TAIWANESE JOURNAL OF MATHEMATICS Vol. 10, No. 1, pp. 153-162, January 2006 This paper is available online at http://www.math.nthu.edu.tw/tjm/

A PERTURBATION THEOREM OF MIYADERA TYPE FOR LOCAL C-REGULARIZED SEMIGROUPS

Ti-Jun Xiao, Jin Liang and Fang Li

Abstract. In this paper, we investigate the perturbation problem for local C-regularized semigroups on a Banach space and establish a Miyadera type perturbation theorem.

1. INTRODUCTION AND PRELIMINARIES

The Miyadera perturbation theorem for C_0 semgroups was established in 1966 ([4]). Since then, there have been some generalizations (cf., e.g., [1, 3, 5, 9] and references therein). The aim of this paper is to extend this theorem to local C-regularized semigroups (introduced in [8]) and present a Miyadera type perturbation theorem. This result contains the classical Miyadera perturbation theorem as a special case. Moreover, it is also suitable for non-exponentially-bounded regularized semigroups, while the C_0 semigroup and the other operator families concerned in [1, 3, 5, 9] are all exponentially bounded on $[0, \infty)$. For more information on local regularized semigroups and regularized semigroups, we refer the reader to [2, 6, 7, 8, 10] and references cited there.

Throughout this paper, all operators are linear; X is a Banach space; $\mathcal{L}(X, Y)$ denotes the space of all continuous linear operators from X to a space Y, and $\mathcal{L}(X, X)$ will be abbreviated to $\mathcal{L}(X)$; $\mathcal{L}_s(X)$ is the space of all continuous linear operators from X to X with the strong operator topology; C is an injective operator in $\mathcal{L}(X)$; $C([0, t], \mathcal{L}_s(X))$ is the space of all strongly continuous $\mathcal{L}(X)$ -valued functions, equipped with the norm

$$\|F\|_{\infty} = \sup_{r \in [0,t]} \|F(r)\|.$$

Received March 14, 2005.

Communicated by Sen-Yen Shaw.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47D60; Secondary 47D06, 34G10.

Key words and phrases: Multiplicative perturbation, Miyadera type perturbation theorem, Local *C*-regularized semigroups.

The authors acknowledge support from EMC, CAS and NSFC.

Moreover, for an operator A, we write $\mathcal{D}(A)$, $\mathcal{R}(A)$, $\rho(A)$, respectively, for the domain, the range, the resolvent set of A, and we denote by $[\mathcal{D}(A)]$ the space $\mathcal{D}(A)$ with the graph norm.

Definition 1.1. ([8]) Assume $\tau > 0$. A one-parameter family $\{T(t)\}_{t \in [0,\tau]} \subset \mathcal{L}(X)$ is called a local *C*-regularized semigroup on *X* if

(i) T(0) = C and T(t+s)C = T(t)T(s) $(\forall s, t, s+t \in [0, \tau]),$

(ii) $T(\cdot)x: [0,\tau] \to X$ is continuous for every $x \in X$.

The operator A defined by

$$\mathcal{D}(A) = \{ x \in X : \lim_{t \to 0^+} \frac{1}{t} (T(t)x - Cx) \text{ exists and is in } \mathcal{R}(C) \}$$

and

$$Ax = C^{-1} \lim_{t \to 0^+} \frac{1}{t} (T(t)x - Cx), \quad \forall x \in \mathcal{D}(A),$$

is called the generator of $\{T(t)\}_{t\in[0,\tau]}$. It is also called that A generates $\{T(t)\}_{t\in[0,\tau]}$.

Remark 1.2. When C = I, $\{T(t)\}_{t \in [0,\tau]}$ can be extended uniquely (in an obvious way) to a C_0 semigroup $\{T(t)\}_{t>0}$ with A as its generator.

The following two lemmas will be used freely in the proofs of our results below. Lemma 1.3 comes from [8] and Lemma 1.4 is implied in [2].

Lemma 1.3. Let A generate a local C-regularized semigroup $\{T(t)\}_{t\in[0,\tau]}$ on X. Then

- (i) For $x \in \mathcal{D}(A)$, $t \in [0, \tau]$, $T(t)x \in \mathcal{D}(A)$ and AT(t)x = T(t)Ax.
- (ii) For $x \in X$, $t \in [0, \tau]$, $\int_0^t T(s) x ds \in \mathcal{D}(A)$ and $A \int_0^t T(s) x ds = T(t) x Cx$.
- (iii) For $x \in \mathcal{D}(A)$, $t \in [0, \tau]$, $\int_0^t T(s)Axds = A \int_0^t T(s)xds = T(t)x Cx$.

