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THE (S)+-CONDITION FOR VECTOR EQUILIBRIUM PROBLEMS

Y. Chiang

Abstract. In this paper, we generalize the (S)+-condition to bifunctions with
values in an oredered Hausdorff topological vector space Z, and define a
weak (S)+-condition for the bifunctions. These conditions extend naturally to
operators from nonempty subsets of a topological vector space X into the set
L(X, Z) of all continuous linear mappings from X into Z. Then we derive
some existence results for vector equilibrium problems and vector variational
inequalities associated with bifunctions or operators satisfying the weak (S)+-
condition.

1. INTRODUCTION

Vector equilibrium problems are formulated by considering the associated bi-
functions into a topological vector space with a preorder defined by a closed convex
cone which has a nonempty interior. All topological vector spaces will be assumed
to be real spaces. In this paper, we deal with vector equilibrium problems associated
with bifunctions into a Hausdorff topological vector space Z , and fix once for all
a closed convex cone C ⊂ Z such that C �= Z and intC �= ∅, where intC is the
interior of C in Z .

As well known, the vector equilibrium problem includes the vector variational
inequality as a special case. Therefore, we also consider vector variational inequali-
ties associated with operators into the set L(X, Z) of all continuous linear mappings
from a topological vector space X into Z . For � ∈ L(X, Z) and x ∈ X , we write
the value �(x) as 〈�, x〉. When Z = IR, L(X, Z) is the topological dual space X∗

of X .
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Let K be a nonempty subset of a topological vector space X . The vector
equilibrium problem associated with the bifunction f : K × K −→ Z , VEP(f, K)
for short, is the problem of finding an x̂ ∈ K such that

f(x̂, u) ∈ (−intC)c for all u ∈ K,

where (−intC)c is the complement of −intC in Z . Such an x̂ is called a solution
of VEP(f, K).

If T : K −→ L(X, Z) is an operator, then, by considering the bifunction

f(x, u) = 〈T (x), u − x〉 for x, u ∈ K ,

VEP(f, K) becomes the vector variational inequality VVI(T, K) associated with
T . An x̂ ∈ K is called a solution of VVI(T, K) if

〈T (x̂), u − x̂〉 ∈ (−intC)c for all u ∈ K .

When Z = IR and C = {r ∈ IR : r ≥ 0}, VEP(f, K) becomes the scalar
equilibrium problem EP(f, K) and VVI(T, K) becomes the variational inequality
problem VI(T, K).

The main work of this paper is to derive existence results for the above problems
associated with bifunctions or operators satisfying the (S)+-condition.

The (S)+-condition for an operator T from a subset K of a Banach space B
into B∗ was introduced by Browder [4], and stated as : for any sequence {xn}∞n=1

in K,

xn
w−→ x ∈ K and lim sup

n→∞
〈T (xn), xn − x〉 ≤ 0 =⇒ xn −→ x ,

where xn
w−→ x indicates that {xn}∞n=1 weakly converges to x. The (S)+-condition

for an operator into L(X, Z) was introduced by Chiang and Yao [9].
Very few existence results for variational inequalities associated with operators

satisfying the (S)+-condition were established. One of them is due to Guo and Yao
[12, Theorem 2.1]. By a simple argument [12, Theorem 2.1] can be stated as : Let
K be a nonempty weakly compact convex subset of a reflexive Banach space B,
and let T : K −→ B∗ be an operator. If T satisfies the (S)+-condition and is
demicontinuous, then VI(T, K) has a solution. See [9] for a discussion. An operator
T from a nonempty subset K of a normed space X into X∗ is demicontinuous if it
is continuous from the norm topology of K into the weak∗ topology of X∗ [13, p.
173].

The (S)+-condition for real valued bifunctions was first considered by Chadli,
Wong and Yao [6]. They considered real valued bifunctions defined on subsets of
normed spaces. For any nonempty subset K of a normed space X , a bifunction
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f : K×K −→ IR is said to satisfy the (S)+-condition if for any sequence {xn}∞n=1

in K,
xn

w−→ x ∈ K and lim inf
n→∞ f(xn, x) ≥ 0 =⇒ xn −→ x .

