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BOREL MAPS IN REAL REDUCTION THEORY

Li Bingren and Zhao Jianwei

Abstract. In [5], we gave a real reduction theory. It is the real analogue
of J.von Neumann’s (complex) reduction theory. In [4], E.G.Effros gave a
natural explanation for (complex) reduction theory by Borel maps. In this
note, we also use Borel maps to give an explanation for real measurable fields
of Hilbert spaces, von Neumann algebras, and etc.

1. INTRODUCTION

The reduction theory of von Neumann algebras (VN algebra, in short) was set
up in 1949 ([1]). Its main aim is to reduce the study of general VN algebras to the
study of simpler VN algebras. Let N be a VN algebra in a Hilbert space K. Then
there are a suitable Borel space (E,B), a measurable field K(·) of Hilbert spaces
on (E,B), and a measurable field N (·) of VN algebras in K(·) such that

K ∼=
∫ ⊕

E
K(t)dµ(t), N ∼=

∫ ⊕

E
N (t)dµ(t),

where µ(·) is a Borel measure on (E,B). In particular, if K is separable, then

N ∼=
∫ ⊕

IR
N (t)dµ(t),

where µ(·) is a finite Borel measure with compact support on R, and N (t) is a
factor, a.e.µ. Thus, the study of VN algebras in a separable Hilbert space can be
reduced to the study of factors. Of course, the concepts of measurable fields of
Hilbert spaces, measurable fields of VN algebras, the direct integral

∫ ⊕
E N (t)dµ(t),
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and etc., are very complicated, and seems artificial ([2, 3]). E.G.Effros ([4]) gave
a natural explanation by Borel maps.

J. von Neumann’s reduction theory is over complex field C. In [5, 6], we gave
a satisfactory real reduction theory: for a real VN algebra M in a real Hilbert space
H , there are a suitable Borel bar space (E,B,−), a real measurable field H(·) of
Hilbert spaces on (E,B,−), and a real measurable field M(·) of VN algebras in
H(·) such that

H ∼=
∫ ⊕

(E,−)
H(t)dν(t), M ∼=

∫ ⊕

(E,−)
M(t)dν(t),

where ν(·) is a Borel measure on (E,B) and ν ◦ − = ν. In particular, if H is
separable, then

M ∼=
∫ ⊕

( IC,−)
M(t)dν(t),

where ” − ” is the complex congugation in C, ν(·) is a finite Borel measure with
compact support on C and ν ◦ − = ν, and M(t) is a factor, a.e. ν.

Similarily, the concepts of real measurable fields of Hilbert spaces, real measur-
able fields of VN algebras, the direct integral

∫ ⊕
(E,−) M(t)dν(t), and etc., are very

complicated, and seems artifical ([5, 6]).
In this note, we also use Borel maps to give a natural explanation for these

concepts.

Let H be a separable real Hilbert space, and let Hc = H � iH be its complexi-
fication (a separable complex Hilbert space [6]). Then we have bar ”− ” operation
on Hc, i.e.,

ξ + iη = ξ − iη, ∀ξ, η ∈ H.

Let W (H) and W (Hc) be the collections of all closed linear subspaces of H and
Hc respectively. In W (H) (or W (Hc)), there is a Borel structure generated by all
subsets of W (H)(or W (Hc)) with the following form:

{E ∈ W (H) : ‖ξ + E‖ < λ}, where ξ ∈ H and λ > 0

(or {Ec ∈ W (Hc) : ‖ξc + Ec‖ < λ}, where ξc ∈ Hc and λ > 0, [2]).

Proposition 1. We have the following statements:
(1) W (H) and W (Hc) are standard Borel spaces;
(2) E −→ E⊥ (or Ec −→ E⊥

c ), ∀E ∈ W (H) (or Ec ∈ W (Hc)), is a Borel
isomorphism on W (H) (or W (Hc));

(3) (W (Hc),−) is a (standard) Borel bar space, i.e., ”−” is a Borel isomorphism
on W (Hc) and −2 = id, where Ec = {ξc : ξc ∈ Ec}, ∀Ec ∈ W (Hc);
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(4) Ec ∈ W (Hc) is said to be normal, if there is E ∈ W (H) such that E c =
E � iE . Then Ec ∈ W (Hc) is normal, if and only if, E c = Ec.