Lemma 1.4. Suppose an extension of A, \widetilde{A} , generates a local C-regularized semigroup. Then $C(\mathcal{D}(\widetilde{A})) \subset \mathcal{D}(A)$ is equivalent to $C^{-1}AC = \widetilde{A}$.

2. Results and Proofs

Theorem 2.1. Assume that a densely defined linear operator A in X generates a local C-regularized semigroup $\{T(t)\}_{t\in[0,\tau]}$ on X. If $P \in \mathcal{L}(X)$ satisfying (H1) $\rho((I+P)A) \neq \emptyset$, (H2) for all $x \in \mathcal{D}(A)$, and $\Psi \in C([0, \tau], \mathcal{L}_s(X))$,

$$\left\|\int_0^t \Psi(s)C^{-1}PAT(t-s)xds\right\| \le \beta(t)\|\Psi\|_{\infty}\|x\|, \quad t \in [0,\tau],$$

where $\beta(\cdot)$ is a function with $\limsup_{t\to 0^+} \beta(t) < 1$,

(H3) there exists an injective operator $C_1 \in \mathcal{L}(X)$ such that $\mathcal{R}(P) \subset \mathcal{R}(C_1) \subset \mathcal{R}(C)$, $C_1(I+P)A \subset (I+P)AC_1$, and $C^{-1}C_1(\mathcal{D}(A))$ is a dense subspace in $\mathcal{D}(A)$,

then (I + P)A generates a local C_1 -regularized semigroup on X.

Proof. Let $\tau > \tau_1 > 0$, such that $\beta(t) \le \kappa < 1$, for all $t \in [0, \tau_1]$. Define

$$(\mathcal{HU})(t)x = \int_0^t \mathcal{U}(s)C^{-1}PAT(t-s)xds, \quad t \in [0,\tau_1], \ x \in \mathcal{D}(A),$$

for any strongly continuous operator function $\mathcal{U}: [0, \tau_1] \to \mathcal{L}(X)$.

Clearly, $(\mathcal{HU})(t)x$ is continuous in t on $[0, \tau_1]$ and depends linearly on $x \in \mathcal{D}(A)$. Since

$$\|(\mathcal{HU})(t)x\| = \left\| \int_0^t \mathcal{U}(s)C^{-1}PAT(t-s)xds \right\|$$
$$\leq \beta(t)\|\mathcal{U}\|_{\infty}\|x\|$$

for every $t \in [0, \tau_1]$, and $\mathcal{D}(A)$ is dense in X, we can extend the operator $(\mathcal{HU})(t)$ to a continuous operator on X, and the extended operator function $(\overline{\mathcal{HU}})(\cdot)$ is strongly continuous on $[0, \tau_1]$. Hence \mathcal{H} maps $C([0, \tau_1], \mathcal{L}_s(X))$ into itself. Since

$$\|(\overline{\mathcal{H}}\mathcal{U}_1 - \overline{\mathcal{H}}\mathcal{U}_2)(t)\| \le \beta(t) \|\mathcal{U}_1 - \mathcal{U}_2\|_{\infty} \le \kappa \|\mathcal{U}_1 - \mathcal{U}_2\|_{\infty},$$

there exists a unique $\mathcal{U} \in C([0, \tau_1], \mathcal{L}_s(X))$ satisfying

(2.1)
$$\mathcal{U}(t)x = T(t)x + \int_0^t \mathcal{U}(s)C^{-1}PAT(t-s)xds, \quad t \in [0,\tau_1], x \in \mathcal{D}(A).$$

Setting

$$\mathcal{V}(t) = \mathcal{U}(t)C^{-1}C_1, \quad t \in [0, \tau_1],$$

we have, from (2.1),

$$\mathcal{V}(t)x = T(t)C^{-1}C_1x + \int_0^t \mathcal{V}(s)C_1^{-1}PAT(t-s)C^{-1}C_1xds, \quad x \in \mathcal{D}(A), \ t \in [0,\tau_1].$$

Hence, for $x \in \mathcal{D}(A)$,

$$\begin{split} \int_0^t \mathcal{V}(s) x ds &= \int_0^t T(s) C^{-1} C_1 x ds \\ &+ \int_0^t \int_0^s \mathcal{V}(\sigma) C_1^{-1} P A T(s-\sigma) C^{-1} C_1 x d\sigma ds, \quad t \in [0,\tau_1]. \end{split}$$