With the above definition, Chadli, Wong and Yao proved an existence result [6,
Theorem 2.1] for the problem EP(f, K) with f satisfying the (S)+-condition.

For the vector equilibrium problems associated with bifunctions satisfying the
(S)+-condition, Fang and Huang established an existence result [111, Theorem
3.1]fah for bifunctions from nonempty subsets of a reflexive Banach space into a
Banach space.

In Section 2, by using the vectorial limit inferiors defined in [5], the (S)+-
condition for bifunctions with values in Z is formulated analogously to that given
in [6]. After a minor modification, we also define a weak (S)+-condition for
bifunctions into Z so that a bifunction will satisfy the weak (S)+-condition if it
satisfies the (S)+-condition. These conditions extend naturally to operators from
subsets of a topological vector space X into L(X, Z), and the (S)+-condition for
such operators coincides with that given in [9].

In Section 3, we derive some existence results for vector equilibrium problems
associated with bifunctions satisfying the weak (S)+-condition. One of our results
generalizes [6, Theorem 2.1] in some sense; see Corollary 3.4 and Remark 3.6.
Corollary 3.4 also generalizes Fang and Huang’s result [11, Theorem 3.1].

By using Corollary 3.4 and taking account of upper semicontinuous operators
introduced in [7], in Section 4, we establish some existence results for vector vari-
ational inequalities associated with upper semicontinuous operators satisfying the
weak (S)+-condition. One of our results can be regarded as a vector version of
[12, Theorem 2.1]; see Corollary 4.7.

Our existence results are established by using Fan-KKM Theorem [10]. To
employ the theorem, we need some basic definitions and notations. For any given
nonempty set X , let 2X denote the family of all subsets of X , and let F (X) denote
the family of all nonempty finite subsets of X . When X is a topological vector
space, we denote co(E) by the convex hull of E ⊂ X , and Ec by the complement
of E in X .

For given nonempty sets X and Y , a mapping Φ : X −→ 2Y will be also
called a multivalued mapping from X into Y . The image of Φ is defined by
Φ(X) =

⋃
x∈X

Φ(x). When Y is a topological space, Φ is said to have closed values

if Φ(x) is closed in Y for every x ∈ X . For any given nonempty convex subset K
of a topological vector space X , a multivalued mapping Φ : K −→ 2X is called a
KKM mapping if

co(E) ⊂
⋃
x∈E

Φ(x) for every E ∈ F(K).



34 Y. Chiang

Now, Fan-KKM Theorem is stated as follows. Let Φ be a multivalued mapping
from a nonempty convex subset K of a Hausdorff topological vector space X into
X . Assume that Φ is a KKM mapping, and that Φ has closed values. If there is
a nonempty compact and convex subset D of K such that

⋂
x∈D

Φ(x) is compact in

X , then
⋂

x∈K

Φ(x) �= ∅.

2. THE (S)+-CONDITION

The (S)+-condition for bifunctions into Z is formulated analogously to that
given in [6]. To state the (S)+-condition, we need the L-topology on a topological
vector space defined in [9] which generalizes the weak topology. Also, we need limit
inferiors of nets in Z which was introduced in [5] for defining vector topological
pseudomonotonicity.

The L-topology on a topological vector space X is the topology having the sets
�−1(U) as subbasis, where U is open in Z and � ∈ L(X,Z). When Z = IR, the
L-topology on X coincides with the weak topology. Let XL denote the space X
equipped with the L-topology. Note that XL is a topological vector space, and that
if X is Hausdorff and locally convex then XL is Hausdorff [9, Theorem 3.1].

