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COMPLEX INTERPOLATION FOR PREDUAL SPACES
OF MORREY-TYPE SPACES

Wen Yuan

Abstract. In this paper, the author introduces the inhomogeneous Hausdorff type
Besov and Triebel-Lizorkin spaces, which are the predual spaces of Besov-Morrey
and Triebel-Lizorkin-Morrey spaces. By calculating the Calderon product of the
sequence spaces related to Hausdorff type Besov and Triebel-Lizorkin spaces,
the author obtains the complex interpolation of these spaces. In particular, the
complex interpolation for the predual spaces of Morrey spaces is also obtained.

1. INTRODUCTION

The study of Morrey spaces is traced to C. B. Morrey in 1938, nowadays has
become a useful tool in the study of the existence and regularity of some elliptic
equations. Recall that the Morrey space L7 (R™) is defined to be the set of all p-locally
integrable functions f such that

1 1/p
[ flle ey := sup —— {/ \f(x)\pda:} < 00,
PeQ ‘P‘ P

where P runs over all dyadic cubes in R™. Obviously, L{(R") = LP(R™). In 1986,
using atoms, Zorko [43] introduced a class of functions whose dual space is the Morrey
space. Another description of the predual space of Morrey spaces was later given
by Kalita [10] in 1998. In 2004, using the Hausdorff capacities, Adams and Xiao
[2] introduced the third kind of the predual of Morrey spaces, and proved that these
three predual spaces coincide. These spaces were also used in [2] (see also [3]) to

Received January 28, 2014, accepted February 19, 2014.

Communicated by Der-Chen Chang.

2010 Mathematics Subject Classification: Primary 46B70; Secondary 46E35.

Key words and phrases: Besov space, Triebel-Lizorkin space, Morrey spaces, Hausdorff capacity, Com-
plex interpolation, Calderén product, Quasi-Banach lattice.

Wen Yuan is supported by the National Natural Science Foundation of China (Grant No. 11101038),
the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.
20120003110003), the Fundamental Research Funds for Central Universities of China (Grant No.
2012LYB26) and the Alexander von Humboldt Foundation.

1527



1528 Wen Yuan

calculate the Morrey type capacities. Recently, Rosenthal and Triebel [17] proved the
boundedness of Calderon-Zygmund operators on Morrey spaces by first considering
their boundedness on the predual spaces of Morrey spaces.

In a recent paper [42], via Hausdorff capacities, the Hausdorff type Besov space
BH;7(R™) and the Hausdorff type Triebel-Lizorkin space F H, 7 (R™) were introduced
and proved to be the predual spaces of the homogeneous Besov-Morrey and Triebel-
Lizorkin-Morrey spaces (see [13, 15, 27, 20]), respectively. The predual spaces of
Morrey spaces (see [43, 10, 2, 3]) were also proved in [42] to be special cases of these
spaces BH, 7 (R") and FH, 7 (R™). Moreover, these scales of Hausdorff type spaces
also cover some Hardy-Hausdorff spaces, which are known to the predual spaces of
Qo (R™) spaces (see [8, 7, 33, 34]). Inspired by [17], these Hausdorff type spaces
may serve as a useful tool in the study of boundedness of operators on Besov-Morrey
and Triebel-Lizorkin-Morrey spaces. Indeed, because of the lack of the density of
test functions, we can not prove the boundedness of operators on Besov-Morrey and
Triebel-Lizorkin-Morrey spaces by first studying the mapping property of operators on
test functions and then taking approximation. However, this can be done for their
predual spaces since Hausdorff type Besov and Triebel-Lizorkin spaces support the
density of test functions. Once we obtain the boundedness on predual spaces, a dual
argument then gives the desired boundedness of operators on Besov-Morrey and Triebel-
Lizorkin-Morrey spaces.

The main purpose of this paper is to consider the complex interpolation properties
for the Hausdorff type Besov space and the Hausdorff type Triebel-Lizorkin space. The
interpolation theory is known to be a very useful and important tool in various branches
of mathematics such as harmonic analysis and the theory of operators. For Besov and
Triebel-Lizorkin spaces, the study of their complex interpolation has been an attractive
topic for long time; see, for example, Schechter [22, 23], Peetre [16], Bergh-Lofstrom
[4], Triebel [28, 29, 30], Frazier-Jawerth [9], Kalton-Mayboroda-Mitrea [11], Bownik
[5] and [26]. Of special importance for us is the paper [9] by Frazier and Jawerth, who
transferred the interpolation problem from function spaces to the related sequences, and
the latter are usually more easy to handle. Another important tool we need is an abstract
interpolation theory for quasi-Banach function spaces developed by Kalton and Mitrea
in [12] (see also [11]), which establishes the coincidence of Calderéon products and the
complex interpolations of quasi-Banach lattices under certain conditions.

We focus on the inhomogeneous version of Hausdorff type Besov and Hausdorff
type Triebel-Lizorkin spaces in this paper. However, all results are also true for homo-
geneous cases. We first calculate the Calderon product of the sequence spaces related
to the Hausdorff type Besov space BH, (R™) and the Hausdorff type Triebel-Lizorkin
space F Hyq(R™), which are denoted by bH ;7 (R") and fH 7 (R™). Then, applying
Kalton and Mitrea’s abstract interpolation approach, we obtain the complex interpola-
tion property for fH 7 (R") and bH 7 (R™). Using the characterization of 7 Hy (R™)
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and BH, ; (R™) via wavelet decompositions, we further obtain the corresponding com-
plex interpolation for FH,;(R™) and BH,q(R™) (see Theorem 2.8 below). As a
special case, we obtain the complex interpolation for predual spaces of Morrey spaces
(see Corollary 2.10 below).

