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GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS TO A
NONLINEAR TIMOSHENKO BEAM SYSTEM WITH A DELAY TERM

Abbes Benaissa and Mounir Bahlil

Abstract. We consider the Timoshenko system in bounded domain with a delay
term in the nonlinear internal feedback⎧⎪⎪⎨

⎪⎪⎩
ρ1ϕtt(x, t)−K(ϕx + ψ)x(x, t) = 0,

ρ2ψtt(x, t)− bψxx(x, t) +K(ϕx + ψ)(x, t)

+μ1g1(ψt(x, t)) + μ2g2(ψt(x, t− τ )) = 0,

and prove the global existence of its solutions in Sobolev spaces by means of the
energy method combined with the Faedo-Galerkin procedure under a condition
between the weight of the delay term in the feedback and the weight of the term
without delay. Furthermore, we establish a decay rate estimate for the energy by
introducing suitable Lyapunov functionals.

1. INTRODUCTION

In this paper we investigate the existence and decay properties of solutions for the
initial boundary value problem of the nonlinear Timoshenko system of the type

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕtt(x, t)−K(ϕx + ψ)x(x, t) = 0 in ]0, 1[×]0,+∞[,

ρ2ψtt(x, t)− bψxx(x, t) +K(ϕx + ψ)(x, t)

+μ1g1(ψt(x, t)) + μ2g2(ψt(x, t− τ)) = 0 in ]0, 1[×]0,+∞[,

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0 t ≥ 0,

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x) x ∈]0, 1[,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x) x ∈]0, 1[,

ψt(x, t− τ) = f0(x, t− τ) in ]0, 1[×]0, τ [,
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where τ > 0 is a time delay, μ1 and μ2 are positive real numbers, and the initial data
(ψ0, ψ1, f0) belong to a suitable function space.

A simple model describing the transverse vibration of a beam, which was developed
in [25], is given by a system of coupled hyperbolic equations of the form{

ρutt(x, t) = (K(ux − φ))x in ]0, L[×]0,+∞[,

ρ̃φtt(x, t) = (EIψx)x +K(ux − φ) in ]0, L[×]0,+∞[,

where t denotes the time variable, x is the space variable along the beam of length L,
in its equilibrium configuration, u is the transverse displacement of the beam and φ is
the rotation angle of the filament of the beam. The coefficients ρ, ρ̃, E, I and K are
respectively the density (the mass per unit length), the polar moment of inertia of a
cross section, Young’s modulus of elasticity, the moment of inertia of a cross section,
and the shear modulus.

In the absence of delay (μ2 = 0), the damping term assures global existence for
arbitrary initial data and energy decay estimates depending on the rate of growth of
g1 (see [2, 11, 16, 17, 18] and [21]). In addition, we would like to mention the most
recent work in this direction due to Cavalcanti et al. [4] which is the pioneer in
establishing very general explicit decay rate estimates for solutions to a wave equation
with boundary damping-source.

In recent years, PDEs with time delay effects have become an active area of research
and arise in many practical problems (see, for example, [1, 24]). The presence of delay
may be a source of instability. For example, it was proved in [6] that an arbitrarily small
delay may destabilize a system which is uniformly asymptotically stable in the absence
of delay. To stabilize a hyperbolic system involving input delay terms, additional
control terms are necessary (see [20, 8]). For instance, in [20] the authors studied the
wave equation with a linear internal damping term with constant delay and determined
suitable relations between μ1 and μ2, for which the stability or alternatively instability
takes place. More precisely, they showed that the energy is exponentially stable if
μ2 < μ1 and they also found a sequence of delays for which the corresponding solution
of (P ) will be instable if μ2 ≥ μ1. The main approach used in [20], is an observability
inequality obtained with a Carleman estimate. Laskri and Said-Houari [13] examined
problem (P ) in the linear situation (that is g1(s) = g2(s) = s for all s ∈ IR). Under
the assumption μ2 ≤ μ1 on the weights of the two feedbacks, they proved the well-
posedness of the system. They also established for μ2 < μ1 an exponential decay result
for the case of equal speed wave propagation. We also recall the result by Han and
Xu [8], where the authors proved a result similar to the one in [13] for the case when
both the damping and the delay act on the boundary and for the one-space dimension
by adopting the spectral analysis approach.