For any subset E of X , the closure of E in XL will be called the L-closure
of E . The set E will be called L-closed (respectively, L-open) if E is closed
(respectively, open) in XL. Similarly, E is called L-compact if it is compact in
XL. When Z = IR, the notion of L-compactness reduces to the notion of weak
compactness.

It is clear that every L-open (respectively, L-closed) subset of X is originally
open (respectively, closed) in X . Similarly, compact subsets of X are L-compact.

For any given net {xα} in X , we shall write xα −→ x ∈ X when {xα} con-
verges to x in the original topology on X . The net {xα} will be called L-convergent
to x, written by xα

L−→ x, if {xα} converges to x in XL, i.e., 〈�, xα〉 −→ 〈�, x〉 in
Z for every � ∈ L(X, Z). The notion of L-convergence coincides with the notion
of weak convergence when Z = IR.

As in the scalar case, limit inferiors of nets in Z are defined by using vector
superiors and inferiors introduced in [3]. For a subset E of Z , let E denote the
closure of E in Z . The superior of E with respect to C is defined by

Sup (E, C) = {z ∈ E : (z + intC) ∩ E = ∅} ,

and the inferior of E with respect to C is defined by

Inf (E, C) = {z ∈ E : (z − intC) ∩ E = ∅} .
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As C is fixed, we shall simply write Sup (E, C) = Sup E and Inf (E, C) = Inf E .
A standard argument shows that Inf (−E) = −Sup E . See [8] for more discussion
on vector superiors and inferiors.

For a given net {zα}α∈I in Z , let Aα = {zβ : β � α} for every α ∈ I. The
limit inferior of {zα}α∈I is defined by

Liminfzα = Sup (
⋃
α∈I

Inf Aα) .

Now, for any given nonempty subset K of a topological vector space X , a
bifunction f : K × K −→ Z is said to satisfy the (S)+-condition if for any net
{xα} in K,

xα
L−→ x ∈ K and Liminf f(xα, x) ⊂ (−intC)c =⇒ xα −→ x .

Note that an operator T : K −→ L(X, Z) satisfies the (S)+-condition given in
[9] if and only if the bifunction function (x, u) −→ 〈T (x), u − x〉 satisfies the
(S)+-condition.

Our existence results will be established by replacing the above (S)+-condition
by a weak one given below which we shall call the weak (S)+-condition. A
bifunction f as given above is said to satisfy the weak (S)+-condition if any net
{xα} in K with

xα
L−→ x ∈ K and Liminff(xα, x) ⊂ (−intC)c ,

has a subnet {xλ} such that xλ −→ x.
Similarly, an operator T : K −→ L(X, Z) is said to satisfy the weak (S)+-

condition if the bifunction (x, u) −→ 〈T (x), u − x〉 satisfies the weak (S)+-
condition. Clearly, a bifunction or an operator satisfies the weak (S)+-condition if
it satisfies the (S)+-condition.

2. EXISTENCE RESULTS FOR VECTOR EQUILIBRIUM PROBLEMS

This section is devoted to deriving some existence results for vector equilibrium
problems associated with bifunctions satisfying the weak (S)+-condition. To state
our existence results, we need some basic definitions.

A function f from a topological space Ω into Z is called C-upper semicontin-
uous [17] if f −1(z − intC) is open in Ω for every z ∈ Z .

The (L)-condition. Let K be a nonempty convex subset of a topological vector
space. A bifunction f : K × K −→ Z is said to satisfy the (L)-condition if it has
the following property : For any x, u ∈ K and any net {xα} in K, if

xα −→ x and f(xα, tu + (1− t)x) ∈ (−intC)c for all α and 0 ≤ t ≤ 1,
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then f(x, u) ∈ (−intC)c.

Remark 3.1. Let K be a nonempty convex subset of a Hausdorff topological
vector space. Then a bifunction f : K × K −→ Z satisfies the (L)-condition
if it is vector topologically pseudomonotone [5, Theorem 2.7]. Vector topological
pseudomonotonicity will not be used in the sequel; see [5] for the definition. It
follows from [5, Corollary 2.6] that if for every fixed u ∈ K the function fu :
K −→ Z defined by fu(x) = f(x, u) for x ∈ K, is C-upper semicontinuous on
K, then f is vector topologically pseudomonotone.