One of the main obstacles in applying Kalton and Mitrea’s approach (see [12]) to
these Hausdorff type spaces is that it is unclear whether the spaces F H, (R") and
BHy 4 (R™), and also f H ;7 (R™) and bH,,7 (R™) are analytically convex. Such property
of analytically convex is needed in [12] when define the complex interpolation space. To
overcome this, we introduce the tent spaces associated with F H, g (R™) and BH,,q (R™)
and establish their atomic decomposition. With these atomic decomposition, the spaces
FHpqy(R") and BHp4(R™), and fHy7(R") and bH ;7 (R™), can be re-normed as
Banach spaces, which are analytically convex.

The structure of this article is organized as follows. In Section 2, we recall the
definition and some basic properties of the Hausdorff type spaces FH, (R") and
BH,;(R™), and also some notions on complex interpolations. The main result of this
paper is also presented at the end of this section. In Section 3, we introduce the tent
spaces related to 7 H,; (R™) and BH, 4 (R™) and establish their atomic decomposition.
Using this, we prove that the spaces F Hpq(R") and BH,; (R™) and their related se-
guence spaces can be re-normed as Banach spaces. Finally, in Section 4, we present the
proof of the complex interpolation property of the spaces F Hp’q (R™) and BHpq (R™).

2. PRELIMINARIES AND THE MAIN RESULT

In this section, we present the definition and some properties on Hausdorff type
Besov and Triebel-Lizorkin spaces, and also complex interpolations. The main result
of this paper is listed in the end of this section.

We begin with some notation. Denote by Ny the natural numbers including 0.
Let S(R™) be the space of all Schwartz functions on R™ endowed with the classical
topology and S’(R™) its topological dual space, namely, the set of all continuous
linear functionals on S(R™) endowed with the weak-« topology. We use 7 to denote
the Fourier transformof f € S(R™) or S'(R™). In what follows, for all ¢ € S(R™) and
jEN, we let ;(-) :=2"p(27.). Let @ :={Q;x:=277([0,1)"+k): jEZ, k€
7™} be the collection of all dyadic cubes in R™. We also let Q* := {Q;x: j € Np}.

For ECR"™ and d € (0, n], the d-dimensional Hausdorff capacity of E' is defined

by
(2.1) HYE):=inf{ > rf: E | JB(xj,r)) ¢,
J J

where the infimum is taken over all countable open ball coverings { B(z;,r;)}; of E;
see, for example, [1, 35]. For any function f : R™ — [0, oo], the Choquet integral of
f with respect to H? is then defined by
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(2.2) f(x) dHY(x) / Hi{z e R": f(z) > A})dA

Rn

It is known that there exists a positive constant C, such that, for all nonnegative
measurable functions { f;},

(2.3) / Z filz) dHY(z <C'OZ x) dH(z).

Rn
For any measurable functions v on jol =R"x {27%: k € Ng} and z € R,
its nontangential maximal function Nv is defined by
Nv(z) :=sup{lv(y,27")]: (y,27%) e R, ly—a| <27"}, zeR™

Definition 2.1. Lets € R, p € (1,00) and 7 € (0, ;]. Assume that ¢, ¢ € S(R")
satisfy that

(24)  supppo C{E€R™: [¢] <2} and [po(§)|>C if [€] <5/3
and
(25) suppp C{EeR": 1/2<[{[ <2} and [p(€)| > C if 3/5< (6] <5/3,

where C'is a positive constant. The Hausdorff type Besov space BH,(R") with
q € [1,00) and the Hausdorff type Triebel-Lizorkin space F Hpq (R™) with g € (1, c0)
are defined, respectively, to be the sets of f € S’(R™) such that

1/q
q/p
| sy = 3 20 inf [/ ok F@)Pl(,27] 7 da < oo
k‘ENo Rn
and
p/q 1/p
Py =int 8 [ |3 s @l 2 )1 deg <o,

keNy

where the infimums are taken over all nonnegative Borel measurable functions v on
+1 - -
Ry, satisfying that

(2.6) / ) [Nv(z)]P” dH™™ (z) < 1.

In what follows, we use AHp;(R™) to denote either BHpq (R™) or FH,q(R™).
When A = F, then ¢ € (1, c0). Similar to the arguments for the homogeneous version
of AHy ¢ (R™) in [42], we see that the space AH,; (R™) is independent of the choice
of ¢y and ; moreover, the space AH,; (R™) is a quasi-Banach space, indeed, for all
fi, f2 € AHp(R™),
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11+ foll amsg mny < (2C0)° [HleAHg;;(Rn) + 1 foll amsg mry | 5

where Cy is as in (2.3). Also, by an argument similar to that used for [41, Lemma
7.9], we know that the Schwartz class S(R™) is dense in AH, (R™).

