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COMPLEX INTERPOLATION FOR PREDUAL SPACES
OF MORREY-TYPE SPACES

Wen Yuan

Abstract. In this paper, the author introduces the inhomogeneous Hausdorff type
Besov and Triebel-Lizorkin spaces, which are the predual spaces of Besov-Morrey
and Triebel-Lizorkin-Morrey spaces. By calculating the Calderón product of the
sequence spaces related to Hausdorff type Besov and Triebel-Lizorkin spaces,
the author obtains the complex interpolation of these spaces. In particular, the
complex interpolation for the predual spaces of Morrey spaces is also obtained.

1. INTRODUCTION

The study of Morrey spaces is traced to C. B. Morrey in 1938, nowadays has
become a useful tool in the study of the existence and regularity of some elliptic
equations. Recall that the Morrey space Lp

τ (Rn) is defined to be the set of all p-locally
integrable functions f such that

‖f‖Lp
τ (Rn) := sup

P∈Q
1

|P |τ
{∫

P
|f(x)|p dx

}1/p

<∞,

where P runs over all dyadic cubes in R
n. Obviously, Lp

0(R
n) = Lp(Rn). In 1986,

using atoms, Zorko [43] introduced a class of functions whose dual space is the Morrey
space. Another description of the predual space of Morrey spaces was later given
by Kalita [10] in 1998. In 2004, using the Hausdorff capacities, Adams and Xiao
[2] introduced the third kind of the predual of Morrey spaces, and proved that these
three predual spaces coincide. These spaces were also used in [2] (see also [3]) to
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calculate the Morrey type capacities. Recently, Rosenthal and Triebel [17] proved the
boundedness of Calderón-Zygmund operators on Morrey spaces by first considering
their boundedness on the predual spaces of Morrey spaces.

In a recent paper [42], via Hausdorff capacities, the Hausdorff type Besov space
BḢs,τ

p,q (Rn) and the Hausdorff type Triebel-Lizorkin space FḢs,τ
p,q (Rn) were introduced

and proved to be the predual spaces of the homogeneous Besov-Morrey and Triebel-
Lizorkin-Morrey spaces (see [13, 15, 27, 20]), respectively. The predual spaces of
Morrey spaces (see [43, 10, 2, 3]) were also proved in [42] to be special cases of these
spaces BḢs,τ

p,q (Rn) and FḢs,τ
p,q (Rn). Moreover, these scales of Hausdorff type spaces

also cover some Hardy-Hausdorff spaces, which are known to the predual spaces of
Qα(Rn) spaces (see [8, 7, 33, 34]). Inspired by [17], these Hausdorff type spaces
may serve as a useful tool in the study of boundedness of operators on Besov-Morrey
and Triebel-Lizorkin-Morrey spaces. Indeed, because of the lack of the density of
test functions, we can not prove the boundedness of operators on Besov-Morrey and
Triebel-Lizorkin-Morrey spaces by first studying the mapping property of operators on
test functions and then taking approximation. However, this can be done for their
predual spaces since Hausdorff type Besov and Triebel-Lizorkin spaces support the
density of test functions. Once we obtain the boundedness on predual spaces, a dual
argument then gives the desired boundedness of operators on Besov-Morrey and Triebel-
Lizorkin-Morrey spaces.

The main purpose of this paper is to consider the complex interpolation properties
for the Hausdorff type Besov space and the Hausdorff type Triebel-Lizorkin space. The
interpolation theory is known to be a very useful and important tool in various branches
of mathematics such as harmonic analysis and the theory of operators. For Besov and
Triebel-Lizorkin spaces, the study of their complex interpolation has been an attractive
topic for long time; see, for example, Schechter [22, 23], Peetre [16], Bergh-Löfström
[4], Triebel [28, 29, 30], Frazier-Jawerth [9], Kalton-Mayboroda-Mitrea [11], Bownik
[5] and [26]. Of special importance for us is the paper [9] by Frazier and Jawerth, who
transferred the interpolation problem from function spaces to the related sequences, and
the latter are usually more easy to handle. Another important tool we need is an abstract
interpolation theory for quasi-Banach function spaces developed by Kalton and Mitrea
in [12] (see also [11]), which establishes the coincidence of Calderón products and the
complex interpolations of quasi-Banach lattices under certain conditions.

We focus on the inhomogeneous version of Hausdorff type Besov and Hausdorff
type Triebel-Lizorkin spaces in this paper. However, all results are also true for homo-
geneous cases. We first calculate the Calderón product of the sequence spaces related
to the Hausdorff type Besov space BHs,τ

p,q (Rn) and the Hausdorff type Triebel-Lizorkin
space FHs,τ

p,q (Rn), which are denoted by bHs,τ
p,q(Rn) and fHs,τ

p,q(Rn). Then, applying
Kalton and Mitrea’s abstract interpolation approach, we obtain the complex interpola-
tion property for fHs,τ

p,q(Rn) and bHs,τ
p,q(Rn). Using the characterization of FHs,τ

p,q (Rn)
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and BHs,τ
p,q (Rn) via wavelet decompositions, we further obtain the corresponding com-

plex interpolation for FHs,τ
p,q (Rn) and BHs,τ

p,q (Rn) (see Theorem 2.8 below). As a
special case, we obtain the complex interpolation for predual spaces of Morrey spaces
(see Corollary 2.10 below).

One of the main obstacles in applying Kalton and Mitrea’s approach (see [12]) to
these Hausdorff type spaces is that it is unclear whether the spaces FHs,τ

p,q (Rn) and
BHs,τ

p,q (Rn), and also fHs,τ
p,q(Rn) and bHs,τ

p,q(Rn) are analytically convex. Such property
of analytically convex is needed in [12] when define the complex interpolation space. To
overcome this, we introduce the tent spaces associated with FHs,τ

p,q (Rn) and BHs,τ
p,q (Rn)

and establish their atomic decomposition. With these atomic decomposition, the spaces
FHs,τ

p,q (Rn) and BHs,τ
p,q (Rn), and fHs,τ

p,q(R
n) and bHs,τ

p,q(R
n), can be re-normed as

Banach spaces, which are analytically convex.
The structure of this article is organized as follows. In Section 2, we recall the

definition and some basic properties of the Hausdorff type spaces FHs,τ
p,q (Rn) and

BHs,τ
p,q (Rn), and also some notions on complex interpolations. The main result of this

paper is also presented at the end of this section. In Section 3, we introduce the tent
spaces related to FHs,τ

p,q (Rn) and BHs,τ
p,q (Rn) and establish their atomic decomposition.

Using this, we prove that the spaces FHs,τ
p,q (Rn) and BHs,τ

p,q (Rn) and their related se-
quence spaces can be re-normed as Banach spaces. Finally, in Section 4, we present the
proof of the complex interpolation property of the spaces FHs,τ

p,q (Rn) and BHs,τ
p,q (Rn).

2. PRELIMINARIES AND THE MAIN RESULT

In this section, we present the definition and some properties on Hausdorff type
Besov and Triebel-Lizorkin spaces, and also complex interpolations. The main result
of this paper is listed in the end of this section.

We begin with some notation. Denote by N0 the natural numbers including 0.
Let S(Rn) be the space of all Schwartz functions on Rn endowed with the classical
topology and S ′(Rn) its topological dual space, namely, the set of all continuous
linear functionals on S(Rn) endowed with the weak-∗ topology. We use f̂ to denote
the Fourier transform of f ∈ S(Rn) or S ′(Rn). In what follows, for all ϕ ∈ S(Rn) and
j ∈ N, we let ϕj(·) := 2jnϕ(2j·). Let Q := {Qj,k := 2−j([0, 1)n + k) : j ∈ Z, k ∈
Zn} be the collection of all dyadic cubes in Rn. We also let Q∗ := {Qj,k : j ∈ N0}.

