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CLOSEDNESS OF SET OF EFFICIENT SOLUTIONS FOR GENERALIZED
KY FAN INEQUALITY PROBLEMS

Xun-Hua Gong* and Xin-Min Yang

Abstract. In this paper, we discuss the closedness of set of efficient solutions for
generalized Ky Fan inequality problems in topological vector spaces. We introduce
a concept of section mapping of a bifunction. By using the lower semicontinuity
of the section mapping, we present sufficient conditions for the closedness of set
of efficient solutions to the generalized Ky Fan inequality problems. We give
conditions to guarantee the lower semicontinuity of the section mapping. We give
also an example to illustrate that the condition of the lower semicontinuity of the
section mapping is essential for the closedness of set of efficient solutions for
generalized Ky Fan inequality problems. As an application, we give results of
closedness of set of efficient solutions for vector optimization problems and for
Lipschitz vector variational inequalities.

1. INTRODUCTION

Generalized Ky Fan inequality problems is an extension of a well known Ky Fan
Inequality. Generalized Ky Fan inequality problems have been intensively explored
recently since they include many other problems as special cases, including vector
variational inequality problems, vector optimization problems, vector Nash equilibrium
problems, and vector complementary problems [1, 2, 3].

Many studies have focused on weakly efficient solutions to the generalized Ky Fan
inequality problems [1]. In general, the approach relies on an assumption that the
ordering cone has a nonempty interior, taking the advantage of the openness of the
interior of the ordering cone. In many cases, the ordering cone has an empty interior.
For example, for each 1 < p < +∞, the positive cone of the normed linear spaces lp
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and Lp(Ω) has an empty interior. The efficient solution is an important solution to the
generalized Ky Fan inequality problems as well as to the vector optimization problems.
The concept of the efficient solution does not require the condition that the ordering
cone has an nonempty interior. Thus, to study the properties of the efficient solutions of
the generalized Ky Fan inequality problems is interesting. The difficulty of such study
mainly lies in the fact that we can’t longer take the advantage of the openness of the
interior of the ordering cone. So far, only a few papers have dealt with this problems.
Fang and Huang [4] studied the existence of efficient solution for vector variational
inequalities in Banach spaces. Gong and Yue [5] studied the existence of efficient
solution for generalized Ky Fan inequality problems. Gong and Yao [6,7] studied
the connectedness of the set of efficient solutions for generalized Ky Fan inequality
problems and the lower semicontinuity of the efficient solution mapping for generalized
Ky Fan inequality problems. By using the generalization of Ljusternik theorem, the
open mapping theorem of convex process, and the convex sets separation theorem,
Gong [8] gave the necessary conditions for the efficient solution to the constrained
vector equilibrium problems without requiring that the ordering cone in the objective
space has a nonempty interior and without requiring that the the convexity conditions.

One of the important problems of generalized Ky Fan inequality problems is to
investigate the topological structure of the set of efficient solutions for generalized Ky
Fan inequality problems. Algorithmically, some approaches for generating all or part of
set of efficient solutions of the vector optimization problems require the set of efficient
solutions to be closed (see [9]). Hence it is also important to study the closedness of
set of efficient solutions of the generalized Ky Fan inequality problems.

Benson and Sun [9] have studied the closedness of the set of efficient solutions
for the vector optimization problems in finite-dimensional space; Dong, Gong, Wang
and Coladas [10] have studied the closedness of the set of efficient solutions for the
vector optimization problems in infinite-dimensional space. Until now, there has been
no study on the closedness of set of efficient solutions for generalized Ky Fan inequality
problems.

In this paper, we study the closedness of set of efficient solutions for generalized
Ky Fan inequality problems in topological vector space. In Section 3, we introduce
a concept of section mapping of a bifunction. By using the lower semicontinuity
of the section mapping, we then present sufficient conditions for the closedness of
set of efficient solutions for generalized Ky Fan inequality problems. Then, we give
conditions to guarantee the lower semicontinuity of section mapping, and an example
to illustrate the condition that the section mapping is lower semicontinuous is essential
for the closedness of set of efficient solutions of the generalized Ky Fan inequality
problems. In Section 4 and Section 5, we use the methods of Section 3 to study the
closedness of set of efficient solutions to the vector optimization problems and Lipschitz
vector variational inequalities, respectively.
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2. PRELIMINARIES

Throughout this paper, let X and Y be a topological vector spaces, C be a closed,
convex and pointed cone in Y . Let A be a nonempty subset of X and F : A×A → Y

be a bifunction. We consider the generalized Ky Fan inequality problems(for short,
GFIP): find x ∈ A, such that

F (x, y) �∈ −P\{0} for all y ∈ A,

where P is a cone in Y .
If we replace above P by intC ∪{0}, or by C, then we can give the following two

definitions.