Remark 2.2. It was proved in [42] that if p € [g, o0), then the homogeneous ver-
sion of FHpq(R™) coincides with the homogeneous Triebel-Lizorkin-Hausdorff space
FH;7(R™) introduced in [36]. The same argument is also feasible for inhomoge-
neous versions, that is, F H,q(R") = FH,q(R™) if p € [¢,00), where FHpq (R™) is
introduced in [41].

We now recall the Besov-Morrey and Triebel-Lizorkin-Morrey spaces introduced
and studied in [13, 15, 27]. Notice that the notation here is slightly different from those
used in these papers.

Definition 2.3. Let p € (0,0), s € R, g € (0,00], 7 € [0,1/p) and ¢y and ¢ be
as in Definition 2.1.

(i) The Besov-Morrey space BM,’; (R™) is defined to be the set of all f € S'(R™)
such that

1/q
1 lsagzz@n =4 O 2% Ues % fllpgny ¢ < o
J€Ny

(ii) The Triebel-Lizorkin-Morrey space F M, (R") is defined to be the set of all

f € S§'(R™) such that

1/q

Il 7y ey = Z 2% p; % f| < 0.
e L2®)

Remark 2.4. (i) Obviously, when 7 = 0, then BM,; (R™) and F My 4 (R™) go
back to the classical Besov and Triebel-Lizorkin spaces. Moreover, it holds true that
FM)T(R™) = LE(R™); see [20].

(i) Let s € R, p, ¢ € (0,00] (p € (0,00) for Epq (R™)), 7 € [0,00) and g
and ¢ be as in Definition 2.1. Recall that the Besov-type space Bpq(R™) and the
Triebel-Lizorkin-type space F},’; (R™) are defined, respectively, to be be the sets of all
f € S'(R™) such that

1/q
x

A a/p
Z y 2754 [/P lp; * f(m)\pda:] < o0

j=max{—log, ¢(P),

HfHBg;;(R") = ;2% 1P|

and
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p/q 1/p

1 > .
HfHF;;;m):su—/P Yoo 2k f@)|  dep <o

=
PEQ‘P‘ j=max{—log, ¢(P),0}

where the supremums are taken over all dyadic cubes P.

It was proved in [41, Corollary 3.3] (see also [21, Theorem 1.1]) that if 7 € [0,1/p),
then FMpq (R") = Fpq (R™) and BMp5%(R™) = Bpio(R™) with equivalent quasi-
norms and, when ¢ € (0,00) and 7 € (0,1/p), BM,q (R™) is a proper subspace of
Bpig(R™). For more information on these spaces, we refer to [20, 18, 19, 36, 37, 40,
41, 24, 25].

Remark 2.5. Let p € (1,00) and 7 € (0,1/p). The space HZ(R™) is defined to
be the set of all p-locally integrable functions f such that

£ 1l 2 (R += inf {/ \f(ac)\p[w(m)]l_pda:}p < 00,

where the infimum is taken over all nonnegative measurable functions w on R™ satis-
fying
/ w(z) dH"™P (z) < 1.

Recall that the space HZ(R™) was introduced in [2] and proved therein to be the predual
space of the Morrey space L% (R™). Similar to the proof for [42, Theorem 1.11], we

know that
HY(R") = FHY(R")

with equivalent quasi-norms.

As the inhomogeneous version of [42, Theorem 1.10], one can prove that the dual
space of AHp (R") is just AM %7 (R™). The proof is similar and we omit the details.

Theorem 2.6. Let s € R, p € (1,00), 7 € (0,1/p') and ¢ € [1,00) (g € (1,0)
for 7 Hypq(R™)). Then the dual space of AHyq (R") is AM 77 (R™) in the following
sense: for any g € AMpTSq’T (R™), the linear functional

@) L) = [ fg(e) da,

defined initially for all f € S(R™), has a bounded extension to AH,’; (R");
Conversely, if L is a bounded linear functional on AH,’; (R™), then there exists g €
AMpTSq’T(R") such that HgHAM_S,T(Rn) is not more than a positive constant multiple
I p/ q/

of ||L||, and L can be represented in the form (2.7) for all f € S(R™).
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Let ¢ and ¢ be as in Definition 2.1. For s € R, ¢ € (0,00], p € (0,00) and w
being a nonnegative measurable function on R", the weighted Triebel-Lizorkin space
F (w) is defined to be the set of all f € S'(R") such that

1/q
1 1Es @) = {[4 D 2%y * £ < 00,
J€No
LP(w)

where, for any w(z) dz-measurable function g,

ol = [ ooty aa]

As the inhomogeneous counterpart of [42, Theorem 1.6], we have the following
equivalent characterizations of AH, (R™).

Proposition 2.7. Let s € R, p € (1,00), 7 € (0,1/p/] and g € [1,00) (¢ # 1 if
A= F).
() There exists a positive constant C' such that for all f € S'(R"),

1/q

CM llsmzram < § D0 mf 1270 Flduy ¢ < ClFllsazs en)
Jj€Ng
and .
C N rryg @y < Wl fllrg @) < CllFlFmgg @),
where the infimums are taken over all nonnegative Lebesgue measurable functions w
on R"™ satisfying that

2.8) / )] P AH () < 1.

(i) If 7 € (0,1/p'), then the infimums of w in (i) can be further limited to all
w € Ap(R™) satisfying (2.8), here A, (R™) denotes the well-known Muckenhoupt weight
class.