Moreover, W (Hc)N = {Ec ∈ W (Hc) : Ec is normal} is a Borel subset of
W(Hc), and also is a standard Borel space by the inductive Borel structure;

(5) E −→ Ec = E � iE, ∀E ∈ W (H), is a Borel isomorphism from W (H)
onto W (Hc)N .

Proof. (1) and (2) are just and similar to Proposition 11.1.8 in [2].
(3) By

{Ec ∈ W (Hc) : ‖ξc+Ec‖ < λ}={Ec ∈ W (Hc) : ‖ξc+Ec‖ < λ}, ∀ξc ∈ Hc, λ > 0,

the conclusion is obvious.
(4) Clearly, Ec(∈ W (Hc)) is normal, if and only, Ec = Ec. Moreover, by

Proposition 10.3.4 in [2] and (3), W (Hc)N is a Borel subset of W (Hc). Further,
by Proposition 10.3.15 in [2], W (Hc)N with the inductive Borel structure is a
standard Borel space.

(5) For ξ ∈ H, λ > 0, under the map E −→ Ec = E � iE , the Borel subset
{E ∈ W (H) : ‖ξ + E‖ < λ} of W (H) becomes the subset

{Ec = E � iE ∈ W (Hc) : ‖ξ + E‖ < λ}
of W (Hc). Clearly, ‖ξ + E‖ ≥ ‖ξ + Ec‖. On the orther hand,

‖ξ + ξ′ + iη′‖2 = ‖ξ + ξ′‖2 + ‖η′‖2

≥ ‖ξ + ξ′‖2 ≥ ‖ξ + E‖2,

∀ξ′, η′ ∈ E . Thus, ‖ξ + Ec‖ ≥ ‖ξ + E‖, and ‖ξ + E‖ = ‖ξ + Ec‖. It follows that
{Ec = E � iE ∈ W (Hc) : ‖ξ + E‖ < λ} = {Ec ∈ W (Hc)N : ‖ξ + Ec‖ < λ}
is a Borel subset of W (Hc)N . Conversely, let ξ, η ∈ H and λ > 0. Under the map
Ec = E�iE −→ E = H∩Ec, the Borel subset {Ec ∈ W (Hc)N : ‖ξ+iη+Ec‖ <
λ} of W (Hc)N becomes the subset

{E ∈ W (H) : ‖ξ + iη + Ec‖ < λ}

of W (H). Since ‖ξ + iη + Ec‖2 = ‖ξ + E‖2 + ‖η + E‖2, and

{E ∈ W (H) : ‖ξ + E‖2 + ‖η + E‖2 < λ2}

=
⋃
n

({E ∈ W (H) : ‖ξ + E‖ < λn}
⋂

{E ∈ W (H) : ‖η + E‖ < (λ2 − λ2
n)

1
2}),
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where {λn}n is a countably dense subset of (0, λ)(e.g., all rational numbers in
(0, λ)), it follows that {E ∈ W (H) : ‖ξ + iη + Ec‖ < λ} is also a Borel subset
of W (H). Therefore, E −→ Ec = E � iE, ∀E ∈ W (H), is a Borel isomorphism
from W (H) onto W (Hc)N .

Definition 2. ([6, Ch.9]) Let (E,B,−) be a Borel bar space, i.e., (E,B) is a
Borel space, ” − ” is a Borel isomorphism on (E,B) and −2 = id.

A real field H(·) of Hilbert spaces on (E,B,−) means that each H(t) is a real
Hilbert space, and H(t) = H(t), ∀t ∈ E .

Let (E,B,−) and H(·) be as above. ξ(·) is called a real field of vectors,
if ξ(t) ∈ H(t)c = H(t) � iH(t), and ξ(t) = ξ(t), ∀t ∈ E . H(·) is said to
be measurable, if there is a sequence {ξn(·)}n of real fields of vectors such that
{ξn(t)}n is a total subset of H(t)c, ∀t ∈ E , and

t −→ fn,m(t) = 〈ξn(t), ξm(t)〉t
is a (complex) measurable function on (E,B), where 〈, 〉t is the inner product
in H(t)c, ∀t ∈ E, ∀n, m. In this case, a real field ξ(·) of vectors is said to be
measurable, if each function

t −→ 〈ξ(t), ξn(t)〉t
is measurable on (E,B), ∀n.