Definition 2.1. If intC �= ∅, a vector x ∈ A, satisfying

F (x, y) �∈ −intC for all y ∈ A,

is called a weakly efficient solution to the GFIP. The set of weakly efficient solutions
to the GFIP is denoted by VW (A, F ).

Definition 2.2. A vector x ∈ A, satisfying

F (x, y) �∈ −C\{0} for all y ∈ A,

is called an efficient solution to the GFIP. The set of efficient solutions to the GFIP is
denoted by V (A, F ).

A special case of GFIP is a vector optimization problem (for short, VOP) involving

F (x, y) = f(y)− f(x), x, y ∈ A,

where f : A → Y is a mapping.

Definition 2.3. If

F (x, y) = f(y)− f(x), x, y ∈ A,

and if x ∈ A is an efficient solution to the GFIP, then x ∈ A is called an efficient
solution to the VOP. The set of efficient solutions to the VOP is denoted by E(A, f).

Definition 2.4. ([11]) Let G be a set-valued map from a topological space W
to another topological space Q. We say that G : W ⇒ Q is lower semicontinuous at
w0 ∈ W if, for any y0 ∈ G(w0) and any neighborhood U(y0) of y0, there exists a
neighborhood U(w0) of w0 such that

G(w) ∩ U(y0) �= ∅ for all w ∈ U(w0).

G is said to be lower semicontinuous on W if it is lower semicontinuous at each
w ∈ W . Moreover, when W and Q are metric spaces, G is lower semicontinuous at
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w0 ∈ W if and only if, for any y0 ∈ G(w0) and any sequence {wn} with wn → w0,
there is a sequence {yn} with yn ∈ G(wn) such that yn → y0.

If A is a nonempty subset of a topology space X , M : A ⇒ A is a set-valued
mapping, we can define the lower semi continuity of M on A with respect to the
topology induced on A by the topology of X .

Definition 2.5. Let A be a nonempty subset of a topology space X , M : A ⇒ A
be a set-valued mapping. We say that M is lower semicontinuous at x0 ∈ A if, for any
y0 ∈ M(x0) and any neighborhood U(y0) of y0, there exists a neighborhood U(x0) of
x0 such that

M(x) ∩ U(y0) ∩ A = M(x) ∩ U(y0) �= ∅ for all x ∈ U(x0) ∩ A.

M is said to be lower semicontinuous on A if it is lower semicontinuous at each x ∈ A.

Remark 2.1. By Definition 2.4 and Definition 2.5, we can see that if X is a
metric space, A is a nonempty subset of a X , then the set-valued mapping M : A ⇒ A

is lower semicontinuous at x0 ∈ A if, for any y0 ∈ M(x0) and any sequence {xn} ⊂ A
with xn → x0, there is a sequence {yn} with yn ∈ M(xn) such that yn → y0.

Definition 2.6. Let X be a topological space, Y be a topological vector space,
and A be a nonempty subset of X , C be a closed, convex and pointed cone in Y .
A mapping g : A → Y is called C-upper semicontinuous at x0 ∈ A if, for any
neighborhood U of 0 in Y , there is a neighborhood U(x0) of x0 in X such that

g(x) ∈ g(x0) + U − C for all x ∈ U(x0) ∩ A.

g is said to be C-upper semicontinuous on A if it is C-upper semicontinuous at each
x ∈ A.

If X is a topological vector space, we denote the neighborhood system of zero in
X by N(0).

3. CLOSEDNESS OF EFFICIENT SOLUTIONS SET OF GFIP

In this section, we discuss mainly the closedness of efficient solutions set to the
generalized Ky Fan inequality problems.

By the openness of the ordering cone C, we can easily get the following result, we
omit the proof.