For E⊂R
n and d∈ (0, n], the d-dimensional Hausdorff capacity of E is defined

by

(2.1) Hd(E) := inf

⎧⎨⎩∑
j

rd
j : E ⊂

⋃
j

B(xj, rj)

⎫⎬⎭ ,

where the infimum is taken over all countable open ball coverings {B(xj, rj)}j of E;
see, for example, [1, 35]. For any function f : Rn → [0,∞], the Choquet integral of
f with respect to Hd is then defined by
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(2.2)
∫

Rn

f(x) dHd(x) :=
∫ ∞

0
Hd({x ∈ R

n : f(x) > λ}) dλ.

It is known that there exists a positive constant C0 such that, for all nonnegative
measurable functions {fi}i,

(2.3)
∫

Rn

∑
i

fi(x) dHd(x) ≤ C0

∑
i

∫
Rn
fi(x) dHd(x).

For any measurable functions ν on R
n+1
N0

:= Rn × {2−k : k ∈ N0} and x ∈ Rn,
its nontangential maximal function Nν is defined by

Nν(x) := sup{|ν(y, 2−k)| : (y, 2−k) ∈ R
n+1
N0

, |y − x| < 2−k}, x ∈ R
n.

Definition 2.1. Let s ∈ R, p ∈ (1,∞) and τ ∈ (0, 1
p′ ]. Assume that ϕ0, ϕ ∈ S(Rn)

satisfy that

(2.4) supp ϕ̂0 ⊂ {ξ ∈ R
n : |ξ| ≤ 2} and |ϕ̂0(ξ)| ≥ C if |ξ| ≤ 5/3

and

(2.5) supp ϕ̂ ⊂ {ξ ∈ R
n : 1/2 ≤ |ξ| ≤ 2} and |ϕ̂(ξ)| ≥ C if 3/5 ≤ |ξ| ≤ 5/3,

where C is a positive constant. The Hausdorff type Besov space BHs,τ
p,q (Rn) with

q ∈ [1,∞) and the Hausdorff type Triebel-Lizorkin space FHs,τ
p,q (Rn) with q ∈ (1,∞)

are defined, respectively, to be the sets of f ∈ S ′(Rn) such that

‖f‖BH
s,τ
p,q (Rn) :=

⎧⎨⎩∑
k∈N0

2ksq inf
ν

[∫
Rn

|ϕk ∗ f(x)|p[ν(x, 2−k)]−p dx

]q/p
⎫⎬⎭

1/q

<∞

and

‖f‖FHs,τ
p,q (Rn) := inf

ν

⎧⎪⎨⎪⎩
∫

Rn

⎡⎣∑
k∈N0

2ksq|ϕk ∗ f(x)|q[ν(x, 2−k)]−q

⎤⎦p/q

dx

⎫⎪⎬⎪⎭
1/p

<∞,

where the infimums are taken over all nonnegative Borel measurable functions ν on
R

n+1
N0

satisfying that

(2.6)
∫

Rn

[Nν(x)]p
′
dHnτp′(x) ≤ 1.

In what follows, we use AHs,τ
p,q (Rn) to denote either BHs,τ

p,q (Rn) or FHs,τ
p,q (Rn).

When A = F , then q ∈ (1,∞). Similar to the arguments for the homogeneous version
of AHs,τ

p,q (Rn) in [42], we see that the space AHs,τ
p,q (Rn) is independent of the choice

of ϕ0 and ϕ; moreover, the space AHs,τ
p,q (Rn) is a quasi-Banach space, indeed, for all

f1, f2 ∈ AHs,τ
p,q (Rn),
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‖f1 + f2‖AHs,τ
p,q (Rn) ≤ (2C0)p′

[
‖f1‖AHs,τ

p,q (Rn) + ‖f2‖AHs,τ
p,q (Rn)

]
,

where C0 is as in (2.3). Also, by an argument similar to that used for [41, Lemma
7.9], we know that the Schwartz class S(Rn) is dense in AHs,τ

p,q (Rn).

Remark 2.2. It was proved in [42] that if p ∈ [q,∞), then the homogeneous ver-
sion of FHs,τ

p,q (Rn) coincides with the homogeneous Triebel-Lizorkin-Hausdorff space
ḞHs,τ

p,q (Rn) introduced in [36]. The same argument is also feasible for inhomoge-
neous versions, that is, FHs,τ

p,q (Rn) = FHs,τ
p,q (Rn) if p ∈ [q,∞), where FHs,τ

p,q (Rn) is
introduced in [41].

We now recall the Besov-Morrey and Triebel-Lizorkin-Morrey spaces introduced
and studied in [13, 15, 27]. Notice that the notation here is slightly different from those
used in these papers.

Definition 2.3. Let p ∈ (0,∞), s ∈ R, q ∈ (0,∞], τ ∈ [0, 1/p) and ϕ0 and ϕ be
as in Definition 2.1.

(i) The Besov-Morrey space BM s,τ
p,q (Rn) is defined to be the set of all f ∈ S ′(Rn)

such that

‖f‖BMs,τ
p,q (Rn) :=

⎧⎨⎩∑
j∈N0

2jsq‖ϕj ∗ f‖q
L

p
τ (Rn)

⎫⎬⎭
1/q

<∞.

(ii) The Triebel-Lizorkin-Morrey space FM s,τ
p,q (Rn) is defined to be the set of all

f ∈ S ′(Rn) such that

‖f‖FM
s,τ
p,q (Rn) :=

∥∥∥∥∥∥∥
⎡⎣∑

j∈N0

2jsq |ϕj ∗ f |q
⎤⎦1/q

∥∥∥∥∥∥∥
Lp

τ (Rn)

<∞.

Remark 2.4. (i) Obviously, when τ = 0, then BM s,τ
p,q (Rn) and FM s,τ

p,q (Rn) go
back to the classical Besov and Triebel-Lizorkin spaces. Moreover, it holds true that
FM0,τ

p,2 (Rn) = Lp
τ (Rn); see [20].

(ii) Let s ∈ R, p, q ∈ (0,∞] (p ∈ (0,∞) for F s,τ
p,q (Rn)), τ ∈ [0,∞) and ϕ0

and ϕ be as in Definition 2.1. Recall that the Besov-type space Bs,τ
p,q (Rn) and the

Triebel-Lizorkin-type space F s,τ
p,q (Rn) are defined, respectively, to be be the sets of all

f ∈ S ′(Rn) such that

‖f‖Bs,τ
p,q (Rn) := sup

P∈Q
1

|P |τ

⎧⎨⎩
∞∑

j=max{− log2 �(P ),0}
2jsq

[∫
P

|ϕj ∗ f(x)|p dx
]q/p
⎫⎬⎭

1/q

<∞

and
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‖f‖F
s,τ
p,q (Rn) := sup

P∈Q
1

|P |τ

⎧⎪⎨⎪⎩
∫

P

⎡⎣ ∞∑
j=max{− log2 �(P ),0}

2jsq|ϕj ∗ f(x)|q
⎤⎦p/q

dx

⎫⎪⎬⎪⎭
1/p

<∞,

where the supremums are taken over all dyadic cubes P .
It was proved in [41, Corollary 3.3] (see also [21, Theorem 1.1]) that if τ ∈ [0, 1/p),

then FM s,τ
p,q (Rn) = F s,τ

p,q (Rn) and BM s,τ
p,∞(Rn) = Bs,τ

p,∞(Rn) with equivalent quasi-
norms and, when q ∈ (0,∞) and τ ∈ (0, 1/p), BM s,τ

p,q (Rn) is a proper subspace of
B

s,τ
p,q (Rn). For more information on these spaces, we refer to [20, 18, 19, 36, 37, 40,

41, 24, 25].