It follows that for $x \in X$,

(2.2)
$$\int_0^t \mathcal{V}(s) x ds = \int_0^t T(s) C^{-1} C_1 x ds + \int_0^t \mathcal{V}(\sigma) C_1^{-1} P[T(t-\sigma) C^{-1} C_1 x - C^{-1} C_1 x] d\sigma, \ t \in [0,\tau_1],$$

due to the density of $\mathcal{D}(A)$. Note $\mathcal{D}(A) \subset \mathcal{D}(C_1^{-1}PAC_1)$, since $AC_1 = (AC)(C^{-1}C_1)$ and $C^{-1}C_1$ maps $\mathcal{D}(A)$ into $\mathcal{D}(A)$. So, for $x \in \mathcal{D}(A)$,

$$\int_0^t \mathcal{V}(s) C_1^{-1} PAC_1 x ds = \int_0^t T(s) C^{-1} PAC_1 x ds$$
$$+ \int_0^t \mathcal{V}(\sigma) C_1^{-1} P[T(t-\sigma) C^{-1} PAC_1 x - PAC_1 x] d\sigma,$$

by (2.2). Thus, we see that for $x \in \mathcal{D}(A)$,

$$\int_{0}^{t} \mathcal{V}(s)(I+P)Axds$$

= $\int_{0}^{t} T(s)C^{-1}(I+P)AC_{1}xds$
+ $\int_{0}^{t} \mathcal{V}(\sigma)C_{1}^{-1}P[T(t-\sigma)C^{-1}(I+P)AC_{1}x - (I+P)AC_{1}x]d\sigma$
(2.3)
= $T(t)C^{-1}C_{1}x - C_{1}x + \int_{0}^{t} T(s)C^{-1}PAC_{1}xds$
+ $\int_{0}^{t} \mathcal{V}(\sigma)C_{1}^{-1}PAT(t-\sigma)C^{-1}C_{1}xds - \int_{0}^{t} \mathcal{V}(\sigma)C_{1}^{-1}PAC_{1}xds$
+ $\int_{0}^{t} \mathcal{V}(\sigma)C_{1}^{-1}P[T(t-\sigma)C^{-1}PAC_{1}x - PAC_{1}x]d\sigma$
= $\mathcal{V}(t)x - C_{1}x.$

Now we consider the integral equation

(2.4)
$$h(t)x = C_1 x + \int_0^t h(s)(I+P)Axds, \quad x \in \mathcal{D}(A), \ t \in [0, \tau_1],$$

156

for $h(t) \in C([0, \tau_1], \mathcal{L}_s(X))$. Let h(t) be a solution of (2.4). Then from (2.4) it follows that for $x \in \mathcal{D}(A)$,

$$\int_{0}^{t} h(s)(I+P)A \int_{0}^{t-s} T(\sigma)C^{-1}C_{1}xd\sigma ds$$

= $\int_{0}^{t} \int_{0}^{t-\sigma} h(s)(I+P)AT(\sigma)C^{-1}C_{1}xdsd\sigma$
= $\int_{0}^{t} h(s)T(t-s)C^{-1}C_{1}xds - C_{1} \int_{0}^{t} T(s)C^{-1}C_{1}xds.$

On the other hand, for $x \in \mathcal{D}(A)$,

$$\int_0^t h(s)(I+P)A \int_0^{t-s} T(\sigma)C^{-1}C_1xd\sigma ds$$

= $\int_0^t h(s)[T(t-s)C^{-1}C_1x - C_1x]ds + \int_0^t h(s)PA \int_0^{t-s} T(\sigma)C^{-1}C_1xd\sigma ds.$

Hence, for $x \in \mathcal{D}(A)$,

$$\int_0^t h(s)C_1xds = C_1 \int_0^t T(s)C^{-1}C_1xds + \int_0^t h(s)PA \int_0^{t-s} T(\sigma)C^{-1}C_1xd\sigma ds,$$

that is,

$$(h(t)C)C^{-1}C_1x = C_1T(t)C^{-1}C_1x + \int_0^t (h(s)C)C^{-1}PAT(t-s)C^{-1}C_1xds.$$

Noting that $C^{-1}C_1(\mathcal{D}(A)) \subset \mathcal{D}(A)$ is dense in X, and the solution $\overline{h}(t)$ of the equation

$$\overline{h}(t)y = C_1 T(t)y + \int_0^t \overline{h}(s)C^{-1}PAT(t-s)yds, \quad y \in C^{-1}C_1(\mathcal{D}(A)), \ t \in [0,\tau_1]$$

in $C([0, \tau_1], \mathcal{L}_s(X))$ is unique, we see the solution of (2.4) is also unique.