Theorem 3.1. Let X be a topological space, A be a nonempty and closed subset
of X , Y be a topological vector space, C be a closed, convex and pointed cone in
Y . Let F : A × A → Y be a bifunction. If for each y ∈ A, F (·, y) is C- upper
semicontinuous on A, then VW (A, F ) is closed.
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However, the efficient solutions set of GFIP is not necessary closed under the
conditions of Theorem 3.1 as we shall see in Example 3.2. We need a new method to
prove the closedness of the set of efficient solutions of GFIP. Now we introduce the
following concept.

Definition 3.1. Let X be a topological space, A be a nonempty subset of X ,
Y be a topological vector space, C be a closed, convex and pointed cone in Y . Let
F : A × A → Y be a bifunction. The set-valued mapping

M(x) := {y ∈ A : F (x, y) ∈ −C}, x ∈ A

is called a section mapping of F .

Theorem 3.2. Let X be a Hausdorff topological vector space, A be a nonempty
and closed subset of X , Y be a topological vector space, C be a closed, convex and
pointed cone in Y . Let F : A × A → Y be a bifunction with F (x, x) ∈ C for all
x ∈ A. Assume that
(i) the section mapping M of F is lower semicontinuous on A;
(ii) for any x, y ∈ A with x �= y, implies F (x, y) �= 0.

Then V (A, F ) is closed.

Proof. If V (A, F ) = ∅, it is clear that V (A, F ) is closed. Now we assume that
V (A, F ) �= ∅. We claim that clV (A, F ) ⊂ V (A, F ), where clV (A, F ) denote the
closure of V (A, F ). Suppose to the contrary that clV (A, F ) �⊂ V (A, F ), then there
exists x0 ∈ clV (A, F ) such that x0 /∈ V (A, F ). Since V (A, F ) ⊂ A, and A is closed,
we have x0 ∈ A. By x0 /∈ V (A, F ), there exists y0 ∈ A such that

(1) F (x0, y0) ∈ −C\{0}.
By (1), we have y0 ∈ M(x0). By condition (i), M is lower semicontinuous at x0, for
any U ∈ N(0), there exists a neighborhood VU(x0) of x0 such that

M(x) ∩ (y0 + U) �= ∅ for all x ∈ VU(x0) ∩ A,

thus,

(2) M(x) ∩ (y0 + U) �= ∅ for all x ∈ VU(x0) ∩ (x0 + U) ∩ A.

By x0 ∈ clV (A, F ), and noting that VU(x0) ∩ (x0 + U) is a neighborhood of x0, we
have

VU(x0) ∩ (x0 + U) ∩ V (A, F ) �= ∅.
Pick xU ∈ VU(x0) ∩ (x0 + U) ∩ V (A, F ). By (2), we have

M(xU) ∩ (y0 + U) �= ∅.
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Pick yU ∈ M(xU ) ∩ (y0 + U). Thus, we obtain the nets {xU : U ∈ N(0)} and
{yU : U ∈ N(0)}. It is clear that xU → x0 and yU → y0, xU ∈ V (A, F ) and
yU ∈ M(xU) for all U ∈ N(0). We have

(3) F (xU , yU) ∈ −C for all U ∈ N(0).

By (1) and assumption, and noting that C is a pointed cone, we have x0 �= y0. Since
X is Hausdorff, there exist a neighborhood U(x0) of x0 and a neighborhood U(y0) of
y0 such that

(4) U(x0) ∩ U(y0) = ∅.

Since xU → x0, yU → y0, there exists U0 ∈ N(0) such that

xU ∈ U(x0), yU ∈ U(y0) for all U ∈ {U ∈ N(0) : U ⊂ U0}.

By (4), xU �= yU for all U ∈ {U ∈ N(0) : U ⊂ U0}, and by condition (ii), we have
F (xU , yU) �= 0. This together with (3) yields

F (xU , yU) ∈ −C\{0}.

Thus, xU /∈ V (A, F ). This contradicts that xU ∈ V (A, F ). Thus, clV (A, F ) ⊂
V (A, F ), therefore, V (A, F ) is closed.

Now, we give an example to show that there exists a mapping which satisfying the
conditions of Theorem 3.2.

Example 3.1. Let X = R, Y = R
2, C = R

2
+ = {y = (y1, y2) : y1 ≥ 0, y2 ≥ 0},

and A = [−1, 1] ⊂ X . Let

g(x) =

{ −x, x ∈ [−1, 0],

0, x ∈ (0, 1].