Remark 2.5. Let p ∈ (1,∞) and τ ∈ (0, 1/p). The space Hp
τ (Rn) is defined to

be the set of all p-locally integrable functions f such that

‖f‖Hp
τ (Rn) := inf

w

{∫
Rn

|f(x)|p[w(x)]1−p dx

} 1
p

<∞,

where the infimum is taken over all nonnegative measurable functions w on Rn satis-
fying ∫

Rn

w(x) dHnτp′(x) ≤ 1.

Recall that the space Hp
τ (Rn) was introduced in [2] and proved therein to be the predual

space of the Morrey space Lp′
τ (Rn). Similar to the proof for [42, Theorem 1.11], we

know that
Hp

τ (Rn) = FH0,τ
p,2 (Rn)

with equivalent quasi-norms.

As the inhomogeneous version of [42, Theorem 1.10], one can prove that the dual
space of AHs,τ

p,q (Rn) is just AM−s,τ
p′,q′ (Rn). The proof is similar and we omit the details.

Theorem 2.6. Let s ∈ R, p ∈ (1,∞), τ ∈ (0, 1/p′) and q ∈ [1,∞) (q ∈ (1,∞)
for FHs,τ

p,q (Rn)). Then the dual space of AHs,τ
p,q (Rn) is AM−s,τ

p′,q′ (Rn) in the following
sense: for any g ∈ AM−s,τ

p′,q′ (Rn), the linear functional

(2.7) L(f) =
∫

Rn

f(x)g(x) dx,

defined initially for all f ∈ S(Rn), has a bounded extension to AHs,τ
p,q (Rn);

Conversely, if L is a bounded linear functional on AHs,τ
p,q (Rn), then there exists g ∈

AM−s,τ
p′,q′ (Rn) such that ‖g‖AM−s,τ

p′,q′ (Rn) is not more than a positive constant multiple
of ‖L‖, and L can be represented in the form (2.7) for all f ∈ S(Rn).
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Let ϕ0 and ϕ be as in Definition 2.1. For s ∈ R, q ∈ (0,∞], p ∈ (0,∞) and ω
being a nonnegative measurable function on R

n, the weighted Triebel-Lizorkin space
F s

p,q(ω) is defined to be the set of all f ∈ S ′(Rn) such that

‖f‖F s
p,q(ω) :=

∥∥∥∥∥∥∥
⎧⎨⎩∑

j∈N0

2jsq|ϕj ∗ f |q
⎫⎬⎭

1/q
∥∥∥∥∥∥∥

Lp(ω)

<∞,

where, for any ω(x) dx-measurable function g,

‖g‖Lp(ω) :=
[∫

Rn
|g(x)|pω(x) dx

]1/p

.

As the inhomogeneous counterpart of [42, Theorem 1.6], we have the following
equivalent characterizations of AHs,τ

p,q (Rn).

Proposition 2.7. Let s ∈ R, p ∈ (1,∞), τ ∈ (0, 1/p′] and q ∈ [1,∞) (q 
= 1 if
A = F ).

(i) There exists a positive constant C such that for all f ∈ S ′(Rn),

C−1‖f‖BH
s,τ
p,q (Rn) ≤

⎧⎨⎩∑
j∈N0

inf
ω

‖2jsϕj ∗ f‖q
Lp(ω)

⎫⎬⎭
1/q

≤ C‖f‖BH
s,τ
p,q (Rn)

and
C−1‖f‖FHs,τ

p,q (Rn) ≤ inf
ω

‖f‖F s
p,q(ω) ≤ C‖f‖FHs,τ

p,q (Rn),

where the infimums are taken over all nonnegative Lebesgue measurable functions ω
on R

n satisfying that

(2.8)
∫

Rn
[ω(x)]−p′/p dHnτp′(x) ≤ 1.

(ii) If τ ∈ (0, 1/p′), then the infimums of ω in (i) can be further limited to all
ω ∈ Ap(Rn) satisfying (2.8), hereAp(Rn) denotes the well-known Muckenhoupt weight
class.

Now we recall some basic notions about the classical complex interpolation of
quasi-Banach spaces; see, for example, [6, 12, 11]. Consider a couple of quasi-Banach
spaces X0, X1, which are continuously embedding into a large topological vector space
Y . The space X0 +X1 is defined by

X0 +X1 := {h ∈ Y : ∃ hi ∈ Xi, i ∈ {0, 1}, such that h = h0 + h1},
and its norm is defined by

‖h‖X0+X1 := inf{‖h0‖X0 + ‖h1‖X1 : h = h0 + h1, h0 ∈ X1 and h1 ∈ X1}.
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Let X be a quasi-Banach space, U := {z ∈ C : 0 < Rez < 1} and U be its
closure, here and in what follows, for any z ∈ C, Rez denotes its real part. A map f :
U → X is said to be analytic if, for any given z0 ∈ U , there exists η ∈ (0,∞) such
that f(z) =

∑∞
j=0 hn(z − z0)n, hn ∈ X , is uniformly convergent for |z − z0| < η.

A quasi-Banach space X is said to be analytically convex if there exists a positive
constant C such that, for any analytic function f : U → X which is continuous on
the closed strip U ,

max
z∈U

‖f(z)‖X ≤ C max
Rez∈{0,1}

‖f(z)‖X .

It is well known that all Banach spaces are analytically convex.
Suppose that X0 +X1 is analytically convex. The set F := F (X0, X1) is defined

to be the set of all functions f : U → X0 +X1 satisfying that
(i) f is analytic and bounded in X0 +X1, which means that f(U) := {f(z) : z ∈

U} is a bounded set of X0 +X1.
(ii) f is extended continuously to the closure U of the strip U such that the traces

t �→ f(j + it) are bounded continuous functions into Xj , j ∈ {0, 1}, t ∈ R.
We endow F with the quasi-norm

‖f‖F := max
{

sup
t∈R

‖f(it)‖X0, sup
t∈R

‖f(1 + it)‖X1

}
.

Let X0, X1 be two quasi-Banach spaces such that X0 +X1 is analytically convex.
Then the complex interpolation space [X0, X1]θ with θ ∈ (0, 1) is defined by

[X0, X1]θ := {g ∈ X0 +X1 : ∃ f ∈ F such that f(θ) = g}
and its norm given by ‖g‖[X0,X1]θ := inff∈F{‖f‖F : f(θ) = g}.

The main purpose of this paper reads as follows.

Theorem 2.8. Let θ ∈ (0, 1), s0, s1 ∈ R, p0, p1 ∈ (1,∞), q0, q1 ∈ [1,∞) (qi ≥
pi, i ∈ {0, 1}, for Besov cases) and τi ∈ (0, 1/p′i], i ∈ {0, 1}. Let s = s0(1−θ)+s1θ,
1
p = 1−θ

p0
+ θ

p1
and 1

q = 1−θ
q0

+ θ
q1

and τ = τ0(1 − θ) + τ1θ such that

(2.9) τp′ = τ0p
′
0 = τ1p

′
1.

Then [AHs0,τ0
p0,q0

(Rn),AHs1,τ1
p1,q1

(Rn)
]
θ

= AHs,τ
p,q (Rn).

Remark 2.9. Notice that for the Hausdorff Besov-type space we do not obtain
the interpolation for full parameters. The reason we need the restriction qi ≥ pi is
that without this condition, we can not prove the Hausdorff Besov-type space can be
re-normed as Banach space, which is needed when we use the interpolation approach
by Kalton and Mitrea. It is still unclear whether this restriction can be removed.