Now we recall some basic notions about the classical complex interpolation of
quasi-Banach spaces; see, for example, [6, 12, 11]. Consider a couple of quasi-Banach
spaces X, X1, which are continuously embedding into a large topological vector space
Y. The space Xy + X7 is defined by

Xo+X1:={heY: I h €X,; ic{0,1}, such that h = hg + hy},
and its norm is defined by

1Al xo+x, := inf{|lhollxo + |P1llx, : k= ho+ h1, ho € X1 and hy € X1}
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Let X be a quasi-Banach space, U := {z € C: 0 < Rez < 1} and U be its
closure, here and in what follows, for any z € C, Rez denotes its real part. A map f:
U — X is said to be analytic if, for any given zy € U, there exists n € (0, co) such
that f(2) = 3>"720 ha(2 — 20)", hy € X, is uniformly convergent for |z — 2| < 7.

A quasi-Banach space X is said to be analytically convex if there exists a positive
constant C' such that, for any analytic function f : U — X which is continuous on

the closed strip U,

mipe | (2)lx < € max (7))

It is well known that all Banach spaces are analytically convex.

Suppose that X, + X is analytically convex. The set F := F (X, X;) is defined
to be the set of all functions f: U — X, + X satisfying that

(1) f is analytic and bounded in X, + X5, which means that f(U) := {f(z): z €
U} is a bounded set of X + X.

(ii) f is extended continuously to the closure U of the strip U such that the traces
t — f(j +1t) are bounded continuous functions into X, j € {0,1}, ¢t € R.

We endow F with the quasi-norm

1115 = max {sup 1FGD]xor sup | F(1+ z't>ux1} .
teR teR

Let Xy, X; be two quasi-Banach spaces such that X, + X is analytically convex.
Then the complex interpolation space [X(, X1]g with 6 € (0, 1) is defined by

[Xo, X1]p :={g € Xo+ X1: 3 f € F such that f(0) = g}

and its norm given by [lgll.x,,x}, == infsex{]| /]l : £(6) = g}.
The main purpose of this paper reads as follows.

Theorem 2.8. Let 6 € (0, 1), so, s1 € R, po, p1 € (1,00), qo, @1 € [1,00) (g >
p,, i € {0, 1} for Besov cases) and 7 € (0,1/pl], i € {0,1}. Let s = so(1 —6) + 510,

5 - lpoe + and 1 = lqoe + and 7 = 719(1 — ) + 710 such that

(2.9) ' = Topy = Tipy-

Then
[AH 3 (R™), AHR G (R™)], = AHp(R™).

Remark 2.9. Notice that for the Hausdorff Besov-type space we do not obtain
the interpolation for full parameters. The reason we need the restriction ¢; > p; is
that without this condition, we can not prove the Hausdorff Besov-type space can be
re-normed as Banach space, which is needed when we use the interpolation approach

by Kalton and Mitrea. It is still unclear whether this restriction can be removed.

As an immediate consequence of Theorem 2.8 and Remark 2.5, we have the fol-
lowing interpolation for predual spaces of Morrey spaces.
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Corollary 2.10. Let § € (0,1), p; € (1,00), 7, € (0,1/pl], i € {0,1}, and

;=212 + 2 and T =m(1—6) +7i6. If (2.9) holds true, then

[HEO(R™), HE(R™)], = HE(R™).

From Theorem 2.8, we also deduce the following interpolation property of linear
operators on Hausdorff type Besov and Triebel-Lizorkin spaces.

Proposition 2.11. Let all parameters be as in Theorem 2.8 and (X, X;) be a
couple of analytically convex quasi-Banach spaces.

(i) If the linear operator 7' is bounded from X; to AH,!zi(R™), i € {0,1}, then
T is also bounded from [ X, X1]g to AHq (R™).

(i) If the linear operator 7" is bounded from AH,:};:(R™) to X;, i € {0,1}, then
T is also bounded from AH,; (R") to [Xo, X1].

As a special case, we obtain the corresponding interpolation property of operators
on HE(R™). Recall that Adams and Xiao [3, Section 5.2] already obtained some
interpolation property of operators between the predual spaces of Morrey spaces.

Finally, we make some conventions on notation. Throughout the paper, we denote
by C' a positive constant which is independent of the main parameters, but it may vary
from line to line. The symbols A < B means A < CB. If A < B and B < A, then
we write A ~ B. If E is a subset of R"™, we denote by x g its characteristic function.

3. HAausDoRFF TYPE TENT SPACES

In this section we study the tent spaces related to the space AH,4(R"), and
establish their atomic decomposition, which are further used to show that AH,; (R™)
can be re-normed as Banach spaces for some parameters.

Definition 3.1. Lets € R, p € (1,00) and 7 € (0, ;]. The tent spaces BT}, (R")
with ¢ € [1,00) and FT, 7 (R") with ¢ € (1,00) are defined, respectively, to be the
sets of all functions F' on jol such that

ksq : —k —kyy—
IFlsrgr @y = D 250 mf [FC 27 (277 ny ¢ < 00
0 keNy
and
1
q
. k —k —kyy—
1Fll s gy = inf || S 25| F(-, 278) o, 27)) 72 < o0,
0 keNy
Lp(Rn)

where the infimums are taken over all nonnegative Lebesgue measurable functions v
on Ry satisfying (2.6).
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In what follows, we use AT}’7 (RitH) to denote either BT}g (R or F g (RiH).
’ No, ) 0 ) 0
When A = F, then ¢ € (1,00). Similar to the proof of [42, Theorem 1.6], one can
prove the following conclusions.