Define the mapping F : A × A → R
2 by

F (x, y) = (y − x, g(y)− g(x)), x, y ∈ A.

It is easy to see that

M(x) =

{ {x}, x ∈ [−1, 0],

[0, x], x ∈ (0, 1],

and the conditions of Theorem 3.2 are satisfied. By Theorem 3.2, V (A, F ) is closed.
We can see that V (A, F ) = [−1, 0].
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The following example illustrates that the condition that section mapping M of F

is lower semicontinuous on A in Theorem 3.2 is essential.

Example 3.2. Let X = R, Y = R
2, C = R

2
+, A = [−1, 1] ⊂ X . Let

g(x) =

{
x, x ∈ [−1, 0),

0, x ∈ [0, 1].

Define the mapping F : A × A → R
2 by

F (x, y) = (g(y)− g(x), x− y), x, y ∈ A.

It is easy to see that

M(x) =

{ {x}, x ∈ [−1, 0),

[x, 1], x ∈ [0, 1].

M is not lower semicontinuous at 0 ∈ [−1, 1]. In fact, there exist 1
2 ∈ M(0) = [0, 1],

and a neighborhood ( 1
4 , 3

4 ) of 1
2 , for any neighborhood U(0) of 0, there exists x ∈

U(0) ∩ [−1, 0) such that

M(x) ∩ (
1
4
,
3
4
) = {x} ∩ (

1
4
,
3
4
) = ∅.

We can see that the other conditions of Theorem 3.2 are satisfied. However, V (A, F ) =
[−1, 0)∪ {1} is not closed.

In the following, we give sufficient conditions to guarantee the lower semicontin-
uous of section mapping M of F .

Theorem 3.3. Let X and Y be topological vector spaces, A be a nonempty
convex subset of X , C be a closed, convex and pointed cone in Y with int C �= ∅. Let
F : A × A → Y be a bifunction. Assume that
(i) for any y ∈ A, F (·, y) is C-upper semicontinuous on A;
(ii) for any x ∈ A, if F (x, y1) ∈ −C, F (x, y2) ∈ −C and y1 �= y2 with y1, y2 ∈ A,

then
F (x, ty1 + (1 − t)y2) ∈ −int C for all t ∈ (0, 1);

(iii) for any x ∈ A, x ∈ M(x).

Then, the section mapping M of F is lower semicontinuous on A.

Proof. For any x0 ∈ A, by condition (iii), M(x0) �= ∅. For any y0 ∈ M(x0), and
any neighborhood U(y0) of y0, we consider two case:
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Case 1. if y0 = x0, then for above U(y0), taking the neighborhood U(x0) of x0

with U(x0) = U(y0), by condition (iii), we have

x ∈ M(x) ∩ U(y0) for all x ∈ U(x0) ∩ A,

that is

(5) M(x) ∩ U(y0) �= ∅ for all x ∈ U(x0) ∩ A.

Case 2. if y0 �= x0. Noting that F (x0, y0) ∈ −C, and by condition (iii),
F (x0, x0) ∈ −C, by assumption, we have

(6) F (x0, ty0 + (1− t)x0) ∈ −int C for all t ∈ (0, 1).

Since ty0 + (1− t)x0 → y0 as t → 1, and U(y0) is a neighborhood of y0, there exists
t0 ∈ (0, 1) such that

(7) t0y0 + (1 − t0)x0 ∈ U(y0).

By (6), there exists a neighborhood U(0) of zero in Y , such that

F (x0, t0y0 + (1− t0)x0) + U(0) ⊂ −int C,

Therefore, we have

F (x0, t0y0 + (1 − t0)x0) + U(0)− C ⊂ −int C.

By assumption, for above t0y0 + (1 − t0)x0 ∈ A, F (·, t0y0 + (1 − t0)x0) is C-upper
semicontinuous at x0, there exists a neighborhood U(x0) of x0 such that

F (x, t0y0 + (1 − t0)x0) ∈ F (x0, t0y0 + (1− t0)x0) + U(0) − C

⊂ −intC for all x ∈ U(x0) ∩ A.

This together with (7) implies that

(8) t0y0 + (1 − t0)x0 ∈ M(x) ∩ U(y0) for all x ∈ U(x0) ∩ A.