As an immediate consequence of Theorem 2.8 and Remark 2.5, we have the fol-
lowing interpolation for predual spaces of Morrey spaces.
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Corollary 2.10. Let θ ∈ (0, 1), pi ∈ (1,∞), τi ∈ (0, 1/p′i], i ∈ {0, 1}, and
1
p = 1−θ

p0
+ θ

p1
and τ = τ0(1− θ) + τ1θ. If (2.9) holds true, then[

Hp0
τ0

(Rn), Hp1
τ1

(Rn)
]
θ

= Hp
τ (Rn).

From Theorem 2.8, we also deduce the following interpolation property of linear
operators on Hausdorff type Besov and Triebel-Lizorkin spaces.

Proposition 2.11. Let all parameters be as in Theorem 2.8 and (X0, X1) be a
couple of analytically convex quasi-Banach spaces.

(i) If the linear operator T is bounded from Xi to AHsi,τi
pi,qi (Rn), i ∈ {0, 1}, then

T is also bounded from [X0, X1]θ to AHs,τ
p,q (Rn).

(ii) If the linear operator T is bounded from AHsi,τi
pi,qi (Rn) to Xi, i ∈ {0, 1}, then

T is also bounded from AHs,τ
p,q (Rn) to [X0, X1]θ.

As a special case, we obtain the corresponding interpolation property of operators
on Hp

τ (Rn). Recall that Adams and Xiao [3, Section 5.2] already obtained some
interpolation property of operators between the predual spaces of Morrey spaces.

Finally, we make some conventions on notation. Throughout the paper, we denote
by C a positive constant which is independent of the main parameters, but it may vary
from line to line. The symbols A � B means A ≤ CB. If A � B and B � A, then
we write A ∼ B. If E is a subset of R

n, we denote by χE its characteristic function.

3. HAUSDORFF TYPE TENT SPACES

In this section we study the tent spaces related to the space AHs,τ
p,q (Rn), and

establish their atomic decomposition, which are further used to show that AHs,τ
p,q (Rn)

can be re-normed as Banach spaces for some parameters.

Definition 3.1. Let s ∈ R, p ∈ (1,∞) and τ ∈ (0, 1
p′ ]. The tent spaces BT s,τ

p,q (Rn)
with q ∈ [1,∞) and FT s,τ

p,q (Rn) with q ∈ (1,∞) are defined, respectively, to be the
sets of all functions F on R

n+1
N0

such that

‖F‖BT s,τ
p,q (Rn+1

N0
) :=

⎧⎨⎩∑
k∈N0

2ksq inf
ν
‖F (·, 2−k)[ν(·, 2−k)]−1‖q

Lp(Rn)

⎫⎬⎭
1
q

<∞

and

‖F‖FT s,τ
p,q (Rn+1

N0
) := inf

ν

∥∥∥∥∥∥∥
⎧⎨⎩∑

k∈N0

2ksq |F (·, 2−k)|q[ν(·, 2−k)]−q

⎫⎬⎭
1
q

∥∥∥∥∥∥∥
Lp(Rn)

<∞,

where the infimums are taken over all nonnegative Lebesgue measurable functions ν
on R

n+1
N0

satisfying (2.6).
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In what follows, we useAT s,τ
p,q (Rn+1

N0
) to denote eitherBT s,τ

p,q (Rn+1
N0

) or FT s,τ
p,q (Rn+1

N0
).

When A = F , then q ∈ (1,∞). Similar to the proof of [42, Theorem 1.6], one can
prove the following conclusions.

Proposition 3.2. Let s ∈ R, p ∈ (1,∞), τ ∈ (0, 1/p′] and q ∈ [1,∞) (q 
= 1 if
A = F ). Then for all functions F on R

n+1
N0

, ‖F‖BT
s,τ
p,q (Rn+1

N0
) and ‖F‖FT

s,τ
p,q (Rn+1

N0
) are

equivalent to ⎧⎨⎩∑
k∈N0

2ksq inf
ω

‖F (·, 2−k)‖q
Lp(ω)

⎫⎬⎭
1
q

,

and

inf
ω

∥∥∥∥∥∥∥
⎧⎨⎩∑

k∈N0

2ksq‖F (·, 2−k)‖q

⎫⎬⎭
1
q

∥∥∥∥∥∥∥
Lp(ω)

,

respectively, where the infimums are taken over all nonnegative Lebesgue measurable
functions ω on R

n satisfying (2.8).

We now introduce atoms related to these tent spaces.

Definition 3.3. Let s ∈ R, p ∈ (1,∞), q ∈ [1,∞) and τ ∈ (0, 1/p′]. A function
a on R

n+1
N0

is called an AT s,τ
p,q (Rn+1

N0
)-atom associated a ball B, if supp a ⊂ T (B) :=

{(x, t) ∈ R
n+1
N0

: B(x, t) ⊂ B} and satisfies that

∑
k∈N0

2ksq

[∫
Rn

|a(x, 2−k)|pχT (B)(x, 2
−k) dx

]q/p

≤ |B|−τq if A = B

or ∫
Rn

⎡⎣∑
k∈N0

2ksq|a(x, 2−k)|qχT (B)(x, 2
−k)

⎤⎦p/q

dx ≤ |B|−τp if A = F .

Similar to [41, Lemma 7.1], we can prove that all AT s,τ
p,q (Rn+1

N0
)-atoms belong to

AT s,τ
p,q (Rn+1

N0
) with uniform bound. To prove AT s,τ

p,q (Rn+1
N0

) can be characterized by
atoms, we need the following lemma.

Lemma 3.4. Let s ∈ R, p, q ∈ (1,∞) and τ ∈ (0, 1/p′].
(i) If {Gj}j ⊂ FT s,τ

p,q (Rn+1
N0

) and
∑

j ‖Gj‖FT s,τ
p,q (Rn+1

N0
) <∞, then G :=

∑
j Gj ∈

FT s,τ
p,q (Rn+1

N0
) and there exists a positive constant C, independent of {Gj}j , such that

‖G‖FT s,τ
p,q (Rn+1

N0
) ≤ C

∑
j

‖Gj‖FT s,τ
p,q (Rn+1

N0
).

(ii) The corresponding result for BT s,τ
p,q (Rn+1

N0
) also holds true when q ≥ p.
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Proof. (i) Without lost of generality, we may assume that λj := ‖Gj‖FT
s,τ
p,q (Rn+1

N0
) >

0 for all j. Let Fj := λ−1
j Gj . Then ‖Fj‖FT s,τ

p,q (Rn+1
N0

) = 1 and G =
∑

j λjFj . For any
ε > 0, by Proposition 3.2, we can take ωj ≥ 0 such that∫

Rn
[ωj(x)]−p′/p dHnτp′(x) ≤ 1

and ∥∥∥∥∥∥
{ ∞∑

k=0

2ksq|Fj(·, 2−k)|q
}1/q

∥∥∥∥∥∥
Lp(ωj)

≤ 1 + ε.

Define

ω :=

⎛⎝∑
j

λj

⎞⎠p/p′⎛⎝∑
j

λjω
−p′/p
j

⎞⎠−p/p′

.

Then

∫
Rn

[ω(x)]−p′/p dHnτp′(x) �

⎛⎝∑
j

λj

⎞⎠−1∑
j

λj

∫
Rn

ω
−p′/p
j dHnτp′(x) � 1.

Moreover, by the Minkowski inequality, we see that

‖G‖FT s,τ
p,q (Rn+1

N0
) ≤

⎧⎨⎩
∫

Rn

[ ∞∑
k=0

2ksq|G(·, 2−k)|q
]p/q

ω(x) dx

⎫⎬⎭
1/q

≤
⎧⎨⎩
∫

Rn

⎛⎝∑
j

λj

[ ∞∑
k=0

2ksq|Fj(·, 2−k)|q
]1/q

⎞⎠p

ω(x) dx

⎫⎬⎭
1/p

.