By the equality (2.3), (H3), the uniqueness of solution of (2.4) and the density of $\mathcal{D}(A)$, we obtain

$$(\lambda_0 - (I+P)A)^{-1}\mathcal{V}(t) = \mathcal{V}(t)(\lambda_0 - (I+P)A)^{-1}, \quad t \in [0,\tau_1], \ \lambda_0 \in \rho((I+P)A),$$

and therefore

$$(I+P)A\mathcal{V}(t)x = \mathcal{V}(t)(I+P)Ax, \quad x \in \mathcal{D}(A), \ t \in [0, \tau_1].$$

Since $\rho((I+P)A) \neq \emptyset$, (I+P)A is a closed operator. Thus from (2.3), the denseness of $\mathcal{D}(A)$ and the closedness of (I+P)A, it follows that $\int_0^t \mathcal{V}(s)xds \in \mathcal{D}(A)$ and

(2.5)
$$\mathcal{V}(t)x = C_1 x + (I+P)A \int_0^t \mathcal{V}(s)x ds, \quad x \in X, \ t \in [0, \tau_1].$$

Let $x \in \mathcal{D}(A)$. Then for $t, h \in [0, \tau_1]$,

$$\begin{aligned} \mathcal{V}(h)\mathcal{V}(t)x \\ &= \mathcal{V}(h)\int_0^t \mathcal{V}(\sigma)(I+P)Axd\sigma + \mathcal{V}(h)C_1x \\ &= \int_0^t \mathcal{V}(h)\mathcal{V}(\sigma)(I+P)Axd\sigma + C_1^2x + \int_0^h \mathcal{V}(s)(I+P)AC_1xds, \end{aligned}$$

and that for $t, t+h \in [0, \tau_1]$,

$$\mathcal{V}(t+h)C_{1}x$$

$$= \int_{0}^{t+h} \mathcal{V}(s)(I+P)AC_{1}xds + C_{1}^{2}x$$

$$= \int_{h}^{t+h} \mathcal{V}(s)(I+P)AC_{1}xds + \int_{0}^{h} \mathcal{V}(s)(I+P)AC_{1}xds + C_{1}^{2}x$$

$$= \int_{0}^{t} \mathcal{V}(s+h)C_{1}(I+P)Axds + C_{1}^{2}x + \int_{0}^{h} \mathcal{V}(s)(I+P)AC_{1}xds.$$

As a consequence,

$$\mathcal{V}(h)\mathcal{V}(t)x - \mathcal{V}(h+t)C_1x = \int_0^t [\mathcal{V}(h)\mathcal{V}(\sigma) - \mathcal{V}(\sigma+h)C_1](I+P)Axd\sigma.$$

It follows from the uniqueness of the solution of (2.4) that

$$\mathcal{V}(t)\mathcal{V}(h) = \mathcal{V}(t+h)C_1, \quad t, \ h, \ t+h \in [0,\tau_1].$$

Hence $\{\mathcal{V}(t)\}_{t\in[0,\tau_1]}$ is a local C_1 -regularized semigroup on X. Denote by A_0 the generator of $\{\mathcal{V}(t)\}_{t\in[0,\tau_1]}$. We see easily from (2.3) that $\mathcal{D}((I+P)A) = \mathcal{D}(A) \subset \mathcal{D}(A_0)$. On the other hand, for any $x \in \mathcal{D}(A_0)$, we have

$$\lim_{m \to \infty} m \int_0^{\frac{1}{m}} \mathcal{V}(s) x ds = C_1 x,$$
$$\lim_{m \to \infty} (I+P) A \left[m \int_0^{\frac{1}{m}} \mathcal{V}(s) x ds \right] = \lim_{m \to \infty} m \left[\mathcal{V} \left(\frac{1}{m} \right) x - C_1 x \right] = C_1 A_0 x,$$

by (2.5). It follows that $C_1(\mathcal{D}(A_0)) \subset \mathcal{D}((I+P)A)$. Consequently, $A_0 = C_1^{-1}(I+P)AC_1$ by Lemma 1.4. But

$$C_1^{-1}(I+P)AC_1 = (I+P)A,$$

since $\rho((I+P)A) \neq \emptyset$. This ends the proof.