Proposition 3.2. Let s € R, p € (1,00), 7 € (0,1/p/] and g € [1,00) (¢ # 1 if
_ i +1
A = F). Then for all functions F" on Ry ™, HFHBTg;g(Rg;l) and HFHng;g(Rg;l) are
equivalent to )
q
ksq s . o—ky|4
7 2 inf [ F( 275 4,0, ¢
keNy
and

; ksq . 9= kya
inf |4 37 25| F(- 27 ,
keNy
LP(w)

respectively, where the infimums are taken over all nonnegative Lebesgue measurable
functions w on R satisfying (2.8).

We now introduce atoms related to these tent spaces.

Definition 3.3. Let s € R, p € (1,00), ¢ € [1,00) and 7 € (0,1/p/]. A function
a on jol is called an AT§7’;(R§;LI)-atom associated a ball B, if supp a C T(B) :=
{(z,t) e RY" : B(x,t) C B} and satisfies that

a/p
Z oksa [/ \a(a:,Q_k)\pr(B)(a:,Q_k) dx <|BI"”™ if A=B
keNy
or
p/q
/ S 2la(z, 2 iy (2,270 | dw < BT it A= F.
" keNy

Similar to [41, Lemma 7.1], we can prove that all ATZf,’;(jol)-atoms belong to
ATy (jol) with uniforr_n bound. To prove ATy (jol) can be characterized by
atoms, we need the following lemma.

Lemma 3.4. Let s € R, p,qg € (1,00) and 7 € (0, 1/p'].
@) If {Gj}j C fT;:g(R%;"l) and Zj "Gj"ng,’;(Rga_l) < o0, then G := Zj Gj S

fTZf,’;(jol) and there exists a positive constant C, independent of {G;};, such that
G Fry gy < CZ NGl g ey -
J
(ii) The corresponding result for BT;’;(R&”) also holds true when ¢ > p.
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Proof. (i) Without lost of generality, we may assume that \; := HGjHFTg,;(RgH) >
’ 0

0 forall j. Let F}j := /\j_lGj. Then HFijTg,qT(RgH) =1land G =3, \;F}. For any
e > 0, by Proposition 3.2, we can take w; > 0 such that

/ [wj ()] #'/P dH"P (2) < 1
and

00 l/q
{Z?ksq\Fj<-,2-k>\q} <lte
k=0

LP(wj)

Define
p/p —p/p’

w = Z/\j Z/\jwj—p//p
J

Then

-1
/"[w(x)]_p//de"Tp/(a:) A DI ZAj/ wj‘p/de"Tp (z) < 1.
J J

n

Moreover, by the Minkowski inequality, we see that

[ oo p/a 1/a
HGHng;g(Rng) < /n §2ksq‘G<'72_k>‘q] w(z) dx
o 1/q\ P 1/p
< / pRY [Z 25| Fy ., 2_k)\q] w(z) dx
n ] k=0
Notice that, by the Holder inequality,
oo 11/q p
Do | Do 2MIE 27
j Lk=0 |

/

1p/9 r/p

[ oo
< SN 2R e w | (Y A
g Lk=0 J
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Hence
HGHng;g(Rg;l)
1/p' ~ /g 1/p
< (Z /\j> /"ZAJ‘ [Zkaq\Fj(w?_k)\q] wj d
J J k=0
S+ N,
J

which proves (i).
(if) We now consider the B-space case. Let F; be as above. Then for any € > 0,
we can take wy ; > 0 such that

[ s @) an (@) < 1

and

') l/q
{E:ﬁWMKHTﬂW} <l+e
k=0

LP (wg, ;)

p/p’ —p/p’
Wg = (Z /\j) (Z /\jwk_5 /p) .
J J

This time, by the Holder inequality, we have

P p/p’
GIP = > NE| < (Z Aijpwk,j) (Z Ajwr s /p) :
F F F

Since ¢ > p, by the Minkowski inequality, we see that

Define

1 57 g

0o a/p) /4
< {% 2k% [/ |G (,27F)[Pwr(2) dw] }

- q/pY M/ 1/p’
Zkaq / Z/\j\Fj(x,Q_k)\pwa(x) dx (Z /\j>
k=0 R

IN

J

/q) 1/P 1/p’
o0 q/p\ P4
Z/\j <Z oksq [/ |Fj(x, 2_k>‘pwk7j(a:) da:] ) Z Aj
j k=0 " j
S+ N,
J

IN
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which proves (ii), and then completes the proof. ]

Using Lemma 3.4 instead of [41, Lemma 7.2], and similar to the proof of [41,
Proposition 7.1], we obtain the following atomic decomposition of AT, 7 (R), the
details being omitted.