Notice that, by the Hölder inequality,⎛⎝∑
j

λj

[ ∞∑
k=0

2ksq|Fj(·, 2−k)|q
]1/q

⎞⎠p

≤
⎛⎝∑

j

λj

[ ∞∑
k=0

2ksq |Fj(·, 2−k)|q
]p/q

ωj

⎞⎠⎛⎝∑
j

λjω
−p/p′
j

⎞⎠p/p′

.
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Hence

‖G‖FT s,τ
p,q (Rn+1

N0
)

≤
⎛⎝∑

j

λj

⎞⎠1/p′⎧⎨⎩
∫

Rn

∑
j

λj

[ ∞∑
k=0

2ksq|Fj(·, 2−k)|q
]p/q

ωj dx

⎫⎬⎭
1/p

� (1 + ε)
∑

j

λj,

which proves (i).
(ii) We now consider the B-space case. Let Fj be as above. Then for any ε > 0,

we can take ωk,j ≥ 0 such that∫
Rn

[ωk,j(x)]−p′/p dHnτp′(x) ≤ 1

and ∥∥∥∥∥∥
{ ∞∑

k=0

2ksq |Fj(·, 2−k)|q
}1/q

∥∥∥∥∥∥
Lp(ωk,j)

≤ 1 + ε.

Define

ωk :=

⎛⎝∑
j

λj

⎞⎠p/p′⎛⎝∑
j

λjω
−p′/p
k,j

⎞⎠−p/p′

.

This time, by the Hölder inequality, we have

|G|p =

∣∣∣∣∣∣
∑

j

λjFj

∣∣∣∣∣∣
p

≤
⎛⎝∑

j

λj|Fj|pωk,j

⎞⎠⎛⎝∑
j

λjω
−p′/p
k,j

⎞⎠p/p′

.

Since q ≥ p, by the Minkowski inequality, we see that

‖G‖BT
s,τ
p,q (Rn+1

N0
)

≤
{ ∞∑

k=0

2ksq

[∫
Rn

|G(x, 2−k)|pωk(x) dx
]q/p
}1/q

≤

⎧⎪⎨⎪⎩
∞∑

k=0

2ksq

⎡⎣∫
Rn

∑
j

λj|Fj(x, 2−k)|pωk,j(x) dx

⎤⎦q/p
⎫⎪⎬⎪⎭

1/q⎛⎝∑
j

λj

⎞⎠1/p′

≤
⎧⎨⎩∑

j

λj

( ∞∑
k=0

2ksq

[∫
Rn

|Fj(x, 2−k)|pωk,j(x) dx
]q/p
)p/q

⎫⎬⎭
1/p⎛⎝∑

j

λj

⎞⎠1/p′

� (1 + ε)
∑

j

λj,
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which proves (ii), and then completes the proof.

Using Lemma 3.4 instead of [41, Lemma 7.2], and similar to the proof of [41,
Proposition 7.1], we obtain the following atomic decomposition of AT s,τ

p,q (Rn+1
N0

), the
details being omitted.

Theorem 3.5. Let s ∈ R, p, q ∈ (1, ∞), and τ ∈ (0, 1
p′ ].

(i) A function F ∈ FT s,τ
p,q (Rn+1

N0
) if and only if there exists a sequence {am}m of

FT s,τ
p,q (Rn+1

N0
)-atoms and an �1-sequence {λm}m ⊂ C such that F =

∑
m λmam point-

wise and in FT s,τ
p,q (Rn+1

N0
). Moreover, ‖F‖FT s,τ

p,q (Rn+1
N0

) is equivalent to inf
∑

m |λm|,
where the infimum is taken over all admissible decompositions of F .

(ii) When q ≥ p, the corresponding conclusion for BT s,τ
p,q (Rn+1

N0
) also holds true.

We denote the infimum inf
∑

m |λm| in Theorem 3.5 by |||F |||AT s,τ
p,q (Rn+1

N0
), which

is an equivalent norm of AT s,τ
p,q (Rn+1

N0
), and then (AT s,τ

p,q (Rn+1
N0

), ||| · |||AT s,τ
p,q (Rn+1

N0
))

become a Banach space (q ≥ p for BT s,τ
p,q (Rn+1

N0
)).

Let ϕ0 and ϕ be as in Definition 2.1 such that
∑

j∈N0
|ϕ̂j|2 ≡ 1. We define an

operator ρϕ by setting ρϕ(f)(x, 2−j) := ϕj ∗ f(x) for all f ∈ S ′(Rn), x ∈ R
n and

j ∈ N0. Conversely, for all functions F on R
n+1
N0

and x ∈ Rn, we define a map πϕ by

πϕ(F )(x) :=
∞∑

k=0

∫
Rn
F (y, 2−k)ϕk(x− y) dy.

By the Calderón reproducing formula, we know that πϕ ◦ ρϕ(f) = f for all f ∈
S ′(Rn). Moreover, it is easy to see that ‖ρϕ(f)‖AT s,τ

p,q (Rn+1
N0

) = ‖f‖AHs,τ
p,q (Rn). In this

sense, by the previous argument, we can endow AHs,τ
p,q (Rn) with an equivalent norm

||| · |||AHs,τ
p,q (Rn) := |||ρϕ(f)|||AT

s,τ
p,q (Rn+1

N0
), under which AHs,τ

p,q (Rn) becomes a Banach

space (q ≥ p for BHs,τ
p,q (Rn)), and hence are analytically convex.

Recall that the property that FHs,τ
p,p(Rn) can be re-normed as Banach space was

used in [38] to prove that the dual space of F̊M s,τ
p,p (Rn) = F̊ s,τ

p,p (Rn) is FH−s,τ
p′,p′ (Rn),

where s ∈ R, p ∈ (1,∞) and τ ∈ (0, 1/p), ÅM s,τ
p,q (Rn) denotes the closure of S(Rn)

in AM s,τ
p,q (Rn). Since this time we prove that AHs,τ

p,q (Rn) (q ≥ p for BHs,τ
p,q (Rn)) can

be re-normed as Banach spaces, repeating the procedure used in [38], we can prove
the following conclusion, the details being omitted.

Theorem 3.6. Let s ∈ R, p, q ∈ (1,∞) (q ≤ p for B cases) and τ ∈ (0, 1/p′).
Then the dual space of ÅM s,τ

p,q (Rn) is AH−s,τ
p′,q′ (Rn) in the following sense: for any

g ∈ AH−s,τ
p′,q′ (Rn), the linear functional
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(3.1) L(f) =
∫

Rn
f(x)g(x) dx,

defined initially for all f ∈ S(Rn), has a bounded extension to ÅM s,τ
p,q (Rn);

Conversely, if L is a bounded linear functional on ÅM s,τ
p,q (Rn), then there exists

g ∈ AH−s,τ
p′,q′ (Rn) such that ‖g‖AH−s,τ

p′,q′ (Rn) is not more than a positive constant multiple
of ‖L‖, and L can be represented in the form (3.1) for all f ∈ S(Rn).

4. PROOF OF THEOREM 2.8

In this section, we give the proof of Theorem 2.8. One of the main tool we used
is the wavelet decomposition of the space AHs,τ

p,q (Rn), which transfers the problem to
the corresponding sequence spaces.

