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A PERTURBATION THEOREM OF MIYADERA TYPE FOR LOCAL
C-REGULARIZED SEMIGROUPS

Ti-Jun Xiao, Jin Liang and Fang Li

Abstract. In this paper, we investigate the perturbation problem for local
C-regularized semigroups on a Banach space and establish a Miyadera type
perturbation theorem.

1. INTRODUCTION AND PRELIMINARIES

The Miyadera perturbation theorem for C0 semgroups was established in 1966
([4]). Since then, there have been some generalizations (cf., e.g., [1, 3, 5, 9] and
references therein). The aim of this paper is to extend this theorem to local C-
regularized semigroups (introduced in [8]) and present a Miyadera type perturbation
theorem. This result contains the classical Miyadera perturbation theorem as a
special case. Moreover, it is also suitable for non-exponentially-bounded regularized
semigroups, while the C0 semigroup and the other operator families concerned in
[1, 3, 5, 9] are all exponentially bounded on [0,∞). For more information on local
regularized semigroups and regularized semigroups, we refer the reader to [2, 6, 7,
8, 10] and references cited there.

Throughout this paper, all operators are linear; X is a Banach space; L(X, Y )
denotes the space of all continuous linear operators from X to a space Y , and
L(X, X) will be abbreviated to L(X); Ls(X) is the space of all continuous linear
operators from X to X with the strong operator topology; C is an injective operator
in L(X); C([0, t],Ls(X)) is the space of all strongly continuous L(X)-valued
functions, equipped with the norm

‖F‖∞ = sup
r∈[0,t]

‖F (r)‖.
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Moreover, for an operator A, we write D(A), R(A), ρ(A), respectively, for the
domain, the range, the resolvent set of A, and we denote by [D(A)] the space D(A)
with the graph norm.

Definition 1.1. ([8]) Assume τ > 0. A one-parameter family {T (t)}t∈[0,τ ] ⊂
L(X) is called a local C-regularized semigroup on X if

(i) T (0) = C and T (t + s)C = T (t)T (s) (∀s, t, s + t ∈ [0, τ ]),
(ii) T (·)x : [0, τ ] → X is continuous for every x ∈ X .

The operator A defined by

D(A) = {x ∈ X : lim
t→0+

1
t
(T (t)x− Cx) exists and is in R(C)}

and

Ax = C−1 lim
t→0+

1
t
(T (t)x − Cx), ∀x ∈ D(A),

is called the generator of {T (t)}t∈[0,τ ]. It is also called that A generates {T (t)}t∈[0,τ ].

Remark 1.2. When C = I , {T (t)}t∈[0,τ ] can be extended uniquely (in an
obvious way) to a C0 semigroup {T (t)}t≥0 with A as its generator.

The following two lemmas will be used freely in the proofs of our results below.
Lemma 1.3 comes from [8] and Lemma 1.4 is implied in [2].

Lemma 1.3. Let A generate a local C-regularized semigroup {T (t)} t∈[0,τ ] on
X . Then

(i) For x ∈ D(A), t ∈ [0, τ ], T (t)x ∈ D(A) and AT (t)x = T (t)Ax.
(ii) For x ∈ X, t∈ [0, τ ],

∫ t
0 T (s)xds∈D(A) and A

∫ t
0 T (s)xds=T (t)x−Cx.

(iii) For x ∈ D(A), t ∈ [0, τ ],
∫ t
0 T (s)Axds = A

∫ t
0 T (s)xds = T (t)x − Cx.

Lemma 1.4. Suppose an extension of A, Ã, generates a local C-regularized
semigroup. Then C(D(Ã)) ⊂ D(A) is equivalent to C−1AC = Ã.

2. RESULTS AND PROOFS

Theorem 2.1. Assume that a densely defined linear operator A in X generates
a local C-regularized semigroup {T (t)} t∈[0,τ ] on X . If P ∈ L(X) satisfying

(H1) ρ((I + P )A) �= ∅,
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(H2) for all x ∈ D(A), and Ψ ∈ C([0, τ ],Ls(X)),∥∥∥∥∫ t

0

Ψ(s)C−1PAT (t − s)xds

∥∥∥∥ ≤ β(t)‖Ψ‖∞‖x‖, t ∈ [0, τ ],

where β(·) is a function with lim supt→0+ β(t) < 1,
(H3) there exists an injective operator C1 ∈ L(X) such that R(P ) ⊂ R(C1) ⊂

R(C), C1(I + P )A ⊂ (I + P )AC1, and C−1C1(D(A)) is a dense subspace
in D(A),

then (I + P )A generates a local C1-regularized semigroup on X .