Our purpose in this paper is to give a global solvability in Sobolev spaces and
energy decay estimates of the solutions to the problem (P ) for a nonlinear damping
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and a delay term. We should mention here that, to the best of our knowledge, there is no
result concerning Timochenko beam system with the presence of nonlinear degenerate
delay term.

To obtain global solutions to the problem (P ), we use the argument combining
the Galerkin approximation scheme (see [14]) with the energy estimate method. The
technic based on the theory of nonlinear semigroups used in [20] does not seem to be
applicable in the nonlinear case.

To prove decay estimates, we use a perturbed energy method and some properties
of convex functions. These arguments of convexity were introduced and developed by
[5] and [12] and used by Liu and Zuazua [15] and Alabau-Boussouira [2].

2. PRELIMINARIES AND MAIN RESULTS

First assume the following hypotheses:
(H1) g1 : IR → IR is a non-decreasing function of the class C(IR) such that there exist
ε1, c1, c2 > 0 and a convex and increasing function H : IR+ → IR+ of the class
C1(IR+) ∩ C2(]0,∞[) satisfying H(0) = 0, and H linear on [0, ε′] or (H ′(0) = 0 and
H ′′ > 0 on ]0, ε′]), such that

(1) c1|s| ≤ |g1(s)| ≤ c2|s| if |s| ≥ ε′,

(2) s2 + g2
1(s) ≤ H−1(sg1(s)) if |s| ≤ ε′.

g2 : IR → IR is an odd non-decreasing function of the class C1(IR) such that there exist
c3, α1, α2 > 0

(3) |g′2(s)| ≤ c3

(4) α1 sg2(s) ≤ G2(s) ≤ α2 sg1(s),

where
G2(s) =

∫ s

0
g2(r) dr

and

(5) α2μ2 < α1μ1.

We first state some Lemmas which will be needed later.

Lemma 2.1. (Sobolev-Poincaré’s inequality). Let q be a number with 2 ≤ q <
+∞ (n = 1, 2) or 2 ≤ q ≤ 2n/(n − 2) (n ≥ 3). Then there is a constant c∗ =
c∗((0, 1), q) such that

‖ψ‖q ≤ c∗‖∇ψ‖2 for ψ ∈ H1
0 ((0, 1)).
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We introduce as in [20] the new variable

(6) z(x, ρ, t) = ψt(x, t− τρ), x ∈ (0, 1), ρ ∈ (0, 1), t > 0.

Then, we have

(7) τz′(x, ρ, t) + zρ(x, ρ, t) = 0, in (0, 1)× (0, 1)× (0,+∞).

Therefore, problem (P ) is equivalent to:

(8)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕtt(x, t)−K(ϕx + ψ)x(x, t) = 0 in ]0, 1[×]0,+∞[,

ρ2ψtt(x, t)− bψxx(x, t) +K(ϕx + ψ)(x, t)

+μ1g1(ψt(x, t)) + μ2g2(z(x, 1, t)) = 0 in ]0, 1[×]0,+∞[,
τz′(x, ρ, t)+ zρ(x, ρ, t) = 0 in ]0, 1[×]0, 1[×]0,+∞[,

ϕ(0, t) = ϕ(1, t) = ψ(0, t) = ψ(1, t) = 0 t ≥ 0,
z(x, 0, t) = ψt(x, t) on ]0, 1[×[0,+∞[,

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x) x ∈]0, 1[,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x) x ∈]0, 1[,

z(x, ρ, 0) = f0(x,−ρτ) in ]0, 1[×]0, 1[.