Let φ̃ be a scaling function on R with compact support and of sufficiently high
regularity, and ψ̃ the corresponding orthonormal wavelet. Then the tensor product
ansatz yields a scaling function φ and associated wavelets ψ1, . . . , ψ2n−1, all defined
on R

n; see, e. g., [32, Proposition 5.2]. We suppose that φ ∈ CN1(Rn) and suppφ ⊂
[−N2, N2]n for some natural numbers N1 and N2, which means that, for all i ∈
{1, . . . , 2n − 1}, ψi ∈ CN1(Rn) and suppψi ⊂ [−N3, N3]n for some N3 ∈ N.

For k ∈ Zn, j ∈ N0 and i ∈ {1, . . . , 2n − 1}, define

φj,k(x) := 2jn/2φ(2jx− k) and ψi,j,k(x) := 2jn/2ψi(2jx − k), x ∈ R
n.

It is well known that ∫
Rn

ψi,j,k(x) xγ dx = 0 if |γ| ≤ N1

(see [32, Proposition 3.1]), and

{φ0,k : k ∈ Z
n} ∪ {ψi,j,k : k ∈ Z

n, j ∈ N0, i ∈ {1, . . . , 2n − 1}}

forms an orthonormal basis of L2(Rn) (see, for example, [31]). Hence

(4.1) f =
∑
k∈Zn

λk φ0,k +
2n−1∑
i=1

∞∑
j=0

∑
k∈Zn

λi,j,k ψi,j,k

in L2(Rn), where λk := 〈f, φ0,k〉 and λi,j,k := 〈f, ψi,j,k〉. In what follows, for
convenience, we also write φi,0,k := φ0,k and λi,0,k := λk for all i ∈ {1, . . . , 2n − 1},
and λ(f) := {λi,j,k : i ∈ {1, . . . , 2n − 1}, j ∈ N0, k ∈ Zn}.

Next we recall the related sequence spaces.
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Definition 4.1. Let s ∈ R, p, q ∈ (1,∞) and τ ∈ (0, 1/p′]. The sequence space
aHs,τ

p,q(R
n) is defined to be the space of all sequences t := {ti,j,k : i ∈ {1, . . . , 2n −

1}, j ∈ N0, k ∈ Zn} ⊂ C such that ‖t‖aH
s,τ
p,q(Rn) <∞, where when a = b,

‖t‖bH
s,τ
p,q(Rn)

:=

⎧⎨⎩
∞∑

j=0

inf
ν

(∫
Rn

2n−1∑
i=1

∑
k∈Zn

2jn( s
n

+ 1
2
)p|ti,j,k|pχQj,k

(x)[ν(x, 2−j)]−p dx

) q
p

⎫⎬⎭
1
q

,

and when a = f ,

‖t‖fH
s,τ
p,q (Rn)

:= inf
ν

⎧⎨⎩
∫

Rn

( ∞∑
j=0

2n−1∑
i=1

∑
k∈Zn

2jn( s
n

+ 1
2
)q|ti,j,k|qχQj,k

(x)[ν(x, 2−j)]−q

) p
q

dx

⎫⎬⎭
1
p

,

and the infimum is taken over all nonnegative Borel measurable functions ν on R
n+1
N0

satisfying (2.6).

Similar to the proof of [14, Theorem 6.4], we have the following wavelet charac-
terization of AHs,τ

p,q (Rn).

Proposition 4.2. Let s ∈ R, τ ∈ (0, 1/p′] and p, q ∈ (1,∞). Assume that

N1 + 1 > max
{
s + nτ + n/(max(p, q))′ − n/p+ np/(1 + pτ),

−s + nτ + 1/(max(p, q))′ + 1/p− 1 + 2np/(1 + pτ)
}
.

Let f ∈ S ′(Rn). Then f ∈ AHs,τ
p,q (Rn) if, and only if, f can be represented as

(4.1) in S ′(Rn) and ‖λ(f)‖aHs,τ
p,q(Rn) < ∞. Moreover, ‖f‖AHs,τ

p,q (Rn) is equivalent to
‖λ(f)‖aH

s,τ
p,q (Rn).

By this wavelet decomposition, we know that there exists a homeomorphism be-
tween AHs,τ

p,q (Rn) and aHs,τ
p,q(R

n). Therefore, to show Theorem 2.8, we only need to
prove the corresponding interpolation for the sequence spaces aHs,τ

p,q(Rn). To this end,
we first need to calculate the Calderón product of these spaces. For simplicity, in what
follows, we redefine

‖t‖bHs,τ
p,q(Rn) :=

⎧⎨⎩
∞∑

j=0

inf
ν

(∫
Rn

∑
�(Q)=2−j

2jsp|tQ|pχQ(x)[ν(x, 2−j)]−p dx

) q
p

⎫⎬⎭
1
q

,

and when a = f ,

‖t‖fH
s,τ
p,q (Rn) := inf

ν

⎧⎨⎩
∫

Rn

( ∞∑
j=0

∑
�(Q)=2−j

2jsq |tQ|qχQ(x)[ν(x, 2−j)]−q

) p
q

dx

⎫⎬⎭
1
p

.
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Recall that a quasi-Banach space (X, ‖·‖) of complex-valued measurable functions
is called a quasi-Banach lattice if, for any f ∈ X and a complex-valued measurable
function g satisfying |g| ≤ |f |, then g ∈ X and ‖g‖X ≤ ‖f‖X . Given two quasi-
Banach lattices (Xi, ‖ · ‖i), i ∈ {0, 1}, and θ ∈ (0, 1), the Calderón product X1−θ

0 Xθ
1

is defined by

X1−θ
0 Xθ

1 :=
{
f is a complex-valued measurable function : ∃ f0 ∈ X0,

and f1 ∈ X1 such that |f | ≤ |f0|1−θ|f1|θ
}
,

and its norm is defined by ‖f‖X1−θ
0 Xθ

1
:= inf

{
‖f0‖1−θ

X0
‖f1‖θ

X1

}
, where the infimum

is taken over all f i ∈ Xi, i ∈ {0, 1} such that |f | ≤ |f0|1−θ|f1|θ. It is easy to see that
the sequence spaces aHs,τ

p,q(R
n) are quasi-Banach lattices.

Theorem 4.3. Let θ ∈ (0, 1), si ∈ R, pi, qi ∈ (1,∞) and τi ∈ (0, 1/p′i], i ∈ {0, 1}.
Let s = s0(1 − θ) + s1θ, 1

p = 1−θ
p0

+ θ
p1

, 1
q = 1−θ

q0
+ θ

q1
and τ = τ0(1 − θ) + τ1θ. If

(2.9) holds, then [
aHs0,τ0

p0,q0
(Rn)

]1−θ [
aHs1,τ1

p1,q1
(Rn)

]θ = aHs,τ
p,q (Rn).

To prove this result, we need the following conclusion, which when τ = 0 goes
back to [9, Proposition 2.7].

Lemma 4.4. Let s ∈ R, p, q ∈ (1,∞), τ ∈ (0, 1
p′ ] and δ ∈ (0, 1]. Suppose that,

for each dyadic cube Q with Q ∈ Q∗, EQ ⊂ Q is a measurable set with |EQ| ≥ δ|Q|.
Then t = {tQ}Q∈Q∗ ∈ fH

s,τ
p,q (Rn) if and only if ‖t‖

f̃Hs,τ
p,q (Rn)

<∞, where ‖t‖
f̃Hs,τ

p,q (Rn)

is defined the same as ‖t‖fHs,τ
p,q(Rn) with χQ replaced by χEQ

.

Proof. We only prove ‖t‖fHs,τ
p,q(Rn) � ‖t‖

f̃Hs,τ
p,q (Rn)

, since the inverse inequality
is trivial. To this end, let ν satisfy (2.6) such that⎧⎨⎩

∫
Rn

( ∞∑
j=0

∑
�(Q)=2−j

2jsq |λQ|qχEQ
(x)[ν(x, 2−j)]−q

) p
q

dx

⎫⎬⎭
1
p

� ‖λ‖
f̃Hs,τ

p,q (Rn)
.