Let H be a fixed separable real Hilbert space. Then H becomes the constant
field on (E,B,−), i.e., H(t) = H, ∀t ∈ E , and a real field ξ(·) of vectors is
measurable if t −→ 〈ξ(t), η〉 is measurable on (E,B), ∀η ∈ H ([6]).

Proposition 3. Let (E,B,−) be a Borel bar space, let H(·) be a real field
of Hilbert spaces on E , and let H be a separable infinite-dimensional real Hilbert
space.

Then H(·) is measurable, if and only if, there is a field of operators U(·) :
H(·)c −→ Hc such that for each t ∈ E,U(t) is an isometry from H(t) c = H(t) �
iH(t) into Hc = H � iH,U(t) = U(t), and the map t −→ U(t)H(t)c is a Borel
map from (E,B) into W (Hc)N .

Moreover, in this case a real field ξ(·) of vectors is measurable, if and only if,
t −→ 〈U(t)ξ(t), η〉 is measurable, ∀η ∈ H .

Proof. Let H(·) be measurable, let {en(·)}n be an orthogonal normalized basis
of H(·)([6]), and let {en}n be an orthogonal normalized basis of H . For any t ∈ E ,
let

U(t)en(t) =

{
en, if n ≤ dimH(t),

0, if n > dimH(t).
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Then U(t) is an isometry from H(t)c into Hc, ∀t ∈ E . Since H(·)c is also
measurable on (E,B)([6]), it follows from the proof of Proposition 12.1.6 in [2]
and {en}n ⊂ H that t −→ U(t)H(t)c is a Borel map from (E,B) into W (Hc)N .
Moveover,

U(t)
∑
n

αnen(t) =
∑
n

αnen =
∑
n

αnen

= U(t)
∑
n

αnen(t) = U(t)
∑
n

αnen(t)

since en(t) = en(t), ∀t ∈ E , where αn ∈ C, ∀n, and
∑

n |αn|2 < +∞. Therefore,
U(t) = U(t), ∀t ∈ E .

In this case, by [6] a real field ξ(·) of vectors is measurable, if and only if, each
function

t −→ 〈ξ(t), en(t)〉t
is measurable on (E,B), ∀n. Since U(t) is a unitary operator from H(t)c onto the
complex span of {en : n ≤ dimH(t)} (a normal subspace of Hc), and en(t) = 0
if t > dimH(t), it follows that

〈ξ(t), en(t)〉t = 〈U(t)ξ(t),U(t)en(t)〉

=

{ 〈U(t)ξ(t), en〉, if n ≤ dimH(t),

0, if n > dimH(t),

∀t ∈ E . Therefore, ξ(·) is measurable, if and only if, t −→ 〈U(t)ξ(t), η〉 is
measurable on (E,B), ∀η ∈ H .

Conversely, let such U(·) exist. By Proposition 12.1.6 in [2], the field H(·)c is
measurable, and each field ξ(·) of vectors in H(·)c is measurable, if and only if,

t −→ 〈U(t)ξ(t), η〉

is measurable on (E,B), ∀η ∈ H . If ξ(·) is a measurable field of vectors in H(·)c,
then by U(t) = U(t), ∀t ∈ E ,

t −→ 〈U(t)ξ(t), η〉 = 〈U(t) ξ(t), η〉

= 〈U(t)ξ(t), η〉 = 〈η,U(t)ξ(t)〉

is still measurable on (E,B), ∀η ∈ H , i.e., ξ(·) is also a measurable field of vectors
in H(·)c, and 1

2(ξ(·) + ξ(·)) is a real measurable field of vectors. Therefore, the
real field H(·) is measurable.
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Definition 4. Let H be a separable real Hilbert space, and Hc = H � iH .
Let VN(H) and VN(Hc) be the collections of all real and complex von Neumann
(VN,simply) algebras in H and Hc respectively.