By (5) and (8), we can see that M is lower semicontinuous at x0.

The following example illustrates that the condition (ii) in Theorem 3.3 is not
necessary.

Example 3.3. Let X, Y, C, A, and F be as in the Example 3.1. There exist
x = 1

2 ∈ A, y1 = 1
4 , y2 = 1

8 ∈ A, such that

F (
1
2
,
1
4
) = (−1

4
, 0) ∈ −R

2
+, and F (

1
2
,
1
8
) = (−3

8
, 0) ∈ −R

2
+,
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F (
1
2
, ty1 + (1− t)y2) = (ty1 + (1− t)y2 − 1

2
, 0) /∈ −intR2

+ for all t ∈ (0, 1).

The condition (ii) of Theorem 3.3 is not satisfied. It is clear that the other conditions
of Theorem 3.3 are satisfied. By Example 3.1, M is lower semicontinuous on [−1, 1].
Thus, the condition (ii) of Theorem 3.3 is not necessary.

Definition 3.2. Let X and Y be topological vector spaces, C be a closed, convex
and pointed cone in Y with intC �= ∅. Let A be a nonempty and convex subset of X
and let F : A × A → Y be a bifunction. F is called to be C-strictly convex in its
second variable if for each x ∈ A, and for every pair of distinct points y1, y2 ∈ A and
t ∈ (0, 1), the following property holds:

tF (x, y1) + (1− t)F (x, y2) ∈ F (x, ty1 + (1− t)y2) + intC.

Remark 3.1. If F : A × A → Y is C-strictly convex in its second variable, then
the condition (ii) of Theorem 3.3 is satisfied. In fact, for any x ∈ A, if F (x, y1) ∈
−C, F (x, y2) ∈ −C and y1 �= y2 with y1, y2 ∈ A, since F is C−strictly convex in
its second variable, we have

F (x, ty1 +(1− t)y2) ∈ tF (x, y1)+(1− t)F (x, y2)− intC ⊂ −intC for all t ∈ (0, 1).

Combining Theorem 3.2, Theorem 3.3 and Remark 3.1, we can give a sufficient
condition guaranteeing that the closedness of V (A, F ) without the concept of section
mapping M of F .

Theorem 3.4. Let X be a Hausdorff topological vector space, Y be a topological
vector space, C be a closed, convex and pointed cone in Y with intC �= ∅. Let A be
a nonempty and closed convex subset of X . Assume that
(i) F (x, x) = 0 for all x ∈ A;
(ii) for any y ∈ A, F (·, y) is C-upper semicontinuous on A;
(iii) for any x, y ∈ A with x �= y, implies F (x, y) �= 0.

(iv) F is a C-strictly convex in its second variable.

Then V (A, F ) is closed.

4. CLOSEDNESS OF EFFICIENT SOLUTIONS SET OF VOP

In this section, we use the method of Section 3 to study the closedness of set of
efficient solutions to the vector optimization problems.

Let Y be a topological vector space, C be a closed, convex and pointed cone in Y .
C induces a partially ordering in Y defined by

x ≤ y if and only if y − x ∈ C.
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Theorem 4.1. Let X and Y be topological vector spaces, A be a nonempty and
closed subset of X , C be a closed, convex and pointed cone in Y . Let f : A → Y be
a continuous mapping. Assume that the set-valued mapping

M(x) = {y ∈ A : f(y) ≤ f(x)}, x ∈ A

is lower semicontinuous on A, then E(A, f) is closed.

Proof. If E(A, f) = ∅, it is clear that E(A, f) is closed. Now we assume that
E(A, f) �= ∅. We claim that clE(A, f) ⊂ E(A, f), Suppose to the contrary that
clE(A, f) �⊂ E(A, f), then there exists x0 ∈ clE(A, f) such that x0 /∈ E(A, f). Since
A is closed, we have x0 ∈ A. By x0 /∈ E(A, f), there exists x̄ ∈ A such that

f(x̄) − f(x0) ∈ −C\{0},

that is

(9) f(x̄) ≤ f(x0) and f(x̄) �= f(x0).

By (9), we have
x̄ ∈ M(x0) = {y ∈ A : f(y) ≤ f(x0)}.