Theorem 3.2. Let K be a nonempty convex subset of a Hausdorff topological
vector space, and let f : K ×K −→ Z be a bifunction. For every E ∈ F(K), let
ΦE : co(E) −→ 2co(E) be the mapping defined by

ΦE(u) = {x ∈ co(E) : f(x, u) ∈ (−intC)c} .

Assume that the following conditions are satisfied.

(i) For every E ∈ F(K), ΦE is a KKM mapping and has closed values.
(ii) f satisfies both the weak (S)+-condition and (L)-condition.
(iii) (Coercivity) There exist nonempty L-compact subsets A and B of K with B

convex such that if x ∈ K ∩ Ac then f(x, ux) ∈ (−intC) for some ux ∈ B.

Then VEP(f, K) has a solution.
For the proof of Theorem 3.2, we first prove :

Theorem 3.3. Let K be a nonempty L-compact and convex subset of a
Hausdorff topological vector space, and let f : K × K −→ Z be a bifunction.
If the conditions (i) and (ii) in Theorem 3.2 are satisfied, then VEP(f, K) has a
solution.

Proof. The condition (i) together with Fan-KKM Theorem assert that for every
E ∈ F(K),

SE = {x ∈ K : f(x, u) ∈ (−intC)c for all u ∈ co(E)} �= ∅ .

For every E ∈ F(K), let SE
L denote the L-closure of SE in K. Since for E ,

E ′ ∈ F(K),
SE∪E′ ⊂ SE ∩ SE′ ⊂ SE

L ∩ SE′
L

,

the family {SE
L : E ∈ F(K)} has the finite intersection property. The L-

compactness of K implies that

S =
⋂

E∈F(K)

SE
L �= ∅ .
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We claim that any point x̂ ∈ S is a solution of VEP(f, K).
For every u ∈ K, consider the set U = {x̂, u} ∈ F(K). Since x̂ ∈ SU

L, there
is a net {xα} in SU such that xα

L−→ x̂. By definition,

f(xα, tu + (1− t)x̂) ∈ (−intC)c for all α and 0 ≤ t ≤ 1.

Letting t = 0, we have f(xα, x̂) ∈ (−intC)c for all α and Liminff(xα, x̂) ⊂
(−intC)c. The (S)+-condition implies that there is subnet {xλ} of {xα} such that
xλ −→ x̂. Since

f(xλ, tu + (1 − t)x̂) ∈ (−intC)c for all λ and 0 ≤ t ≤ 1,

the (L)-condition implies f(x̂, u) ∈ (−intC)c.

Proof of Theorem 3.2. Since co(E ∪ B) is L-compact for every E ∈ F(K)
[1, Lemma 5.14, p. 171], by Theorem 3.3 there is an xE ∈ co(E ∪ B) such that

f(xE, u) ∈ (−intC)c for all u ∈ co(E ∪ B).

The condition (iii) implies xE ∈ A. Thus, for every E ∈ F(K),

SE = {x ∈ A : f(x, u) ∈ (−intC)c for all u ∈ co(E ∪ B)} �= ∅ .

Let S
L
E be the L-closure of SE in A. By the L-compactness of A, we have

⋂
E∈F(K)

S
L
E �= ∅ .

Now, by a similar argument as above, the condition (ii) will complete the proof.

As applications of Theorem 3.2, we consider vector 0-diagonally convex and C-
quasiconvex-like bifunctions. Let K be a nonempty convex subset of a topological
vector space X . A bifunction f : K × K −→ Z is called vector 0-diagonally
convex [5] if for any finite set {u1, . . . , un} ⊂ K,

x =
n∑

j=1

tjuj with all tj ≥ 0 and
n∑

j=1

tj = 1 =⇒
n∑

j=1

tjf(x , uj) ∈ (−intC)c .