Let B(H), B(Hc) be the collections of all (real, complex)linear bounded opera-
tors in H, Hc respectively, and let T (H), T (Hc) be the collections of all trace class
operators in H, Hc respectively. Then

T (Hc)=T (H)�iT (H), B(H)=T (H)∗, B(Hc)=B(H)�iB(H), B(Hc)=T (Hc)∗

(see [2,6]). For each M ∈ VN(H) and N ∈ VN(Hc), let

M⊥ = {a ∈ T (H) : tr(ab) = 0, ∀b ∈ M}

and
N⊥ = {ac ∈ T (Hc) : tr(acbc) = 0, ∀bc ∈ N}.

Then M ∼= T (H)/M⊥, and N ∼= T (Hc)/N⊥ (see [2,6]).
In VN(H) (or VN(Hc)), there is a Borel structure generated by all subsets of

VN(H) (or VN(Hc)) with following form:

{M ∈ VN(H) : ‖t + M⊥‖1 < λ}, where t ∈ T (H) and λ > 0

(or {N ∈ VN(Hc) : ‖tc + N⊥‖1 < λ}, where tc ∈ T (Hc) and λ > 0, [2]).

Proposition 5. Let H be a separable real Hilbert space, and H c = H � iH .
Then

(1) VN(H) and VN(Hc) are standard Borel spaces;
(2) M −→ M ′, ∀M ∈ VN(H), is a Borel isomorphism of VN(H);
(3) (VN(Hc),−) is a (standard) Borel bar space, where N = {a : a ∈

N}, ∀N ∈ VN(Hc);
(4) Mc ∈ VN(Hc) is said to be normal, if there is a M ∈ VN(H) such that

Mc = M � iM . Then Mc ∈ VN(Hc) is normal, if and only if, M c = Mc.

Moreover, VN(Hc)N ={Mc ∈ VN(Hc) : Mc is normal} is a Borel subset of
VN(Hc), and is also a standard Borel space by the inductive Borel structure;

(5) M −→ Mc = M �iM, ∀M ∈ VN(H), is a Borel isomorphism from VN(H)
onto VN(Hc)N .

Proof.
(1) It is just and similar to Theorem 11.3.2 in [2].
(2) It is Proposition 11.3.1 and 11.3.5 in [2].
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(3) By {Mc ∈ VN(Hc) : ‖tc + (M c)⊥‖1 < λ} = {Mc ∈ VN(Hc) : ‖tc +
(Mc)⊥‖1 < λ}, ∀tc ∈ T (Hc), λ > 0 (clearly (Mc)⊥ = (Mc)⊥), the conclu-
sion is obvious (see Proposition 10.3.2.1) in [2]).

(4) Clearly, Mc ∈ VN(Hc) is normal, if and only if, Mc = Mc.
Now by Proposition 10.3.4.1) in [2], VN(Hc)N is a Borel subset of VN(Hc).
Moreover, by Proposition 10.3.15 in [2], VN(Hc)N with the inductive Borel
structure is a standard Borel space.

(5) Let M ∈ VN(H), Mc = M � iM(∈ VN(Hc)), and let M⊥ = {a ∈ T (H) :
tr(ab) = 0, ∀b ∈ M}, (Mc)⊥ = {ac ∈ T (Hc) : tr(acbc) = 0, ∀bc ∈ Mc}.
Clearly, (Mc)⊥ = M⊥ � iM⊥. If a ∈ T (H), then clearly

‖a + M⊥‖1 ≥ ‖a + (Mc)⊥‖1.

On the other hand,

‖a + b‖1 ≤ 1
2
(‖a + b + ic‖1 + ‖a + b − ic‖1)

= ‖a + b + ic‖1, ∀b, c ∈ M⊥.

Thus

‖a + M⊥‖1 ≤ ‖a + (Mc)⊥‖1 and ‖a + M⊥‖1 = ‖a + (Mc)⊥‖1,

∀a ∈ T (H), M ∈ VN(H).

By Proposition 10.3.2.1) and Theorem 10.3.2 in [2], the map Mc = M�iM −→
M is Borel from VN(Hc)N onto VN(H). Further, by Theorem 10.3.12 in [2],
M −→ Mc = M � iM, ∀M ∈ VN(H), is a Borel isomorphism from VN(H) onto
VN(Hc)N .