Since the set-valued mapping M : A ⇒ A is lower semicontinuous at x0, for any
U ∈ N(0), there exists a neighborhood VU(x0) of x0 such that

M(x) ∩ (x̄ + U) �= ∅ for all x ∈ VU(x0) ∩ A,

thus,

(10) M(x) ∩ (x̄ + U) �= ∅ for all x ∈ VU(x0) ∩ (x0 + U) ∩ A.

By x0 ∈ clE(A, f), we have

VU(x0) ∩ (x0 + U) ∩ E(A, f) �= ∅.

Pick xU ∈ VU(x0) ∩ (x0 + U) ∩ E(A, f). By (10), we have

M(xU) ∩ (x̄ + U) �= ∅.
Pick yU ∈ M(xU ) ∩ (x̄ + U). Thus, we obtain the nets {xU : U ∈ N(0)} and
{yU : U ∈ N(0)}. It is clear that xU → x0 and yU → x̄, xU ∈ E(A, f) and
yU ∈ M(xU) for all U ∈ N(0). We have

(11) f(yU) ≤ f(xU) for all U ∈ N(0).
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Since C is a closed, convex and pointed cone in Y , Y is Hausdorff ( see 3.1.2 of
[12] ), and by (9), there exist a neighborhood U(f(x̄)) of f(x̄) and a neighborhood
U(f(x0)) of f(x0) such that

(12) U(f(x̄)) ∩ U(f(x0)) = ∅.
Since yU → x̄ and xU → x0, by the continuity of f , we have f(yU ) → f(x̄) and
f(xU) → f(x0). Thus, there exists U0 ∈ N(0) such that f(yU0) ∈ U(f(x̄)) and
f(xU0) ∈ U(f(x0)). This together with (12) imply that

(13) f(yU0) �= f(xU0).

By (11) and (13), we get xU0 /∈ E(A, f). This contradicts that xU0 ∈ E(A, f). Hence,
clE(A, f) ⊂ E(A, f). This means that E(A, f) is closed.

Remark 4.1. Although we can set

F (x, y) = f(y)− f(x), x, y ∈ A,

but, we can not use Theorem 3.2 to obtain Theorem 4.1. Because in Theorem 3.2, X

is Hausdorff; while in Theorem 4.1, X is not a Hausdorff space; the assumption (ii)
of Theorem 3.2 is also not satisfied. In fact, if the assumption (ii) of Theorem 3.2 is
satisfied, then the condition that “ for any x, y ∈ A with x �= y, implies F (x, y) =
f(y)− f(x) �= 0 ” holds, that is if x, y ∈ A with x �= y, implies f(x) �= f(y). But in
Theorem 4.1, this condition is lacking.

Remark 4.2. Comparing Theorem 4.1 with Theorem 3.3 of [9] and Theorem 4.1
of [10], we not require that A is a convex set and f is C-quasiconvex, and Y is a
topological vector lattice with the ordering cone C. Thus, we improve the results of
Theorem 3.3 of [9] and Theorem 4.1 of [10].

5. CLOSEDNESS OF EFFICIENT SOLUTIONS SET OF LVVI

In this section, we use the methods of Section 3 to study the closedness of efficient
solutions set to the Lipschitz vector variational inequality.

Let X and Y be real normed linear spaces, D be a nonempty subset of X with
0 ∈ D. Let G : D → Y be a mapping. We say that G is Lipschitz on D, if there
exists a constant L > 0 such that

‖G(x)− G(y)‖ ≤ L‖x − y‖ for all x, y ∈ D.

If G is Lipschitz on D, then, L is an upper bound of { ‖G(x)−G(y)‖
‖x−y‖ : x, y ∈ D, x �= y}.

Set

Lip(D, Y ) = {G | G : D → Y is a Lipschitz mapping and G(0) = 0}.
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We can see that Lip(D, Y ) is a linear space. For each G ∈ Lip(D, Y ), we define

‖G‖L = sup{‖G(x)− G(y)‖
‖x − y‖ : x, y ∈ D, x �= y}.

It is clear that‖ · ‖L is a norm on Lip(D, Y )(see [13]). Thus, (Lip(D, Y ), ‖ · ‖L) is a
normed space.
It is clear that for each G ∈ Lip(D, Y ), we have

‖G(y)‖ = ‖G(y)− G(0)‖ ≤‖ G ‖L‖ y ‖ for all y ∈ D.