While f is called C-quasiconvex-like [2] if for any x, u1, u2 ∈ K and 0 ≤ t ≤ 1

f(x, tu1 + (1− t)u2) ∈ f(x, u1)−C or f(x, tu1 + (1− t)u2) ∈ f(x, u2)−C .

For a bifunction f : K × K −→ Z as given above, consider the multivalued
mapping Φ : K −→ 2X defined by

Φ(u) = {x ∈ K : f(x, u) ∈ (−intC)c} for u ∈ K .

From the proofs of [5, Lemmas 3.6 and 3.9], we conclude that if either
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(a) f is vector 0-diagonally convex, or
(b) f is C-quasiconvex-like with f(x, x) ∈ (−intC)c for all x ∈ K,

then Φ is a KKM mapping. Moreover,

Φ(u) = f−1
u ((−intC)c) for every u ∈ K ,

where fu : K −→ Z is the function given in Remark 3.1. Then Φ has closed values
if K is closed, and if every fu is C-upper semicontinuous on K.

Now, from Remark 3.1 and Theorem 3.2, we obtain the following corollaries.

Corollary 3.4. Let f : K ×K −→ Z be a bifunction, where K is a nonempty
convex subset of a Hausdorff topological vector space. Then VEP(f, K) has a
solution if the following conditions are satisfied.

(i) f is vector 0-diagonally convex.
(ii) For every u ∈ K, the function x �−→ f(x, u) is C-upper semicontinuous on

co(E) for every E ∈ F(K).
(iii) f satisfies both the weak (S)+-condition and (L)-condition.
(iv) (Coercivity) There exist nonempty L-compact subsets A and B of K with B

convex such that if x ∈ K ∩ Ac then f(x, ux) ∈ (−intC) for some ux ∈ B.

Corollary 3.5. Let f : K ×K −→ Z be a bifunction, where K is a nonempty
convex subset of a Hausdorff topological vector space. If f is C-quasiconvex-like
with f(x, x) ∈ (−intC)c for all x ∈ K, and satisfies the conditions (ii), (iii) and
(iv) in Corollary 3.4, then VEP(f, K) has a solution.

Remark 3.6. Let f : K × K −→ Z be given as above. Since f satisfies
the (L)-condition if for every u ∈ K the function x �−→ f(x, u) is C-upper
semicontinuous on K, Corollary 3.4 generalizes [6, Theorem 2.1] in the sense that
the function h given there is identically zero.

4. EXISTENCE RESULTS FOR VECTOR VARIATIONAL INEQUALITIES

In this section, by considering upper semicontinuous operators introduced in
[7], we shall use Corollary 3.4 to derive some existence results for vector vari-
ational inequalities associated with upper semicontinuous operators satisfying the
weak (S)+-condition. To proceed, we need the topology of bounded convergence
and the topology of simple convergence on L(X, Z), where X is a topological vec-
tor space. See [16, p. 79-87] for a full discussion on these topologies. To describe
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these topologies, we denote by BX the family of all nonempty bounded subsets of
X , and NZ the family of 0-neighborhoods in Z .

For a given family E of nonempty subsets of X , if E ∈ E and V ∈ NZ , we
write

[E, V ]E = {f ∈ L(X, Z) : f(E) ⊂ V } .

When there is no risk of confusion, we shall simply write [E, V ]E = [E, V ].
If E = F (X) or E = BX , then the family

{[E, V ]E : E ∈ E and V ∈ NZ}

is the 0-neighborhood base in L(X, Z) for a unique translation-invariant topology
TE ; see [16, p. 79]sch. If E = F (X), then TE is the topology of simple conver-
gence (or the topology of pointwise convergence). Let Ls(X, Z) denote the space
L(X, Z) equipped with the topology of simple convergence. If E = BX , then TE
is the topology of bounded convergence. Let Lb(X, Z) denote the space L(X, Z)
equipped with the topology of bounded convergence. When Z = IR, Ls(X, Z)
coincides with the weak∗ topology on X∗, and Lb(X, Z) coincides with the strong
topology on X∗.

