}, \ldots, a_{j}\right\}\right)(j=0,1, \ldots, d) . \tag{1}
\end{equation*}
$$

Let us define $\varphi: V(K) \rightarrow\{0,1, \ldots, d\}$ by setting

$$
\varphi(v) \equiv\left\{\begin{array}{lll}
0 & \text { if } & v \in F_{0} \tag{2}\\
j & \text { if } & v \in F_{j} \backslash F_{j-1}(j=1,2, \ldots, d)
\end{array}\right.
$$

Received March 20, 2005.
Communicated by Jen-Chih Yao.
2000 Mathematics Subject Classification: 25A99, 52C40, 55N35.
Key words and phrases: Sperner map, Sperner matroid.
Research supported in part by National Science Council of the Republic of China.

The problem that we consider in this paper is the following : Under what conditions can φ become a Sperner map? It is clearly necessary that the $(d-1)$-face $a_{1} a_{2} \ldots a_{d}$ contains no loops of M. To see this, if $a_{1} a_{2} \ldots a_{d}$ contains a loop v of M, then $\varphi(v)=0$ and $v \in V(K) \cap a_{1} a_{2} \ldots a_{d}$. As φ is a Sperner map, we have $\varphi(v) \in$ $\{1,2, \ldots, d\}$, in contradiction. What is perhaps surprising is that this condition is also sufficient.

We shall establish the following:
Theorem 1. Let M be a Sperner matroid over a triangulation K of a d-simplex $a_{0} a_{1} \ldots a_{d}$ such that $\left\{a_{0}, a_{1}, \ldots, a_{d}\right\}$ forms a basis. Then the map φ given in (2) is a Sperner map if and only if the $(d-1)$-face $a_{1} a_{2} \ldots a_{d}$ contains no loops of M.

To prove Theorem 1, we need the following
Lemma. Let B be a basis of a matroid M. Suppose
(a) $S \subset T \subset B$,
(b) $X \subset B, X \cap T=\emptyset$,
(c) $y \in c l_{M}(T) \backslash c l_{M}(S)$.

Then $y \in c l_{M}(T \cup X) \backslash c l_{M}(S \cup X)$.
Proof. Suppose $X \neq \emptyset$, and put

$$
X \equiv\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}
$$

Then $y \notin c l_{M}\left(S \cup\left\{x_{1}\right\}\right)$. To see this, suppose, by contradiction, that $y \in c l_{M}(S \cup$ $\left.\left\{x_{1}\right\}\right)$. Then, by MacLane-Steinitz exchange property, $x_{1} \in c l_{M}(S \cup\{y\})$. Since $S \subset T$ and $y \in c l_{M}(T)$, we have

$$
x_{1} \in c l_{M}(S \cup\{y\}) \subset c l_{M}(T)
$$

which contradicts $x_{1} \notin c l_{M}(T)$. Thus we have shown that
(a) ${ }^{\prime} S \cup\left\{x_{1}\right\} \subset T \cup\left\{x_{1}\right\} \subset B$,
(b) $)^{\prime}\left\{x_{2}, x_{3}, \ldots, x_{m}\right\} \subset B,\left\{x_{2}, x_{3}, \ldots, x_{m}\right\} \cap\left(T \cup\left\{x_{1}\right\}\right)=\emptyset$,
(c) ${ }^{\prime} y \in c l_{M}\left(T \cup\left\{x_{1}\right\}\right) \backslash l_{M}\left(S \cup\left\{x_{1}\right\}\right)$.

The same argument applies (a) $)^{\prime},(\mathrm{b})^{\prime}$, and (c)' now yielding $y \notin c l_{M}\left(S \cup\left\{x_{1}\right\} \cup\right.$ $\left.\left\{x_{2}\right\}\right)$. Iteration of this procedure m times concludes the proof of the lemma.

We now proceed to prove Theorem 1.
Part " only if" is obvious. To prove part " if", let $v \in V(K) \cap a_{i_{0}} a_{i_{1}} \ldots a_{i_{k}}(0 \leq$ $\left.i_{0}<i_{1}<\ldots<i_{k} \leq d\right)$. Since M is a Sperner matroid, we have

$$
\begin{equation*}
v \in c l_{M}\left(\left\{a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{k}}\right\}\right) \tag{3}
\end{equation*}
$$

We want to conclude that $\varphi(v) \in\left\{i_{0}, i_{1}, \ldots, i_{k}\right\}$; it is to split the argument into two cases.

Case 1. v is a loop. Then $a_{i_{0}} a_{i_{1}} \ldots a_{i_{k}}$ contains a loop of M. It follows from the hypothesis that $i_{0}=0$. Thus $\varphi(v)=0 \in\left\{i_{0}, i_{1}, \ldots, i_{k}\right\}$.