Let A ⊂ D be a nonempty set, and let T : A → Lip(D, Y ) be a mapping. We
consider the Lipschitz vector variational inequality (for short LVVI) which consists in
finding x ∈ A such that

(14) (Tx)(y)− (Tx)(x) /∈ −C\{0} for all y ∈ A.

If x ∈ A satisfies (14), then we call x is an efficient solution for LVVI. The set of
efficient solutions to the LVVI is denoted by LVI(A, T).

Theorem 5.1. Let X and Y be real normed linear spaces, D be a nonempty
subset of X with 0 ∈ D, A be a nonempty and closed subset of X with A ⊂ D, C

be a closed, convex and pointed cone in Y . Assume that T : A → Lip(D, Y ) is a
continuous mapping and the set-valued mapping

M(x) = {y ∈ A : (Tx)(y)− (Tx)(x) ∈ −C}, x ∈ A

is lower semicontinuous on A. Then LVI(A, T) is closed.

Proof. If LV I(A, T ) = ∅, it is clear that LV I(A, T ) is closed. Now we assume
that LV I(A, T ) �= ∅. Let a sequence {xn} ⊂ LV I(A, T ) and xn → x0. Since A
is closed, x0 ∈ A. Suppose to the contrary that x0 /∈ LV I(A, T ), then there exists
y0 ∈ A such that

(Tx0)(y0) − (Tx0)(x0) ∈ −C\{0}.
We have

(15) (Tx0)(y0) �= (Tx0)(x0).

Thus,
y0 ∈ M(x0) = {y ∈ A : (Tx0)(y) − (Tx0)(x0) ∈ −C}.

Since xn → x0 and y0 ∈ M(x0), by the lower semicontinuity of M on A, and by
Remark 2.1, there exists a sequence {yn} with yn ∈ M(xn) such that

yn → y0.
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By the definition of M , we have

(16) (Txn)(yn) − (Txn)(xn) ∈ −C for all n.

Since Y is Hausdorff, by (15), there exist a neighborhood U((Tx0)(y0)) of (Tx0)(y0)
and a neighborhood U((Tx0)(x0)) of (Tx0)(x0) such that

(17) U((Tx0)(y0)) ∩ U((Tx0)(x0)) = ∅.
We have

‖(Txn)(yn)− (Tx0)(y0)‖ = ‖(Txn)(yn) − (Tx0)(yn) + (Tx0)(yn) − (Tx0)(y0)‖

(18) ≤ ‖(Txn − Tx0)(yn)‖+ ‖(Tx0)(yn) − (Tx0)(y0)‖.
Since Tx0 ∈ Lip(D, Y ) and yn → y0, we have

(Tx0)(yn) → (Tx0)(y0).

We have

(19) ‖(Txn − Tx0)(yn)‖ ≤ ‖Txn − Tx0‖L‖yn‖.
Noting that T : A → Lip(D, Y ) is continuous, we have ‖Txn − Tx0‖L → 0. Since
{‖yn‖} is bounded, by (19), we have

(Txn − Tx0)(yn) → 0.

By (18), we have

(20) (Txn)(yn) → (Tx0)(y0).

We also have
(21) (Txn)(xn) → (Tx0)(x0).

By (20) and (21), there exists n0 such that

(22) (Txn)(yn) ∈ U((Tx0)(y0)) and (Txn)(xn) ∈ U((Tx0)(x0)) for all n ≥ n0.

By (22) and (17), we have

(Txn)(yn) �= (Txn)(xn) for all n ≥ n0.

This together with (16), we get

(Txn)(yn) − (Txn)(xn) ∈ −C\{0} for all n ≥ n0
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This contradicts that xn0 ∈ LVI(A, T ). Thus, x0 ∈ LVI(A, T ). Hence, LVI(A, T ) is
closed.

Remark 5.1. Although we can set F (x, y) = (Tx)(y)−(Tx)(x) x, y ∈ A, but, we
can not use Theorem 3.2 to obtain Theorem 5.1, because the assumption (ii) of Theorem
3.2 is not satisfied. In fact, if the assumption (ii) of Theorem 3.2 is satisfied, then the
condition “ for any x, y ∈ A with x �= y, implies F (x, y) = (Tx)(y)− (Tx)(x) �= 0”
holds, that is if x, y ∈ A with x �= y, implies (Tx)(y) �= (Tx)(x), but in Theorem
5.1, this condition is lacking.