Note that Ls(X, Z) and Lb(X, Z) are Hausdorff topological vector spaces since
Z is Hausdorff [16, pp. 79-80]. Also, note that if X and Z are normed spaces, the
norm

� �−→ ‖�‖ = sup{|�(x)| : |x| ≤ 1}

generates the topology of bounded convergence on L(X, Z), i.e., Lb(X, Z) is also
a normed space. For a full discussion on the topologies of bounded convergence
and simple convergence, see, e.g., [14, 16].

As above, we denote E by BX or F (X). For any given topological space Y ,
an operator T : Y −→ L(X, Z) is called C∗

E -upper semicontinuous at y0 ∈ Y if
for any (E, v) ∈ E × intC, there is a neighborhood U of y0 such that

T (y) ∈ T (y0) + [ E, v − intC]E for all y ∈ U .

While T is called C∗
E -upper semicontinuous if it is C∗

E -upper semicontinuous at
every point of Y . We shall write C∗

E = C∗
L(b) when E = BX , and write C∗

E = C∗
L(s)

when E = F (X). Note that T is C∗
L(s)-upper semicontinuous at y0 if and only

if for any (x, v) ∈ X × intC there is a neighborhood U of y0 such that T (y) ∈
T (y0) + [ {x}, v − intC ] for all y ∈ U .

The following assertions are immediate consequences of the definition.

(a) If T is C∗
L(b)-upper semicontinuous, then it is C ∗

L(s)-upper semicontinuous.

(b) If T : Y −→ Lb(X, Z) is continuous, then it is C ∗
L(b)-upper semicontinuous.
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(c) If T : Y −→ Ls(X, Z) is continuous, then it is C ∗
L(s)-upper semicontinuous.

A nonempty subset K of a topological vector space will be called locally
bounded if every x ∈ K has a neighborhood U such that U ∩ K is bounded,
i.e., x has a bounded neighborhood in K. Clearly, nonempty bounded subsets of
a topological vector space are locally bounded, and nonempty subsets of a locally
bounded topological vector space are locally bounded.

Theorem 4.1. Let T : K −→ L(X, Z) be an operator, where K is a nonempty
subset of a topological vector space X . For every u ∈ K , let f u : K −→ Z be
the function given by

fu(x) = 〈T (x), u − x〉 for x ∈ K.

If K is locally bounded, and if T is C ∗
L(b)-upper semicontinuous, then fu is C-upper

semicontinuous on K for every u ∈ K .

Proof. Let x0 ∈ K and v ∈ intC be arbitrary. We have to show that there is
a neighborhood U of x0 in K such that fu(x) ∈ fu(x0) + v − intC for all x ∈ U .
Note that

fu(x) − fu(x0) = 〈T (x)− T (x0), u − x〉 + 〈T (x0), x0 − x〉 .

Let U0 be a bounded neighborhood of x0 in K . By assumption, there is a neigh-
borhood U1 of x0 in K with U1 ⊂ U0 such that

x ∈ U1 =⇒ T (x)− T (x0) ∈ [u − U0,
v

2
− intC]

=⇒ 〈T (x)− T (x0), u − x〉 ∈ v

2
− intC .

By the continuity of the function x �−→ 〈T (x0), x0 − x〉, there is a neighborhood
U of x0 in K with U ⊂ U1 such that

x ∈ U =⇒ 〈T (x0), x0 − x〉 ∈ v

2
− intC .

Now, for x ∈ U we have fu(x) − fu(x0) ∈ v − intC.