Let ξ be a positive constant such that

(9) τ
μ2(1 − α1)

α1
< ξ < τ

μ1 − α2μ2

α2
.

We define the energy associated to the solution of the problem (8) by the following
formula:

(10)
E(t) = E(t, z, ϕ, ψ) =

1
2

∫ 1

0

{
ρ1ϕ

2
t + ρ2ψ

2
t +K|ϕx + ψ|2 + bψ2

x

}
dx

+ξ
∫ 1

0

∫ 1

0
G2(z(x, ρ, t)) dρ dx.

We have the following theorem.

Theorem 2.1. Let (ϕ0, ϕ1), (ψ0, ψ1) ∈ (H2(0, 1) ∩ H1
0 (0, 1)) × H1

0 (0, 1), f0 ∈
H1

0 ((0, 1);H1(0, 1)) satisfy the compatibility condition

f0(., 0) = ψ1.

Assume that the hypothesis (H1) holds. Then the problem (P ) admits a unique weak
solution
ψ, ϕ ∈ L∞

loc((−τ,∞);H2(0, 1)∩H1
0 (0, 1)), ψt, ϕt ∈ L∞

loc((−τ,∞);H1
0(0, 1)),

ψtt, ϕtt ∈ L∞
loc((−τ,∞);L2(0, 1))



Nonlinear Timoshenko Beam System with a Delay Term 1415

and, for some constants ω1, ω2 and ω3, ε0 we obtain the following decay property:

(11) E(t) ≤ ω1H
−1
1 (ω2t+ ω3) , ∀t > 0,

where

(12) H1(t) =
∫ 1

t

1
H2(s)

ds

and

H2(t) =

{
t if H is linear on [0, ε′],

tH ′(ε0t) if H ′(0) = 0 and H ′′ > 0 on ]0, ε′].

Remark 2.1. 1.By the mean value Theorem for integrals and the monotonicity of
g2, we find that

G2(s) =
∫ s

0

g2(r) dr ≤ sg2(s).

Then, α1 ≤ α2 ≤ 1.

2. We need the condition (3) only to prove global existence, so if we study the
energy decay, we can replace the linear growth order of the function g2(s) for large |s|
by nonlinear polynomial growth.

Example. Let g be given by g1(s) = sp(− ln s)q, where p ≥ 1 and q ∈ IR on
(0, ε1]. Then g′1(s) = sp−1(− ln s)q−1(p(− lns) − q) which is an increasing function
in a right neighborhood of 0 (if q = 0 we can take ε1 = 1). The function H is defined
in the neighborhood of 0 by

H(s) = cs
p+1
2 (− ln

√
s)q.

We have

H ′(s) = cs
p−1
2
(− ln

√
s
)q−1

(
p+ 1

2
(− ln

√
s
)− q

2

)
when s is near 0.

Thus

H2(s) = cs
p+1
2
(− ln

√
s
)q−1

(
p+ 1

2
(− ln

√
s
)− q

2

)
when s is near 0.

and

H1(t) = c

∫ 1

t

1

s
p+1
2 (− ln

√
s)q−1

(
p+ 1

2
(− ln

√
s
)− q

2

) ds

= c

∫ 1√
t

1

zp−2

(ln z)q−1

(
p+ 1

2
ln z − q

2

) dz when t is near 0.
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We obtain in a neighborhood of 0

H1(t) ≡

⎧⎪⎪⎨
⎪⎪⎩

c
1

t
p−1
2 (− ln t)q

if p > 1,

c (− ln t)1−q if p = 1, q < 1,
c (ln(− ln t)) if p = 1, q = 1.

and then in a neighborhood of +∞

H−1
1 (t) ≡

⎧⎪⎨
⎪⎩

ct
− 2

p−1 (ln t)−
2q

p−1 if p > 1,

ce−t
1

1−q if p = 1, q < 1,
ce−et if p = 1, q = 1.