Proof. Let τ > τ1 > 0, such that β(t) ≤ κ < 1, for all t ∈ [0, τ1]. Define

(HU)(t)x =
∫ t

0
U(s)C−1PAT (t − s)xds, t ∈ [0, τ1], x ∈ D(A),

for any strongly continuous operator function U : [0, τ1] → L(X).
Clearly, (HU)(t)x is continuous in t on [0, τ1] and depends linearly on x ∈

D(A). Since

‖(HU)(t)x‖ =
∥∥∥∥∫ t

0

U(s)C−1PAT (t − s)xds

∥∥∥∥
≤ β(t)‖U‖∞‖x‖

for every t ∈ [0, τ1], and D(A) is dense in X , we can extend the operator (HU)(t) to
a continuous operator on X , and the extended operator function (HU)(·) is strongly
continuous on [0, τ1]. Hence H maps C([0, τ1],Ls(X)) into itself. Since

‖(HU1 −HU2)(t)‖ ≤ β(t)‖U1 − U2‖∞ ≤ κ‖U1 − U2‖∞,

there exists a unique U ∈ C([0, τ1],Ls(X)) satisfying

(2.1) U(t)x = T (t)x +
∫ t

0
U(s)C−1PAT (t − s)xds, t ∈ [0, τ1], x ∈ D(A).

Setting
V(t) = U(t)C−1C1, t ∈ [0, τ1],

we have, from (2.1),

V(t)x = T (t)C−1C1x+
∫ t

0
V(s)C−1

1 PAT (t−s)C−1C1xds, x ∈ D(A), t ∈ [0, τ1].
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Hence, for x ∈ D(A),∫ t

0
V(s)xds =

∫ t

0
T (s)C−1C1xds

+
∫ t

0

∫ s

0
V(σ)C−1

1 PAT (s − σ)C−1C1xdσds, t ∈ [0, τ1].

It follows that for x ∈ X ,

(2.2)

∫ t

0

V(s)xds =
∫ t

0

T (s)C−1C1xds

+
∫ t

0
V(σ)C−1

1 P [T (t−σ)C−1C1x−C−1C1x]dσ, t∈ [0,τ1],

due to the density of D(A). Note D(A) ⊂ D(C−1
1 PAC1), since AC1 = (AC)(C−1C1)

and C−1C1 maps D(A) into D(A). So, for x ∈ D(A),∫ t

0
V(s)C−1

1 PAC1xds =
∫ t

0
T (s)C−1PAC1xds

+
∫ t

0

V(σ)C−1
1 P [T (t − σ)C−1PAC1x − PAC1x]dσ,

by (2.2). Thus, we see that for x ∈ D(A),∫ t

0

V(s)(I + P )Axds

=
∫ t

0
T (s)C−1(I + P )AC1xds

+
∫ t

0

V(σ)C−1
1 P [T (t − σ)C−1(I + P )AC1x − (I + P )AC1x]dσ

= T (t)C−1C1x − C1x +
∫ t

0
T (s)C−1PAC1xds

+
∫ t

0
V(σ)C−1

1 PAT (t − σ)C−1C1xds −
∫ t

0
V(σ)C−1

1 PAC1xds

+
∫ t

0
V(σ)C−1

1 P [T (t − σ)C−1PAC1x − PAC1x]dσ

= V(t)x− C1x.

(2.3)

Now we consider the integral equation

(2.4) h(t)x = C1x +
∫ t

0
h(s)(I + P )Axds, x ∈ D(A), t ∈ [0, τ1],
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for h(t) ∈ C([0, τ1],Ls(X)). Let h(t) be a solution of (2.4). Then from (2.4) it
follows that for x ∈ D(A),∫ t

0
h(s)(I + P )A

∫ t−s

0
T (σ)C−1C1xdσds

=
∫ t

0

∫ t−σ

0
h(s)(I + P )AT (σ)C−1C1xdsdσ

=
∫ t

0
h(s)T (t − s)C−1C1xds − C1

∫ t

0
T (s)C−1C1xds.

On the other hand, for x ∈ D(A),∫ t

0

h(s)(I + P )A
∫ t−s

0

T (σ)C−1C1xdσds

=
∫ t

0
h(s)[T (t − s)C−1C1x − C1x]ds +

∫ t

0
h(s)PA

∫ t−s

0
T (σ)C−1C1xdσds.

Hence, for x ∈ D(A),∫ t

0
h(s)C1xds = C1

∫ t

0
T (s)C−1C1xds +

∫ t

0
h(s)PA

∫ t−s

0
T (σ)C−1C1xdσds,

that is,

(h(t)C)C−1C1x = C1T (t)C−1C1x +
∫ t

0
(h(s)C)C−1PAT (t − s)C−1C1xds.