For all x ∈ Rn and t ∈ (0,∞), define ν̃(x, t) := sup{ν(y, t) : |y− x| < √
nt}. Then

by [41, Lemma 7.16], we know that a constant multiplication of ν̃ also satisfies (2.6).
Moreover, for all x ∈ Q with �(Q) = 2−j ,

χQ(x)[ν̃(x, 2−j)]−1 ≤ 1
δ

∫
Q χEQ

(y) dy

|Q| [ν̃(x, 2−j)]−1 ≤ 1
δ

∫
Q χEQ

(y)[ν(y, 2−j)]−1 dy

|Q|
� 1
δ
M
(
χEQ

[ν(·, 2−j)]−1
)
(x),
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whereM denotes the Hardy-Littlewood maximal operator. Then, applying the Fefferman-
Stein vector-valued inequality, we obtain the desired conclusion.

Now we turn to the proof of Theorem 4.3.

Proof of Theorem 4.3. By similarity, we only consider the fH-case.

We first prove that [fHs0,τ0
p0,q0 (Rn)]1−θ [fHs1,τ1

p1,q1 (Rn)]θ ⊂ fHs,τ
p,q (Rn). To this end,

let λ := {λQ}Q∈Q∗ ∈ [fHs0,τ0
p0,q0 (Rn)]1−θ [fHs1,τ1

p1,q1 (Rn)]θ . Then there exist λ0 :=
{λ0

Q}Q∈Q∗ ∈ fHs0,τ0
p0,q0 (Rn) and λ1 := {λ1

Q}Q∈Q∗ ∈ fHs1,τ1
p1,q1 (Rn) such that |λQ| ≤

|λ0
Q|1−θ|λ1

Q|θ for all Q ∈ Q∗ and

‖λ0‖1−θ
fH

s0,τ0
p0,q0

(Rn)
‖λ1‖θ

fH
s1,τ1
p1,q1

(Rn)
� ‖λ‖[fH

s0,τ0
p0,q0 (Rn)]1−θ[fH

s1,τ1
p1,q1 (Rn)]θ .

Let νi satisfying ∫
Rn

[Nνi(x)]p
′
i dHnτip

′
i(x) ≤ 1, i ∈ {0, 1}.

such that⎧⎨⎩
∫

Rn

( ∞∑
j=0

∑
�(Q)=2−j

2jsiqi |(λi)Q|qiχQ(x)[ωi(x, 2−j)]−qi

) pi
qi

dx

⎫⎬⎭
1
pi

� ‖λi‖fH
si,τ
pi,qi

(Rn)

for i ∈ {0, 1}. Define ν := ν1−θ
0 νθ

1 . It is easy to see that Nν ≤ (Nν0)1−θ(Nν1)θ,
which together with the Young inequality further implies that

(Nν)p′ ≤ (1− θ)p′

p′0
(Nν0)p′0 +

θp′

p′1
(Nν1)p′1.

Therefore ν satisfies (2.6), due to (2.9). Moreover, applying the Hölder inequality, we
see that

‖λ‖fHs,τ
p,q(Rn) �

∥∥∥∥∥∥
( ∞∑

j=0

∑
�(Q)=2−j

2jsq |λQ|qχQ(x)[ν(x, 2−j)]−q

) 1
q

∥∥∥∥∥∥
Lp(Rn)

�

∥∥∥∥∥∥
( ∞∑

j=0

∑
�(Q)=2−j

2js0q0|(λ0)Q|q0χQ(x)[ν0(x, 2−j)]−q0

) 1
q0

∥∥∥∥∥∥
1−θ

Lp0 (Rn)

×
∥∥∥∥∥∥
( ∞∑

j=0

∑
�(Q)=2−j

2js1q1|(λ1)Q|q1χQ(x)[ν1(x, 2−j)]−q1

) 1
q1

∥∥∥∥∥∥
θ

Lp1(Rn)

� ‖λ0‖1−θ
fH

s0,τ0
p0,q0 (Rn)

‖λ1‖θ
fH

s1,τ1
p1,q1 (Rn)

� ‖λ‖[fH
s0,τ0
p0,q0

(Rn)]1−θ[fH
s1,τ1
p1,q1

(Rn)]θ .
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Therefore, we have [fHs0,τ0
p0,q0 (Rn)]1−θ [fHs1,τ1

p1,q1 (Rn)]θ ⊂ fHs,τ
p,q (Rn).

Next we show [fHs0,τ0
p0,q0 (R

n)]1−θ [fHs1,τ1
p1,q1 (R

n)]θ ⊃ fHs,τ
p,q (Rn). To this end, let

λ ∈ fHs,τ
p,q(R

n) and ν satisfying (2.6) such that⎧⎨⎩
∫

Rn

( ∞∑
j=0

∑
�(Q)=2−j

2jsq |λQ|qχQ(x)[ν(x, 2−j)]−q

) p
q

dx

⎫⎬⎭
1
p

� ‖λ‖fH
s,τ
p,q (Rn).

For all x ∈ Rn and j ∈ N0, we define

ν̃(x, 2−j) := sup
{
ν(y, 2−j) : y ∈ Qjk, Qjk � x

}
.

Then, it it easy to check that a positive constant multiplication of ν̃ also satisfies (2.6).
Moreover, ν ≤ ν̃ , and hence⎧⎨⎩

∫
Rn

( ∞∑
j=0

∑
�(Q)=2−j

2jsq |λQ|qχQ(x)[ν̃(x, 2−j)]−q

) p
q

dx

⎫⎬⎭
1
p

� ‖λ‖fHs,τ
p,q (Rn).

For all Q ∈ Q∗, let EQ ⊂ Q be a measurable set such that |EQ| = |Q|. For all k ∈ Z,
define

Ak :=

⎧⎨⎩x ∈ R
n :

( ∞∑
j=0

∑
�(Q)=2−j

2jsq |λQ|qχEQ
(x)[ν̃(x, 2−j)]−q

) 1
q

> 2k

⎫⎬⎭
and

Ck :=
{
Q ∈ Q : Q ∈ Q∗, |EQ ∩ Ak| ≥ 1

2
|EQ| and |EQ ∩ Ak+1| < 1

2
|EQ|

}
.

It is easy to see that if Q /∈ ∪k∈ZCk , then λQ = 0. For all Q ∈ Q∗, when Q ∈ Ck ,
define

λ0
Q :=

( |λQ|
AQ

)q/q0
(

sup
y∈Q

ν(y, �(Q))

)p′/p′0−q/q0

with AQ := 2k(1−pq0
qp0

)|Q|u and u := s
n − q0

q
s0
n , and

λ1
Q :=

( |λQ|
BQ

)q/q1
(

sup
y∈Q

ν(y, �(Q))

)p′/p′1−q/q1

withBQ := 2k(1−pq1
qp1

)|Q|v and v := s
n− q1

q
s1
n , and, whenQ /∈ ∪k∈ZCk, λ0

Q = λ1
Q := 0.

Since {Ck}k∈Z are disjoint each other, we know that λ0 and λ1 are well defined.
Moreover, it is easy to check that |λQ| = |λ0

Q|1−θ|λ1
Q|θ for all Q ∈ Q∗. Therefore, to

complete the proof, it suffices to show that
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(4.2)
∥∥λ0
∥∥

fH
s0,τ0
p0,q0 (Rn)

� ‖λ‖p/p0

fHs,τ
p,q (Rn)

and ‖λ1‖fH
s1,τ1
p1,q1 (Rn) � ‖λ‖p/p1

fHs,τ
p,q (Rn)

.