Corollary 2.2. Suppose that a densely defined linear operator A in X generates a local C-regularized semigroup $\{T(t)\}_{t\in[0,\tau]}$ on X. If $B \in \mathcal{L}([\mathcal{D}(A)], X)$ satisfying

(H1') $\rho(A) \neq \emptyset$ and $\rho(A+B) \neq \emptyset$,

(H2') there exist $\tau_1 \in (0, \tau]$, $\gamma \in (0, 1)$ such that

$$\int_0^{\tau_1} \left\| C^{-1} BT(s) x \right\| ds \le \gamma \|x\|, \quad x \in \mathcal{D}(A),$$

(H3') there exists an injective operator $C_1 \in \mathcal{L}(X)$ such that $\mathcal{R}(B) \subset \mathcal{R}(C_1) \subset \mathcal{R}(C)$, $C_1(A+B) \subset (A+B)C_1$, and $C^{-1}C_1(\mathcal{D}(A))$ is a dense subspace in $\mathcal{D}(A)$,

then A + B generates a local C_1 -regularized semigroup.

Proof. Take $\lambda_0 \in \rho(A)$. Then $A - \lambda_0$ generates a local *C*-regularized semigroup $\{e^{-\lambda_0 t}T(t)\}_{t\in[0,\tau]}$ on *X*. Setting $P = B(A - \lambda_0)^{-1}$, we have $P \in \mathcal{L}(X)$. It's clear from (H'_2) that for $x \in \mathcal{D}(A)$, and $\Psi \in C([0,\tau_1], \mathcal{L}_s(X))$,

$$\left\| \int_0^t \Psi(s) C^{-1} P(A - \lambda_0) e^{-\lambda_0(t-s)} T(t-s) x ds \right\| \le \gamma_1 \|\Psi\|_{\infty} \|x\|, \quad t \in [0, \tau_1],$$

for some $\tau_1 \in (0, \tau]$, $\gamma_1 \in (\gamma, 1)$. Thus making use of Theorem 2.1, we infer that $(I+P)(A-\lambda_0)$ generates a local C_1 -regularized semigroup $\{\mathcal{V}(t)\}_{t\in[0,\tau_1]}$, and therefore $A+B = (I+P)(A-\lambda_0) + \lambda_0$ is the generator of the local C_1 -regularized semigroup $\{e^{\lambda_0 t}\mathcal{V}(t)\}_{t\in[0,\tau_1]}$. This completes the proof.

Remark 2.3. Corollary 2.2 is a generalization of the Miyadera perturbation theorem ([4]). Actually, when A generates a C_0 semigroup on X, and $C = C_1 = I$, Corollary 2.2 is just the Miyadera perturbation theorem (see also Remark 1.2).

Finally, we present a concrete example to show how our results can be used.

Example 2.4. Let $X_1 = L^2(\Omega)$, $X_2 = C_0(\gamma)$, where Ω is a bounded domain in \mathbb{R}^n with smooth boundary, and

$$\gamma := \{ s + ie^{s^2}; \ s \ge 0 \}.$$

Define

$$A_1 := i\Delta, \quad \mathcal{D}(A_1) = H^2(\Omega) \cap H^1_0(\Omega),$$

$$(A_2\varphi)(\xi) = \xi\varphi(\xi), \quad \text{with } \varphi \in D(A_2) := \{\varphi \in C_0(\gamma); \ \xi \mapsto \xi\varphi(\xi) \in C_0(\gamma)\}.$$

Then, A_1 generates a strongly continuous group $\{T_1(t)\}_{t\in R}$ on X_1 , $\overline{\mathcal{D}}(A_2) = X_2$ and A_2 generates (cf. [2, p. 110, Ex. 18.2]) an A_2^{-1} -regularized semigroup $\{T_2(t)\}_{t\geq 0}$ on X_2 given by

$$T_2(t)\varphi(\xi) = \frac{1}{\xi}e^{t\xi}\varphi(\xi).$$

Let $q_1, q_2 \in C_c(\Omega), r_1 \in \mathcal{D}(A_1), r_2 \in \mathcal{D}(A_2)$. Define $P_1: X_2 \to X_1, P_2: X_1 \to X_2$ by

$$(P_1\varphi)(\xi) = r_1(\xi) \int_{\Omega} q_1(\sigma)\varphi(\sigma)d\sigma,$$

$$(P_2\varphi)(\xi) = r_2(\xi) \int_{\Omega} q_2(\sigma)\varphi(\sigma)d\sigma.$$