Noting that C−1C1(D(A)) ⊂ D(A) is dense in X , and the solution h(t) of the
equation

h(t)y = C1T (t)y +
∫ t

0
h(s)C−1PAT (t− s)yds, y ∈ C−1C1(D(A)), t ∈ [0, τ1]

in C([0, τ1],Ls(X)) is unique, we see the solution of (2.4) is also unique.
By the equality (2.3), (H3), the uniqueness of solution of (2.4) and the density

of D(A), we obtain

(λ0−(I+P )A)−1V(t) = V(t)(λ0−(I+P )A)−1, t ∈ [0, τ1], λ0 ∈ ρ((I+P )A),

and therefore

(I + P )AV(t)x = V(t)(I + P )Ax, x ∈ D(A), t ∈ [0, τ1].
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Since ρ((I + P )A) �= ∅, (I + P )A is a closed operator. Thus from (2.3), the
denseness of D(A) and the closedness of (I + P )A, it follows that

∫ t
0 V(s)xds ∈

D(A) and

(2.5) V(t)x = C1x + (I + P )A
∫ t

0
V(s)xds, x ∈ X, t ∈ [0, τ1].

Let x ∈ D(A). Then for t, h ∈ [0, τ1],

V(h)V(t)x

= V(h)
∫ t

0
V(σ)(I + P )Axdσ + V(h)C1x

=
∫ t

0
V(h)V(σ)(I + P )Axdσ + C2

1x +
∫ h

0
V(s)(I + P )AC1xds,

and that for t, t + h ∈ [0, τ1],

V(t + h)C1x

=
∫ t+h

0
V(s)(I + P )AC1xds + C2

1x

=
∫ t+h

h
V(s)(I + P )AC1xds +

∫ h

0
V(s)(I + P )AC1xds + C2

1x

=
∫ t

0
V(s + h)C1(I + P )Axds + C2

1x +
∫ h

0
V(s)(I + P )AC1xds.

As a consequence,

V(h)V(t)x− V(h + t)C1x =
∫ t

0

[V(h)V(σ)− V(σ + h)C1](I + P )Axdσ.

It follows from the uniqueness of the solution of (2.4) that

V(t)V(h) = V(t + h)C1, t, h, t + h ∈ [0, τ1].

Hence {V(t)}t∈[0,τ1] is a local C1-regularized semigroup on X . Denote by A0 the
generator of {V(t)}t∈[0,τ1]. We see easily from (2.3) that D((I + P )A) = D(A) ⊂
D(A0). On the other hand, for any x ∈ D(A0), we have

lim
m→∞m

∫ 1
m

0

V(s)xds = C1x,

lim
m→∞(I + P )A

[
m

∫ 1
m

0
V(s)xds

]
= lim

m→∞ m

[
V
(

1
m

)
x − C1x

]
= C1A0x,
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by (2.5). It follows that C1(D(A0)) ⊂ D((I +P )A). Consequently, A0 = C−1
1 (I+

P )AC1 by Lemma 1.4. But

C−1
1 (I + P )AC1 = (I + P )A,

since ρ((I + P )A) �= ∅. This ends the proof.

Corollary 2.2. Suppose that a densely defined linear operator A in X gen-
erates a local C-regularized semigroup {T (t)} t∈[0,τ ] on X . If B ∈ L([D(A)], X)
satisfying

(H1′) ρ(A) �= ∅ and ρ(A + B) �= ∅,
(H2′) there exist τ1 ∈ (0, τ ], γ ∈ (0, 1) such that∫ τ1

0

∥∥C−1BT (s)x
∥∥ ds ≤ γ‖x‖, x ∈ D(A),

(H3′) there exists an injective operator C1 ∈ L(X) such that R(B) ⊂ R(C1) ⊂
R(C), C1(A + B) ⊂ (A + B)C1, and C−1C1(D(A)) is a dense subspace
in D(A),

then A + B generates a local C1-regularized semigroup.