Theorem 4.2. Let T : K −→ L(X, Z) be an operator, where K is a nonempty
subset of a topological vector space X . For every u ∈ K , let f u : K −→
Z be the function given in Theorem 4.1. If X is locally bounded, and if T is
C∗
L(s)-upper semicontinuous with T (K) bounded in L b(X, Z), then fu is C-upper

semicontinuous on K for every u ∈ K .
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Proof. Let x0 ∈ K and v ∈ intC be arbitrary. Note that

fu(x)− fu(x0) = 〈T (x)− T (x0), u − x0〉 + 〈T (x), x0 − x〉 .

Since every 0-neighborhood contains a balanced 0-neighborhood [15, Theorem 1.14,
p.11], there is a balanced and bounded 0-neighborhood IB in X such that

x ∈ U0 = (x0 + IB) ∩ K =⇒ T (x) − T (x0) ∈ [{u− x0},
v

2
− intC]

=⇒ 〈T (x)− T (x0), u − x0〉 ∈
v

2
− intC .

Note that [IB, v
2 − intC] is a 0-neighborhood in Lb(X, Z). There is a positive

number λ ≤ 1 such that

λT (K) ⊂ [IB,
v

2
− intC] .

Consequently, �(λIB) ⊂ v
2 − intC for all � ∈ T (K). Note that U = (x0 +λIB)∩K

is a neighborhood of x0 with U ⊂ U0. Now, if x ∈ U , then T (x) maps λIB into
v
2 − intC and 〈T (x), x0 − x〉 ∈ v

2 − intC. The proof is complete.

Theorem 4.3. Let K be a nonempty L-compact and convex subset of a
Hausdorff topological vector space X , and let T : K −→ L(X, Z) be an operator
satisfying the weak (S)+-condition. If K is locally bounded and T is C ∗

L(b)-upper
semicontinuous, then VVI(T, K) has a solution.

Proof. Let f : K × K −→ Z be the function defined by

f(x, u) = 〈T (x), u − x〉 for x, u ∈ K .

For every u ∈ K, let fu : K −→ Z be the function given in Theorem 4.1. Note that
f is vector 0-diagonally convex and satisfies the weak (S)+-condition. By Theorem
4.1, every fu is C-upper semicontinuous on K . Thus, f satisfies the (L)-condition;
see Remark 3.1. Now, the theorem follows from Corollary 3.4.

By the same reasoning as above, the following theorem follows from Corollary
3.4 and Theorem 4.2.

Theorem 4.4. Let K be a nonempty L-compact and convex subset of a
Hausdorff topological vector space X , and let T : K −→ L(X, Z) be an operator
satisfying the weak (S)+-condition. If X is locally bounded and T is C ∗

L(s)-upper
semicontinuous with T (K) bounded in L b(X, Z), then VVI(T, K) has a solution.

The following corollary is an immediate consequence of Theorem 4.3.



42 Y. Chiang

Corollary 4.5. Let K be a nonempty L-compact and convex subset of a
Hausdorff topological vector space X , and let T : K −→ L(X, Z) be an operator
satisfying the weak (S)+-condition. If K is locally bounded and T : K −→
Lb(X, Z) is continuous, then VVI(T, K) has a solution.

Note that if X is a normed space and Z is a Banach space, then a subset of X
is bounded if and only if it is L-bounded [7, Proposition 2.2]. Since L-compactness
implies L-boundedness, from Corollary 4.5 we obtain :

Corollary 4.6. Let K be a nonempty L-compact and convex subset of a
normed space X , and assume that Z is a Banach space. If T : K −→ L b(X, Z)
is a continuous operator satisfying the weak (S) +-condition, then VVI(T, K) has
a solution.

The following corollary is a consequence of Theorem 4.4 and is regarded as a
vector version of [12, Theorem 2.1].

Corollary 4.7. Let K be a nonempty L-compact and convex subset of a
Hausdorff and locally bounded topological vector space X , and let T : K −→
L(X, Z) be an operator. If T satisfies the weak (S)+-condition, and T : K −→
Ls(X, Z) is continuous with T (K) bounded in L b(X, Z), then VVI(T, K) has a
solution.
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