Case 2. v is not a loop. It follows from (3) and

$$
c l_{M}\left(\left\{a_{i_{0}}\right\}\right) \subsetneq c l_{M}\left(\left\{a_{i_{0}}, a_{i_{1}}\right\}\right) \subsetneq \ldots \subsetneq c l_{M}\left(\left\{a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{k}}\right\}\right)
$$

that either $v \in c l_{M}\left(\left\{a_{i_{0}}\right\}\right)$ or there exists $p \in\{1,2, \ldots, k\}$ such that

$$
v \in \operatorname{cl}_{M}\left(\left\{a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{p}}\right\}\right) \backslash c l_{M}\left(\left\{a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{p-1}}\right\}\right)
$$

If $v \in c l_{M}\left(\left\{a_{i_{0}}\right\}\right)$, then $v \in c l_{M}\left(\left\{a_{0}, a_{1}, \ldots, a_{i_{0}}\right\}\right)$ and, since v is not a loop, $v \notin$ $c l_{M}\left(\left\{a_{0}, a_{1}, \ldots, a_{i_{0}-1}\right\}\right)$ if $i_{0} \geq 1$. Therefore $v_{0} \in F_{0}$ if $i_{0}=0 ; v \in F_{i_{0}} \backslash F_{i_{0}-1}$ if $i_{0} \geq 1$. It follows that $\varphi=i_{0} \in\left\{i_{0}, i_{1}, \ldots, i_{k}\right\}$. Finally, if

$$
v \in c l_{M}\left(\left\{a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{p}}\right\}\right) \backslash c l_{M}\left(\left\{a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{p-1}}\right\}\right)
$$

then, by our lemma, we have

$$
v \in c l_{M}\left(\left\{a_{0}, a_{1}, \ldots, a_{i_{p}}\right\}\right) \backslash c l_{M}\left(\left\{a_{0}, a_{1}, \ldots, a_{i_{p-1}}\right\}\right)
$$

Thus $F_{i_{p-1}} \subsetneq F_{\varphi(v)} \subset F_{i_{p}}$, so that $i_{p-1}<\varphi(v) \leq i_{p}$. We claim that $\varphi(v)=i_{p}$. Suppose $\varphi(v)<i_{p}$. Then we have

$$
v \in \operatorname{cl}_{M}\left(\left\{a_{0}, a_{1}, \ldots, a_{i_{\varphi(v)}}\right\}\right) \backslash l_{M}\left(\left\{a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{p-1}}\right\}\right)
$$

so that, by our lemma,

$$
v \in c l_{M}\left(\left\{a_{0}, a_{1}, \ldots, a_{i_{\varphi(v)}}, a_{i_{p}}\right\}\right) \backslash c l_{M}\left(\left\{a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{p}}\right\}\right)
$$

in contradiction to $v \in \operatorname{cl}_{M}\left(\left\{a_{i_{0}}, a_{i_{1}}, \ldots, a_{i_{p}}\right\}\right)$. This contradiction shows that $\varphi(v)=i_{p}$, and we conclude that $\varphi(v) \in\left\{i_{0}, i_{1}, \ldots, i_{k}\right\}$.

This completes the proof.

3. A Sign Function

Let K be a triangulation of a d-simplex $a_{0} a_{1} \ldots a_{d}$ in a Euclidean space, M a Sperner matroid over K, and $B \equiv\left(a_{0}, a_{1}, \ldots, a_{d}\right)$ an ordered basis of M. Let $\Lambda_{B}: K \rightarrow\{-1,0,1\}$. We define $\Lambda_{B}\left(v_{0} v_{1} \ldots v_{d}\right)=1$ (resp. -1) if $v_{0} \in F_{0}$ and
$v_{j} \in F_{j} \backslash F_{j-1}(j=1,2, \ldots, d)$, where $F_{j}(j=0,1, \ldots, d)$ are given in (1), and $\operatorname{det}\left(\alpha_{i j}\right)>0$ (resp. $\operatorname{det}\left(\alpha_{i j}\right)<0$), where

$$
\left(\begin{array}{c}
v_{0} \tag{4}\\
\vdots \\
v_{d}
\end{array}\right)=\left(\begin{array}{ccc}
\alpha_{00} & \cdots & \alpha_{0 d} \\
\vdots & & \vdots \\
\alpha_{d 0} & \cdots & \alpha_{d d}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
\vdots \\
a_{d}
\end{array}\right), \sum_{j=0}^{d} \alpha_{i j}=1(0 \leq i \leq d)
$$