We may assume that p0
q0

≤ p1
q1

by symmetry.
Define ν0 := ν̃p′/p′0 and ν̃1 := νp′/p′1 . By (2.9) we know that νi satisfies (2.6) with

p′ replaced by p′i, i ∈ {0, 1}. By Lemma 4.4, we see that∥∥λ0
∥∥

fH
s0,τ0
p0,q0 (Rn)

�

⎧⎨⎩
∫

Rn

(∑
k∈Z

∑
Q∈Ck

|Q|− s0
n

q0|λ0
Q|q0χEQ∩Ak

(x)[ν̃0(x, �(Q))]−q0

) p0
q0

dx

⎫⎬⎭
1

p0

∼
⎧⎨⎩
∫

Rn

(∑
k∈Z

χAk
(x)

∑
Q∈Ck

2−k(1−pq0
qp0

)q|Q|− s
n

q

×|λQ|qχEQ
(x)[ν̃(x, �(Q))]−q

) p0
q0

dx

⎫⎬⎭
1

p0

.

By the definition of Ak , and the fact that p0

q0
≤ p1

q1
implies 1− pq0

qp0
≤ 0, we further see

that ∥∥λ0
∥∥

fH
s0,τ0
p0,q0 (Rn)

� ‖λ‖p/p0

fH
s,τ
p,q(Rn)

.

Similar to the above argument, with χEQ∩Ak
replaced by χEQ∩AC

k+1
, we obtain∥∥λ1

∥∥
fH

s1,τ1
p1,q1 (Rn)

� ‖λ‖p/p1

fH
s,τ
p,q(Rn)

,

which completes the proof of Theorem 4.3.
In 1998, Kalton and Mitrea [12, Theorem 3.4] proved the following conclusion,

which has become a powerful tool to study the complex interpolation of quasi-Banach
function spaces; see, for example, [11, 39, 26].

Proposition 4.5. Let X0, X1 be a pair of quasi-Banach sequence lattices. If both
X0 and X1 are analytically convex and at least one is separable, then X0 + X1 is
also analytically convex and

[X0, X1]Θ = X1−Θ
0 XΘ

1 , Θ ∈ (0, 1).

Since finite sequences are dense in aHs,τ
p,q(R

n), we know that these spaces are
separable. Moreover, although (aHs,τ

p,q(Rn), ‖ · ‖aHs,τ
p,q (Rn)) is only quasi-Banach space,

by Proposition 4.2 and the argument in the end of Section 3, we know that aHs,τ
p,q(R

n)
can be re-normed as Banach spaces (q ≥ p if a = b), and hence are analytically
convex. Combining these observations with Theorem 4.3 and Proposition 4.5, we
obtain the following interpolation for sequence spaces.
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Theorem 4.6. Let θ ∈ (0, 1), si ∈ R, pi ∈ (1,∞), qi ∈ [1,∞) and τi ∈ (0, 1/p′i]
(qi ≥ pi for bH-spaces), i ∈ {0, 1}. Let s = s0(1 − θ) + s1θ, 1

p = 1−θ
p0

+ θ
p1

,
1
q = 1−θ

q0
+ θ

q1
and τ = τ0(1− θ) + τ1θ. If (2.9) holds true, then[

aHs0,τ0
p0,q0

(Rn), aHs1,τ1
p1,q1

(Rn)
]
θ

= aHs,τ
p,q (Rn).

Theorem 2.8 is then an immediate consequence of Theorem 4.3 and Proposition
4.2.
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4. J. Bergh and J. Löfström, Interpolation Spaces, An Introduction, Springer-Verlag, Berlin-
New York, 1976.

5. M. Bownik, Duality and interpolation of anisotropic Triebel-Lizorkin spaces, Math. Z.,
259 (2008), 131-169.

6. A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math.,
24 (1964), 113-190.

7. G. Dafni and J. Xiao, Some new tent spaces and duality theorems for fractional Carleson
measures and Qα(Rn), J. Funct. Anal., 208 (2004), 377-422.

8. M. Essén, S. Janson, L. Peng and J. Xiao, Q spaces of several real variables, Indiana
Univ. Math. J., 49 (2000), 575-615.

9. M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution
spaces, J. Funct. Anal., 93 (1990), 34-170.

10. E. A. Kalita, Dual Morrey spaces, Dokl. Akad. Nauk (in Russian), 361 (1998), 447-449.

11. N. Kalton, S. Mayboroda and M. Mitrea, Interpolation of Hardy-Sobolev-Besov-Triebel-
Lizorkin spaces and applications to problems in partial differential equations, Interpola-
tion theory and applications, Contemp. Math., 445 (2007), 121-177.

12. N. Kalton and M. Mitrea, Stability results on interpolation scales of quasi-Banach spaces
and applications, Trans. Amer. Math. Soc., 350 (1998), 3903-3922.

13. H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation
with distributions in new function spaces as initial data, Comm. Partial Differential
Equations, 19 (1994), 959-1014.



Interpolations for Predual Spaces of Morrey-type Spaces 1547

14. Y. Liang, Y. Sawano, T. Ullrich, D. Yang and W. Yuan, New characterizations of Besov-
Hausdorff Triebel-Lizorkin-type spaces including coorbits and wavelets, J. Fourier Anal.
Appl., 18 (2012), 1067-1111.

15. A. Mazzucato, Besov-Morrey spaces: function space theory and applications to non-
linear PDE, Trans. Amer. Math. Soc., 355 (2003), 1297-1369.

16. J. Peetre, New Thoughts on Besov Spaces, Duke University, Durham, N.C., 1976.

17. M. Rosenthal and H. Triebel, Calderón-Zygmund operators in Morrey spaces, Rev. Mat.
Complut., 27 (2014), 1-11.

18. Y. Sawano, Wavelet characterization of Besov-Morrey and Triebel-Lizorkin-Morrey
spaces, Funct. Approx. Comment. Math., 38 (2008), 93-107.

19. Y. Sawano, A note on Besov-Morrey and Triebel-Lizorkin-Morrey spaces, Acta Math.
Sin. (Engl. Ser.), 25 (2009), 1223-1242.

20. Y. Sawano and H. Tanaka, Decompositions of Besov-Morrey spaces and Triebel-Lizorkin-
Morrey spaces, Math. Z., 257 (2007), 871-905.

21. Y. Sawano, D. Yang and W. Yuan, New applications of Besov-type and Triebel-Lizorkin-
type spaces, J. Math. Anal. Appl., 363 (2010), 73-85.

22. M. Schechter, Interpolation spaces by complex methods, Bull. Amer. Math. Soc., 72
(1966), 526-533.

23. M. Schechter, Complex interpolation, Compositio Math., 18 (1967), 117-147.

24. W. Sickel, Smoothness spaces related to Morrey spaces - a survey, I, Eurasian Math. J.,
3 (2012), 110-149.

25. W. Sickel, Smoothness spaces related to Morrey spaces - a survey, II, Eurasian Math.
J., 4 (2013), 82-124.

26. W. Sickel, L. Skrzypczak and J. Vyb´ral, Complex interpolation of weighted Besov- and
Lizorkin-Triebel spaces, Acta Math. Sin. (Engl. Ser.), to appear.

27. L. Tang and J. Xu, Some properties of Morrey type Besov-Triebel spaces, Math. Nachr.,
278 (2005), 904-914.

28. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland
Publishing Co., Amsterdam-New York, 1978.

29. H. Triebel, Complex interpolation and Fourier multipliers for the spaces Bs
p,q and F s

p,q

of Besov-Hardy-Sobolev type: the case 0 < p ≤ ∞, 0 < q ≤ ∞, Math. Z., 176 (1981),
495-510.

30. H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, Basel, 1983.
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