Set

$$\begin{aligned} X &:= X_1 \times X_2; \\ A &:= \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}, \quad \text{with } \mathcal{D}(A) = \mathcal{D}(A_1) \times \mathcal{D}(A_2); \\ P &:= \begin{pmatrix} 0 & P_1 \\ P_2 & 0 \end{pmatrix}, \quad \text{with } \mathcal{D}(P) = X. \end{aligned}$$

Then $\mathcal{R}(P) \subset \mathcal{D}(A)$. Writing $C = A^{-1}$, we see that A generates a C-regularized semigroup $\{T(t)\}_{t \geq 0}$ on X given by

$$T(t) := \begin{pmatrix} T_1(t)A_1^{-1} & 0\\ 0 & T_2(t) \end{pmatrix},$$

and for $x := \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \in \mathcal{D}(A), \ 0 \le s \le t < 1,$
$$C^{-1}PAT(t-s)x := \begin{pmatrix} A_1P_1A_2T_2(t-s)x_2\\ A_2P_2T_1(t-s)x_1 \end{pmatrix}.$$

It is not hard to see that the operators $A_1P_1A_2$ and A_2P_2 have bounded extensions, and therefore there exists M > 0 such that

$$||C^{-1}PAT(t-s)|| \le M, \quad 0 \le s \le t \le 1.$$

160

161

Put $\tau = \min\{1, (2M)^{-1}\}$, we get

$$\left\| \int_0^t \Psi(s) C^{-1} PAT(t-s) x ds \right\| \le \frac{1}{2} \|\Psi\|_{\infty} \|x\|, \quad t \in [0,\tau],$$

for $x \in \mathcal{D}(A)$, $\Psi \in C([0, \tau], \mathcal{L}_s(X))$, which means (H2) holds. Next, we let $P_2 = 0$ for simplicity. Then

$$(I+P)^{-1} = \begin{pmatrix} I & -P_1 \\ 0 & I \end{pmatrix} \in \mathcal{L}(X).$$

Therefore, $0 \in \rho((I+P)A)$. Set $C_1 = A^{-1}(I+P)^{-1}$. Then

$$\mathcal{R}(C_1) = \mathcal{D}(A), \quad C^{-1}C_1 = (I+P)^{-1}.$$

Thus, we see that Theorem 2.1 is applicable to this situation, and yields that $\begin{pmatrix} A_1 & P_1A_2 \\ 0 & A_2 \end{pmatrix}$ generates a local C_1 -regularized semigroup on X.

ACKNOWLEDGMENT

The authors are grateful to the referee for his/her careful reading and valuable suggestions.

REFERENCES

- 1. J. -C. Chang and S. -Y. Shaw, Perturbation theory of abstract Cauchy problems and Volterra equations, *Nonlinear Analysis, Ser. A: Theory Methods*, **30** (1997), 3521-3528.
- 2. R. deLaubenfels, *Existence Families, Functional Calculi and Evolution Equations*, Lect. Notes in Math., 1570, Springer-Verlag, Berlin, 1994.
- F. Li, J. Liang and T. J. Xiao, Multiplicative perturbation theorems for regularized cosine operator functions, *Acta Math. Sinica*, 46 (2003), 119-130.
- I. Miyadera, On perturbation theory for semi-groups of operators, *Töhoku Math. J.*, 18 (1966), 299-310.
- 5. S. Piskarev and S.-Y. Shaw, Multiplicative perturbation of C_0 -semigroups and some applications to step responses and cumulative outputs, *J. Funct. Anal.*, **128** (1995), 315-340.
- 6. S.-Y. Shaw and C.-C. Kuo, Generation of local C-semigroups and sovability of the abstract Cauchy problems, *Taiwanese J. Math.*, **9** (2005), to appear.
- 7. S.-Y. Shaw, C.-C. Kuo and Y.-C. Li, Perturbation of local *C*-semigroups, *Nonlinear Analysis*, to appear.

- 8. N. Tanaka and N. Okazawa, Local *C*-semigroups and local integrated semigroups, *Proc. London Math. Soc.*, **61** (1990), 63-90.
- 9. J. Voigt, On the perturbation theory for strongly continuous semigroups, *Math. Ann.*, **229** (1977), 163-171.
- 10. T. J. Xiao and J. Liang, *The Cauchy Problem for Higher-order Abstract Differential Equations*, Lect. Notes in Math., 1701, Springer-Verlag, Berlin, 1998.

Ti-Jun Xiao, Jin Liang and Fang Li Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China. E-mail: xiaotj@ustc.edu.cn E-mail: jliang@ustc.edu.cn E-mail: fangli@ustc.edu.cn