Theorem 3.5. Let s € R, p,q € (1, o), and 7 € (0, ﬁ]-

(i) A function F € fTZf;;(jol) if and only if there exists a sequence {a,, }, of
fTZf;;(]jol)-atoms and an ¢*-sequence {\,,},, C Csuchthat F =" A,a., point-
. - s 1 - - .
wise and in }“T;;(jo ). Moreover, HFHng;;(Rg;l) is equivalent to inf > |\,
where the infimum is taken over all admissible decompositions of F..
(ii) When ¢ > p, the corresponding conclusion for BT;’;(R&”) also holds true.

We denote the infimum inf )" |\,,| in Theorem 3.5 by \HF\HATE,;(R&LH), which
’ 0
is an equivalent norm of AT;’;(R&”), and then (ATZf;g(jol), Il - H\AT%(R&LH))
’ 0
become a Banach space (q > p for BT, (jol)).
Let o and  be as in Definition 2.1 such that 3=, [;|* = 1. We define an

operator p,, by setting p,(f)(x,277) := p; * f(z) for all f € S'(R"), € R and
j € Ny. Conversely, for all functions F' on jol and x € R", we define a map 7, by

w(F)a) =Y [ P2 onte - v)dy.
k=0

By the Calderon reproducing formula, we know that 7, o p,(f) = f for all f €
S'(R™). Moreover, it is easy to see that Hp@<f>HATg:qT(R§S—1) = [[fllams; mny- In this
sense, by the previous argument, we can endow AH;; (R™) with an equivalent norm
- amgs @y = \Hp@(f)mATgﬁg(Rg;l), under which AH,’; (R™) becomes a Banach
space (¢ > p for BH, 4 (R™)), and hence are analytically convex.

Recall that the property that 7 H,’, (R™) can be re-normed as Banach space was
used in [38] to prove that the dual space of F My (R™) = Fp (R) is FH, 77 (R™),
where s € R, p € (1,00) and 7 € (0,1/p), AM;7 (R™) denotes the closure of S(R™)
in AM,>; (R™). Since this time we prove that AH,; (R™) (¢ > p for BHpq (R™)) can
be re-normed as Banach spaces, repeating the procedure used in [38], we can prove
the following conclusion, the details being omitted.

Theorem 3.6. Let s € R, p, ¢ € (1,00) (¢ < p for B cases) and 7 € (0,1/p').
Then the dual space of AMg (R") is AH 7 (R") in the following sense: for any
g € AH % (R™), the linear functional



1540 Wen Yuan

(3.1) L= | f@(z)de,

defined initially for all f € S(R"), has a bounded extension to AM;7 (R™);
Conversely, if L is a bounded linear functional on .AM,’; (R™), then there exists

g€ AH;ET(R") such that HgHAH;Z;(Rn) is not more than a positive constant multiple

of ||L||, and L can be represented in the form (3.1) for all f € S(R™).

4, Proor oF THEOREM 2.8

In this section, we give the proof of Theorem 2.8. One of the main tool we used
is the wavelet decomposition of the space .AH,; (R™), which transfers the problem to
the corresponding sequence spaces.

Let ¢ be a scaling function on R with compact support and of sufficiently high
regularity, and ¢ the corresponding orthonormal wavelet. Then the tensor product
ansatz yields a scaling function ¢ and associated wavelets i1, .. ., 1¥on_1, all defined
on R™; see, e.g., [32, Proposition 5.2]. We suppose that ¢ € C1(R™) and supp ¢ C
[~ N3y, No]™ for some natural numbers N; and No, which means that, for all ¢ €
{1,...,2" — 1}, ¢, € CM(R") and supp; C [—N3, N3]™ for some N3 € N.

ForkeZ" jeNpandie {1,...,2" — 1}, define

Gin(x) =2"2p(Px — k) and by p(z) i= 27220 — k), x € R™
]7 7]7

It is well known that

/z/zi7j7k(x) 27dr =0 if lv] < Ny
R'VL

(see [32, Proposition 3.1]), and
{pop: EeZ"} U {thjr: ke€Z", jeNy, i €{1,...,2" —1}}

forms an orthonormal basis of L?(R") (see, for example, [31]). Hence

2"—1 oo
(4.1) F= Xedor+ DD D Nijktijk
kezr i=1 j=0 kezr

in L2(R™), where )z := (f, ¢ok) and A, i = (f, ¥ijx). In what follows, for
convenience, we also write ¢; o, := ¢k and A, o := A, forall i € {1,...,2" — 1},
and A\(f) :={Nijr: t€{l,...,2" =1}, j €Ny, ke Z"}.

Next we recall the related sequence spaces.
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Definition 4.1. Let s € R, p,q € (1,00) and 7 € (0,1/p’]. The sequence space
aHy7 (R™) is defined to be the space of all sequences ¢ := {t; ;. : i € {1,...,2" —
1}, j € No, k € Z"} C C such that |[¢]|, .7 gn) < oo, Where when a = b,

HtHbHS’T(R")
q

2” 1 E
1 .
= mf< JIDIDSE L L NCENEI <x,2—f>rpdx> ,

=1 keZn

Q=

and when a = f,

1l 757 ey

B =

oo 2n—1 L

/R<ZZ 7 2R 4 g, (@) <x,2-j>1-q> dwy

7=0 =1 keZ"

and the infimum is taken over all nonnegative Borel measurable functions v on jol
satisfying (2.6).

Similar to the proof of [14, Theorem 6.4], we have the following wavelet charac-
terization of AH, (R").