Definition 6. ([6]) Let H(·) and K(·) be two real measurable fields of Hilbert
spaces on a Borel bar space (E,B,−). A field a(·) of operators from H(·) to K(·)
is said to be real measurable, if a(t) ∈ B(H(t)c, K(t)c), ∀t ∈ E, and a(·)ξ(·)
is real measurable field of vectors in K(·) for each real measurable field ξ(·) of
vectors in H(·).

Remark. Let H(·) be a real measurable field of Hilbert spaces on a Borel bar
space (E,B,−), and let H be a separable infinite-dimensional real Hilbert space.
If we see H as the constant field on E , then it is obvious that the field U(·) of
operators from H(·) to H in Proposition 3 is real measurable.

Definition 7. ([6]) Let H(·) be a real measurable field of Hilbert spaces on
a Borel bar space (E,B,−). A field M(·) of (complex) VN algebras in H(·)
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is said to be real measurable, if M(t) is a (complex) VN algebra in H(t)c =
H(t) � iH(t), ∀t ∈ E , and there is a sequence {an(·)}n of real measurable fields
of operators in H(·) such that M(t) is weakly generated by the sequence {an(t)}n

of operators, ∀t ∈ E .

Theorem 8. Let (E,B,−) be a Borel bar space.
(1) If H is a separable real Hilbert space, H c = H � iH , and M(·) is a field

of (complex) VN algebras in the constant field H on (E,B,−), then M(·) is
real measurable, if and only if, t −→ M(t) is a Borel map from (E,B) into
VN(Hc), and M(t) = M(t), ∀t ∈ E;

(2) Let H(·) be a real measurable field of Hilbert spaces on (E,B,−), H be
a separable infinite-dimensional real Hilbert space, U(·) : H(·) c = H(·) �
iH(·) −→ Hc = H � iH be a field of operators as in Proposition 3, and
let M(·) be a field of (complex) VN algebras in H(·). Then M(·) is real
measurable, if and only if, t −→ M̃(t) is a Borel map from (E,B) into
VN(Hc), where M̃(t) = U(t)M(t)U(t)∗

⊕
C1(t)(a VN algebra in Hc), and

U(t)∗ is the adjoint (or the inverse) of U(t) as a unitary operator from
H(t)c onto U(t)H(t)c, and 1(t) is the identity operator on (U(t)H(t) c)⊥ (the
orthogonal part of U(t)H(t) c in Hc), ∀t ∈ E , and M(t) = M(t), ∀t ∈ E .

Proof. (1) By Proposition 12.3.2 in [2] and Proposition 9.3.2 in [6], the
conclusion is obvious.

(2) For each t ∈ E , since U(t)H(t)c ∈ W (Hc)N we can write

U(t)H(t)c = K(t) � iK(t),

where K(t) is a closed subspace of H (indeed, K(t) = U(t)H(t)c ∩ H). By
U(t) = U(t) and H(t) = H(t), we have

K(t) = U(t)H(t)c ∩ H = U(t) H(t)c ∩ H

= U(t)H(t)c ∩ H = U(t)H(t)c ∩ H = K(t),

∀t ∈ E . Therefore, t −→ K(t) and t −→ K(t)⊥ (the orthogonal part of K(t) in
H) are real fields of Hilbert spaces on (E,B,−), and (U(t)H(t)c)⊥ = K(t)⊥ �
iK(t)⊥, ∀t ∈ E . Since any real field ξ(·) of vectors in H(·) is measurable if
and only if t −→ 〈U(t)ξ(t), η〉 is measurable on (E,B), ∀η ∈ H (Proposition 3),
it follows that the real fields K(·) and K(·)⊥ of Hilbert spaces are measurable
(i.e., any real field ξ′(·) of vectors in K(·) or K(·)⊥ is measurable if and only if
t −→ 〈ξ′(t), η〉 is measurable on (E,B), ∀η ∈ H).

Clearly, C1(·) is a real measurable field of (complex) VN algebras in K(·)⊥.
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By Proposition 3 and Remark following Definition 6, M(·) is a real measurable
field of (complex) VN algebras in H(·) if and only if U(·)M(·)U(·)∗ is a real
measurable field of (complex) VN algebras in K(·). Therefore, M(·) is measurable
if and only if M̃(·) is measurable. Moreover, clearly M(t) = M(t) if and only if
M̃(t) = M̃(t), ∀t ∈ E .

Now by the conclusion (1), our desired result (2) is obvious.
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