Theorem 5.2. Let X and Y be real normed linear spaces, D be a nonempty subset
of X with 0 ∈ D, A be a nonempty convex subset of X with A ⊂ D, C be a closed,
convex and pointed cone in Y with int C �= ∅.
Assume that
(i) T : A → Lip(D, Y ) is a continuous mapping;
(ii) for any x ∈ A, if (Tx)(y1) − (Tx)(x) ∈ −C, (Tx)(y2) − (Tx)(x) ∈ −C, and

y1 �= y2 with y1, y2 ∈ A, then

(Tx)(ty1 + (1 − t)y2) − (Tx)(x) ∈ −int C for all t ∈ (0, 1).

Then the set-valued mapping

M(x) = {y ∈ A : (Tx)(y)− (Tx)(x) ∈ −C}, x ∈ A

is lower semicontinuous on A.
Proof. By Theorem 3.3, we only need to show that the mapping

F (x, y) = (Tx)(y)− (Tx)(x)

is continuous on A × A. For any (x0, y0) ∈ A, let {(xn, yn)} ⊂ A ×A be a sequence
such that (xn, yn) → (x0, y0). Similarly to the proof of Theorem 5.1, we can see that

(Txn)(yn) → (Tx0)(y0) and (Txn)(xn) → (Tx0)(x0).

Thus,

F (xn, yn) = (Txn)(yn) − (Txn)(xn) → (Tx0)(y0) − (Tx0)(x0) = F (x0, y0).

This means that the mapping F (x, y) = (Tx)(y)− (Tx)(x) is continuous on A × A.

This completes the proof.

Now we give an example to show that there exists a mapping which satisfying the
conditions of Theorem 5.1.
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Example 5.1. Let X = R, Y = R
2, C = R

2
+, A = D = [−1, 1] ⊂ X . For each

fixed x ∈ A, define the mapping Tx : A → Y by

(Tx)(y) = (2 + x)(y2, y2), y ∈ A.

For any y1, y2 ∈ A, we have

‖(Tx)(y1)−(Tx)(y2)‖ = ‖(2+x)(y2
1, y

2
1)−(2+x)(y2

2, y
2
2)‖ = (2+x)‖(y2

1−y2
2 , y2

1−y2
2)‖

= (2 + x)
√
| y2

1 − y2
2 |2 + | y2

1 − y2
2 |2 ≤ 2

√
2(2 + x) | y1 − y2 | .

Hence, Tx is a Lipschitz mapping on A. We have (Tx)(0) = (2 + x)(0, 0) = (0, 0).
Therefore, Tx ∈ Lip(A, Y ). Hence, we have that T : A → Lip(A, Y ).

Now we show that T : A → Lip(A, Y ) is continuous. For any x0 ∈ A, and x ∈ A,
we have

‖Tx− Tx0‖L = sup{‖(Tx− Tx0)(u)− (Tx− Tx0)(v)‖
| u − v | : u, v ∈ A, u �= v}

= sup{| x − x0 | √
(u2 − v2)2 + (u2 − v2)2

| u − v | : u, v ∈ A, u �= v}

=| x − x0 | sup{
√

2 | u + v |: u, v ∈ A, u �= v} ≤ 2
√

2 | x − x0 | .

Thus, T : A → Lip(A, Y ) is continuous.
For any x ∈ A, if (Tx)(y1) − (Tx)(x) ∈ −C, (Tx)(y2) − (Tx)(x) ∈ −C, and

y1 �= y2, for any t ∈ (0, 1), we have

(Tx)(ty1 + (1− t)y2) − (Tx)(x) ∈ −C − (r, r),

where r > 0 because that y �→ y2 is a strictly convex on A. Thus, we have

(Tx)(ty1 + (1 − t)y2) − (Tx)(x) ∈ −intC for all t ∈ (0, 1).

By Theorem 5.2,

M(x) = {y ∈ A : (Tx)(y)− (Tx)(x) ∈ −C}, x ∈ A

is lower semicontinuous on A. Then by Theorem 5.1, LVI(A, T ) is closed.
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