Then

E(t) ≤

⎧⎪⎨
⎪⎩

ct
− 2

p−1 (ln t)−
2q

p−1 if p > 1,

ce−t
1

1−q if p = 1, q < 1,
ce−et if p = 1, q = 1.

We finish this section by giving an explicit upper bound for the derivative of the energy.

Lemma 2.2. Let (ϕ, ψ, z) be a solution of the problem (8). Then, the energy
functional defined by (10) satisfies

(13)

E ′(t) ≤ −
(
μ1 − ξα2

τ
− μ2α2

)∫ 1

0
ψtg1(ψt) dx

−
(
ξ

τ
α1 − μ2(1− α1)

)∫ 1

0
z(x, 1, t)g2(z(x, 1, t)) dx

≤ 0

Proof. Multiplying the first equation in (8) by ϕt, the second equation by ψt,
integrating over (0, 1) and using integration by parts, we get

(14)

1
2
d

dt

(∫ 1

0

{
ρ1ϕ

2
t + ρ2ψ

2
t +K|ϕx + ψ|2 + bψ2

x

}
dx

)

= −μ1

∫ 1

0
ψtg1(ψt) dx− μ2

∫ 1

0
ψt(x, t)g2(z(x, 1, t)) dx= 0.

We multiply the third equation in (8) by ξg2(z(x, ρ, t)) and integrate the result over
(0, 1)× (0, 1), to obtain:

(15)
ξ

∫ 1

0

∫ 1

0
z′g2(z(x, ρ, t)) dρ dx = − ξ

τ

∫ 1

0

∫ 1

0

∂

∂ρ
G2(z(x, ρ, t)) dρ dx

= − ξ
τ

∫ 1

0
(G2(z(x, 1, t))−G2(z(x, 0, t))) dx.
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Then

(16) ξ
d

dt

∫ 1

0

∫ 1

0
G2(z(x, ρ, t)) dρ dx= − ξ

τ

∫ 1

0
G2(z(x, 1, t)) dx+

ξ

τ

∫ 1

0
G2(ψt) dx.

From (14), (16) and using Young inequality we get

(17)
E ′(t) = −

(
μ1 − ξα2

τ

)∫ 1

0
ψtg1(ψt) dx− ξ

τ

∫ 1

0
G2(z(x, 1, t)) dx

−μ2

∫ 1

0
ψt(t)g2(z(x, 1, t)) dx.

Let us denote G∗
2 to be the conjugate function of the convex function G2, i.e., G∗

2(s) =
supt∈IR+(st − G2(t)). Then G∗

2 is the Legendre transform of G2, which is given by
(see Arnold [3], p. 61-62, and Lasiecka [5])

(18) G∗
2(s) = s(G′

2)
−1(s) −G2[(G′

2)
−1(s)], ∀s ≥ 0

and satisfies the following inequality

(19) st ≤ G∗
2(s) +G2(t), ∀s, t ≥ 0.

Then, from the definition of G2, we get

G∗
2(s) = sg−1

2 (s) −G2(g−1
2 (s)).

Hence

(20)
G∗

2(g2(z(x, 1, t))) = z(x, 1, t)g2(z(x, 1, t))−G2(z(x, 1, t))

≤ (1− α1)z(x, 1, t)g2(z(x, 1, t)).

Making use of (17), (19) and (20), we have

(21)

E ′(t) ≤ −
(
μ1 − ξα2

τ

)∫ 1

0

ψtg1(ψt) dx− ξ

τ

∫ 1

0

G2(z(x, 1, t)) dx

+μ2

∫ 1

0
(G2(ψt) +G∗

2(g(z(x, 1, t)))) dx

≤ −
(
μ1 − ξα2

τ
− μ2α2

)∫ 1

0
ψtg1(ψt) dx− ξ

τ

∫ 1

0
G2(z(x, 1, t)) dx

+μ2

∫ 1

0

G∗
2(g2(z(x, 1, t))) dx.