We define $\Lambda_{B}\left(v_{0} v_{1} \ldots v_{d}\right)=0$ otherwise. Let $\varphi: V(K) \rightarrow\{0,1, \ldots, d\}$. We call a d-simplex $v_{0} v_{1} \ldots v_{d} \in K$ positively (resp. negatively) completely labelled if $\varphi\left(v_{j}\right)=j(j=0,1, \ldots, d)$, and $\operatorname{det}\left(\alpha_{i j}\right)>0\left(\right.$ resp. $\left.\operatorname{det}\left(\alpha_{i j}\right)<0\right)$, where the matrix $\left(\alpha_{i j}\right)$ is given in (4). A d-simplex of K is completely labelled if it is positively or negatively completely labelled. It is obvious that $w_{1} v_{1} \ldots v_{d} \in K$ is completely labelled if and only if $\left\{\varphi\left(v_{0}\right), \varphi\left(v_{1}\right), \ldots, \varphi\left(v_{d}\right)\right\}=\{0,1, \ldots, d\}$. The celebrated Sperner lemma [7] asserts that if φ is a Sperner map then $\sharp\{\sigma \in K ; \sigma$ is completely labelled $\} \equiv 1(\bmod 2)$. The oriented Sperner lemma [1] states that
$\sharp\{\sigma \in K ; \sigma$ is positively completely labelled $\}-\sharp\{\sigma \in K ; \sigma$ is negatively completely labelled $\}=1$.

By Thoerem 1 and the oriented Sperner lemma, we have
Theorem 2. Let K be a triangulation of a d-simplex $a_{0} a_{1} \ldots a_{d}$ in a Euclidean space, and M a Sperner matroid over K such that the $(d-1)$-face $a_{1} a_{2} \ldots a_{d}$ contains no loops of M. If $B \equiv\left(a_{0}, a_{1}, \ldots, a_{d}\right)$ is an ordered basis of M, then
(a) $\sum_{\sigma \in K} \Lambda_{B}(\sigma)=1$,
(b) $\sum_{\sigma \in K}\left|\Lambda_{B}(\sigma)\right| \equiv 1(\bmod 2)$.

Proof. Note that (b) is a consequence of (a). We need only prove (a). By hypothesis, we can retrieve a Sperner map φ given in (2). As for each $\sigma \in K$, $\Lambda_{B}(\sigma)=1$ (resp. $\Lambda_{B}(\sigma)=-1$) if and only if σ is positively (resp. negatively) completely labelled, (a) follows from the oriented Sperner lemma.

Theorem 2 was recently proved by the authors in [4] with a completely different proof. An example given in [4] shows that the condition " the ($d-1$)-face $a_{1} a_{2} \ldots a_{d}$ contains no loops "cannot be dispensed with. Theorem 2(b) is a generalization of Lovász's theorem. It complements Lovász's theorem in two aspects: one concerns an arbitrary matroid while the other is the assertion of oddness. Indeed, Lovász [2] proved the following.

Theorem 3. Let K be a triangulation of a d-simplex $a_{0} a_{1} \ldots a_{d}$ in a Euclidean space, and M a Sperner matroid over K without loops. If $\left\{a_{0}, a_{1}, \ldots, a_{d}\right\}$ is a
basis of M, then K has a d-simplex $v_{0} v_{1} \ldots v_{d}$ such that $\left\{v_{0}, v_{1}, \ldots, v_{d}\right\}$ is also a basis of M.

Finally, let us mention that it is perhaps worth developing a general matroid version which contains multiple balanced Sperner lemma [6], combinatorial Lefschetz fixed-point formula [5], and multiple combinatorial Stokes' theorem [3].

References

1. A. B. Brown and S. S. Cairns, Strengthening of Sperner's lemma applied to homology, Proc. Nat. Acad. Sci. USA, 47 (1961), 113-114.
2. L. Lovász, Matroids and Sperner's lemma, Europ. J. Combinatorics, 1 (1980), 65-66.
3. S. N. Lee and M. H. Shih, A counting lemma and multiple combinatorial Stokes’ theorem, Europ. J. Combinatorics, 19 (1998), 969-979.
4. S. N. Lee and M. H. Shih, Sperner matroid, Archiv der Mathematik, 81 (2003), 103-112.
5. M. H. Shih and S. N. Lee, A combinatorial Lefschetz fixed-point formula, J. Combinatorial Theory, Ser. A, 61 (1992), 123-129.
6. M. H. Shih and S. N. Lee, Combinatorial formulae for multiple set-valued labellings, Math. Ann., 296 (1993), 35-61.
7. E. Sperner, Neuer Beweis fur die Invarianz der Dimensionszahl und des Gebietes, Abh. Math. Sem. Univ. Hamburg, 6 (1928), 265-272.

Shyh-Nan Lee
Department of Mathemathics, Chung Yuan Christian University,
Chung Li 320, Taiwan.
E-mail: nan@math.cycu.edu.tw
Mau-Hsiang Shih
Department of Mathematics,
National Taiwan Normal University,
Taipei 116, Taiwan.
E-mail: mhshih@math.ntnu.edu.tw