Proposition 4.2. Let s € R, 7 € (0,1/p] and p, ¢ € (1,00). Assume that

Ni+1 >max {s +n7 +n/(max(p, q)) — n/p +np/(1 +pr),
—s+n7+1/(max(p,q))' + 1/p—1+2np/(1+p7)} .

Let f € S'(R™). Then f € AHp4(R") if, and only if, f can be represented as
(4.1) in S'(R"™) and [|A(f)llapsy@ny < 0o- Moreover, || f|| am;7 ) is equivalent to
A arrz g reny -

By this wavelet decomposition, we know that there exists a homeomorphism be-
tween AHp (R™) and aH 7 (R™). Therefore, to show Theorem 2.8, we only need to
prove the corresponding mterpolatlon for the sequence spaces aH ;7 (R™). To this end,

we first need to calculate the Calderon product of these spaces. For simplicity, in what
follows, we redefine

Q=

q

= P
el ey = Ziff(/ > 2f8p\tQ\pXQ<x>[u<x,2—J>]-pdx> ,
7=0 " Q=2

and when a = f,

B =

ya
q

s = a3 [ (Z > fsqth\quwx,2—j>]—q> dr

J=0¢Q
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Recall that a quasi-Banach space (X, ||-||) of complex-valued measurable functions
is called a quasi-Banach lattice if, for any f € X and a complex-valued measurable
function ¢ satisfying |g| < |f|, then ¢ € X and ||g||x < | f|lx. Given two quasi-
Banach lattices (X;, || - |ls), i € {0,1}, and 6 € (0, 1), the Calderon product X1~ x?¢
is defined by

XX = {f is a complex-valued measurable function: 3 f° € X,

and f! € X, such that |f| < \fo\l_e\fl\e},

and its norm is defined by HfHX(}_exle := inf {HfOHXOer Hxl} , Where the infimum

is taken over all f € X;, i € {0,1} such that | f| < |f°|'=?|f1|°. It is easy to see that
the sequence spaces aH 7 (R™) are quasi-Banach lattices.

Theorem 4.3. Let 4 (0, 1), s € R, pi,q;i € (1,00) and 7; € (0,1/pl], i € {0,1}.
Let s = so(1 — 6) + 510, > zlp;oe—i-pil, ézlq;f—i-%andT:Tg(l—G)—i—ﬁG. If
(2.9) holds, then

[afygio(RM] ™ [aHp T (RY) = aHy7 (R,

To prove this result, we need the following conclusion, which when 7 = 0 goes
back to [9, Proposition 2.7].

Lemma 4.4. Let s € R, p, ¢ € (1,00), 7 € (0, Z%] and § € (0,1]. Suppose that,
for each dyadic cube @ with Q € 9%, Eg C @ is a measurable set with |Eg| > 6|Q)|.
Thent = {tg}oeo~ € fHpq(R™)if and only if HtHbe gy < OO where ||t]| —

is defined the same as ||¢[| ;5.7 (rny With x¢ replaced by XEg-

fHpq(R")

Proof. ~ We only prove |[¢[|;gsr@ny S (1l 7 Ay since the inverse inequality
p,q

is trivial. To this end, let v satisfy (2.6) such that

P

/ (Z Z 2l @)l <x,2-j>]-q>qda: S M

J=0¢Q

For all x € R™ and ¢ € (0, 00), define v(z, t) := sup{v(y,t) : |y— x| <+/nt}. Then
by [41, Lemma 7.16], we know that a constant multiplication of 7 also satisfies (2.6).
Moreover, for all x € Q with £(Q) = 277,

1oxeeWdy .
g P2 s

M (xo V(- 27)]7Y) (2),

IN

S| =

‘ BoW)[v(y,279)] 1 d
xo (@) [P(z,279))7? %fQX (y)v(y,277)] " dy

Q|

AN
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where M denotes the Hardy-Littlewood maximal operator. Then, applying the Fefferman-
Stein vector-valued inequality, we obtain the desired conclusion. ]

Now we turn to the proof of Theorem 4.3.

Proof of Theorem 4.3. By similarity, we only consider the fH-case.

We first prove that [fH 270 (R™)]* 0 [fHa T (R™)]) ¢ fHyT(R™). To this end,
let X := {Aglgeo- € [FHom (R0 [fHST (R”)]es. Then there exist )y :=
{/\%}QEQ* € [Hpyq(R™) and Ay := {/\b}QEQ* € fHpq (R") such that [Ag| <
INGITPAG|? for all Q € Q and

HAO‘ fH°O »70 (R™) HAIHfHH 71 (Rn) ~ HAH[fH;g:;g(R")]l_e[szll:;% (Rn)]e'

Let v; satisfying
/ [Nvg(@)|P dH™ i (2) < 1, i € {0,1}.

such that

S

Py

9
/ <Z Z 27514 |( A)ol%xo(x )[wi(a:,Q_J)]_qi> dx gH/\inHgiij;(R")

J=0¢(Q

for i € {0,1}. Define v := 1} ~%u{. It is easy to see that Nv < (Nup)'~(Nuvy)?,
which together with the Young inequality further implies that

/ 1 - / / / /
(Nv)P < ﬂ(NVO)pO i e_ff(Nm)pl

/

Py P

Therefore v satisfies (2.6), due to (2.9). Moreover, applying the Holder inequality, we
see that