Proof. Take λ0 ∈ ρ(A). Then A−λ0 generates a local C-regularized semigroup
{e−λ0tT (t)}t∈[0,τ ] on X . Setting P = B(A − λ0)−1, we have P ∈ L(X). It’s
clear from (H′

2) that for x ∈ D(A), and Ψ ∈ C([0, τ1],Ls(X)),∥∥∥∥∫ t

0
Ψ(s)C−1P (A − λ0)e−λ0(t−s)T (t − s)xds

∥∥∥∥ ≤ γ1‖Ψ‖∞‖x‖, t ∈ [0, τ1],

for some τ1 ∈ (0, τ ], γ1 ∈ (γ, 1). Thus making use of Theorem 2.1, we infer
that (I +P )(A−λ0) generates a local C1-regularized semigroup {V(t)}t∈[0,τ1], and
therefore A+B = (I +P )(A−λ0)+λ0 is the generator of the local C1-regularized
semigroup {eλ0tV(t)}t∈[0,τ1]. This completes the proof.

Remark 2.3. Corollary 2.2 is a generalization of the Miyadera perturbation
theorem ([4]). Actually, when A generates a C0 semigroup on X , and C = C1 = I,

Corollary 2.2 is just the Miyadera perturbation theorem (see also Remark 1.2).
Finally, we present a concrete example to show how our results can be used.

Example 2.4. Let X1 = L2(Ω), X2 = C0(γ), where Ω is a bounded domain
in Rn with smooth boundary, and

γ := {s + ies2
; s ≥ 0}.
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Define
A1 := i∆, D(A1) = H2(Ω) ∩ H1

0 (Ω),

(A2ϕ)(ξ) = ξϕ(ξ), with ϕ ∈ D(A2) := {ϕ ∈ C0(γ); ξ �→ ξϕ(ξ) ∈ C0(γ)}.
Then, A1 generates a strongly continuous group {T1(t)}t∈R on X1, D(A2) =
X2 and A2 generates (cf. [2, p. 110, Ex. 18.2]) an A−1

2 -regularized semigroup
{T2(t)}t≥0 on X2 given by

T2(t)ϕ(ξ) =
1
ξ
etξϕ(ξ).

Let q1, q2 ∈ Cc(Ω), r1 ∈ D(A1), r2 ∈ D(A2). Define P1 : X2 → X1, P2 : X1 →
X2 by

(P1ϕ)(ξ) = r1(ξ)
∫

Ω
q1(σ)ϕ(σ)dσ,

(P2ϕ)(ξ) = r2(ξ)
∫

Ω
q2(σ)ϕ(σ)dσ.

Set

X := X1 × X2;

A :=

(
A1 0

0 A2

)
, with D(A) = D(A1) ×D(A2);

P :=
(

0 P1

P2 0

)
, with D(P ) = X.

Then R(P ) ⊂ D(A). Writing C = A−1, we see that A generates a C-regularized
semigroup {T (t)}t≥0 on X given by

T (t) :=

(
T1(t)A−1

1 0
0 T2(t)

)
,

and for x :=

(
x1

x2

)
∈ D(A), 0 ≤ s ≤ t < 1,

C−1PAT (t − s)x :=

(
A1P1A2T2(t − s)x2

A2P2T1(t − s)x1

)
.

It is not hard to see that the operators A1P1A2 and A2P2 have bounded extensions,
and therefore there exists M > 0 such that

‖C−1PAT (t − s)‖ ≤ M, 0 ≤ s ≤ t ≤ 1.
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Put τ = min{1, (2M)−1}, we get∥∥∥∥∫ t

0
Ψ(s)C−1PAT (t − s)xds

∥∥∥∥ ≤ 1
2
‖Ψ‖∞‖x‖, t ∈ [0, τ ],

for x ∈ D(A), Ψ ∈ C([0, τ ],Ls(X)), which means (H2) holds. Next, we let P2 = 0
for simplicity. Then

(I + P )−1 =
(

I −P1

0 I

)
∈ L(X).

Therefore, 0 ∈ ρ((I + P )A). Set C1 = A−1(I + P )−1. Then

R(C1) = D(A), C−1C1 = (I + P )−1.

Thus, we see that Theorem 2.1 is applicable to this situation, and yields that(
A1 P1A2

0 A2

)
generates a local C1-regularized semigroup on X .
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