1
q
[Myasr@ny) S <Z Z QJSWQ\"XQ( ) (z, )]_q>
J=0¢Q Lo (R™)
1 1-6
ad . ) %)
S (Z > 2”0‘10\<Ao>Q\q0><Q<x>[uo<x,2—J>r%>
IR0 UQ)=2 LPo(R™)
10
o . ) a1
x (Z > 2””1\(Aﬁmmxmxnm(az,2-f>1-m>
J=0 K(Q):2_j LP1 (Rn)
< HAO‘ fH°O ST (R") HAIHfHH 71 (Rn) ~ HAH[fH;BJ:;g(Rn)]l_e[stlﬁl (Rn)]e'

P1,91
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Therefore, we have [f Hyd iz (R™)]' ™ [fHpLgH (R C fHG(R™).
Next we show [fHy0m0 (R™)0 [fHS T (R™)? > fHET(R™). To this end, let
A€ fHy(R™) and v satisfying (2.6) such that

P

/ ,L<Z Y. Phala(e)vle ) ) dr ¢ <IN pagg -

J=0¢4Q

For all z € R™ and j € Ny, we define
v(w,277) == sup {v(y,277) : y € Qjr, Qjr >}

Then, it it easy to check that a positive constant multiplication of v also satisfies (2.6).
Moreover, v < v, and hence

1

.
E P

/ "<§j > 2ol <x,2—f>rq> dr g S N agg e

J=0¢Q

For all @ € QF, let EQ C @ be a measurable set such that |Eg| = |Q|. For all k € Z,
define

1
q

Ap:=<qzeR": <Z Z 2]8q‘/\Q‘qXEQ( x)[v ($,2_j>]_q> > 2k

J=0¢Q

and
C, = {Q €Q: Qe |[EqN Al = 5|Eq| and |EqQ N Apya]| < §\EQ\}~

It is easy to see that if Q) ¢ UpczCy, then Ag = 0. For all Q € Q*, when Q € Cy,

define '/Po=a/
\ a0 D /Pp—4/490
Y <‘A—Q‘) <sup V(%“Q)))
Q yeQ

. k(1—-290)
with Ag := 2" @o’|Q|" and v := > — ©52, and
/P —a/q
/\ ‘ fI/‘h p
A = (‘—Q) sup (1, £(Q))
@ Bq yeQ

with B := 2™ “anr )|Q” and v : = 243, and, when Q ¢ UpezCr, Ay = AG = 0.
Since {Cy}rez are disjoint each other We know that \g and \; are well deflned
Moreover, it is easy to check that [Aq| = [AQ)|"?[AL|? for all Q € Q. Therefore, to
complete the proof, it suffices to show that
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0 p/p p/p
@2) 0 oy S NI ey 2 N gers ey S IR g

We may assume that {q’—g < % by symmetry.
Define v := 27'/Po and 7y := v¥'/71. By (2.9) we know that v; satisfies (2.6) with
p’ replaced by p/, i € {0,1}. By Lemma 4.4, we see that

H/\O HfH°0 a0 (R™)

P0 L

S / <Z Z Q™™ qo‘/\ ‘qOXEQmAk<x>[DO<$,E(Q))}—qo> 0 o

kEZ QEC,

Pq s
(S g
" \kez QECy,

PO L

x| AQlTxE, () [P(z, 5(@))]”) " d

By the definition of Ay, and the fact that Z—g < % implies 1 — é’%g < 0, we further see
that

0 p/Po
H/\ HfH°0 a0 (R™) ~ H/\HfH” (R")"
Similar to the above argument, with x,n4, replaced by XEqgnag,,» We obtain

p/p
H/\ HfH°1 L(Rn) ~ H/\Hng’,g(R")’
which completes the proof of Theorem 4.3. |
In 1998, Kalton and Mitrea [12, Theorem 3.4] proved the following conclusion,
which has become a powerful tool to study the complex interpolation of quasi-Banach
function spaces; see, for example, [11, 39, 26].

Proposition 4.5. Let X, X7 be a pair of quasi-Banach sequence lattices. If both
Xo and X7 are analytically convex and at least one is separable, then Xy + X7 is
also analytically convex and

(X0, X1]o = X4 XP, 0 < (0,1).

Since finite sequences are dense in aHy7(R™), we know that these spaces are
separable. Moreover, although (aH} 7 (R"), [ - || z57 ) is Only quasi-Banach space,
by Proposition 4.2 and the argument in the end of Section 3, we know that a7 (R")
can be re-normed as Banach spaces (¢ > p if a = b), and hence are analytlcally
convex. Combining these observations with Theorem 4.3 and Proposition 4.5, we
obtain the following interpolation for sequence spaces.
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Theorem 4.6. Let 0 € (0,1), s; € R, p; € (1,00), ¢; € [1,00) and 7; € (0,1/p]]

(@ > p; for bH-spaces), i € {0,1}. Let s = so(1 —6) + 16, ; = 1p;09 + pil,
1= 104+ % and 7 = 7(1 - 6) + 7. If (2.9) holds true, then
[aH 5030 (R), aHyl o (R™)] ) = aHpg (R™).

Theorem 2.8 is then an immediate consequence of Theorem 4.3 and Proposition

4.2,
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