Using (4) and (9), we obtain

E ′(t) ≤ −
(
μ1 − ξα2

τ
− μ2α2

)∫ 1

0
ψtg1(ψt) dx

−
(
ξ

τ
α1 − μ2(1 − α1)

)∫ 1

0
z(x, 1, t)g2(z(x, 1, t)) dx

≤ 0.
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3. GLOBAL EXISTENCE

We are now ready to prove Theorem 2.1 in the next two sections.
Throughout this section we assume ϕ0, ψ0 ∈ H2 ∩ H1

0 (0, 1), ϕ1, ψ1 ∈ H1
0 (0, 1)

and f0 ∈ H1
0 ((0, 1);H1(0, 1)).

We employ the Galerkin method to construct a global solution. Let T > 0 be fixed
and denote by Vk the space generated by {w1, w2, . . . , wk} where the set {wk, k ∈ IN}
is a basis of H2 ∩H1

0 .
Now, we define for 1 ≤ j ≤ k the sequence φj(x, ρ) as follows:

φj(x, 0) = wj.

Then, we may extend φj(x, 0) by φj(x, ρ) over L2((0, 1)× (0, 1)) and denote Zk the
space generated by {φ1, φ2, . . . , φk}.

We construct approximate solutions (ϕk, ψk, zk), k = 1, 2, 3, . . . , in the form

ϕk(t) =
k∑

j=1

gjkwj, ψk(t) =
k∑

j=1

g̃jkwj, zk(t) =
k∑

j=1

hjkφj,

where gjk, g̃jk and hjk, j = 1, 2, . . . , k, are determined by the following ordinary
differential equations:

(22) ρ1(ϕ′′
k(t), wj) +K(ϕkx(t), wjx) − k(ψkx(t), wj) = 0, 1 ≤ j ≤ k,

(23) ϕk(0) = ϕ0k =
k∑

j=1

(ϕ0, wj)wj → ϕ0 in H2 ∩H1
0 as k → +∞,

(24) ϕ′
k(0) = ϕ1k =

k∑
j=1

(ϕ1, wj)wj → ϕ1 in H1
0 as k → +∞.

(25)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ2(ψ′′
k(t), wj) + b(ψkx(t), wjx) +K((ϕkx + ψ)(t), wj) + μ1(g1(ψ′

k), wj)

+μ2(g2(zk(., 1)), wj) = 0 1 ≤ j ≤ k,

zk(x, 0, t) = ψ′
k(x, t)

(26) ψk(0) = ψ0k =
k∑

j=1

(ψ0, wj)wj → ψ0 in H2 ∩H1
0 as k → +∞,

(27) ψ′
k(0) = ψ1k =

k∑
j=1

(ψ1, wj)wj → ψ1 in H1
0 as k → +∞.

and

(28) (τzkt + zkρ, φj) = 0, 1 ≤ j ≤ k,
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(29) zk(ρ, 0) = z0k =
k∑

j=1

(f0, φj)φj → f0 in H1
0 ((0, 1);H1(0, 1)) as k → +∞.

By virtue of the theory of ordinary differential equations, the system (22)-(29) has a
unique local solution which is extended to a maximal interval [0, Tk[ (with 0 < Tk ≤
+∞) by Zorn lemma since the nonlinear terms in (25) are locally Lipschitz continuous.
Note that (ϕk(t), ψk(t)) is from the class C2.

In the next step we obtain a priori estimates for the solution, such that it can be
extended outside [0, Tk[ to obtain one solution defined for all t > 0.

We can utilize a standard compactness argument for the limiting procedure and it
suffices to derive some a priori estimates for (ϕk, ψk, zk).

The first estimate. Since the sequences ϕ0k, ϕ1k, ψ0k, ψ1k and z0k converge, then
standard calculations, using (22)-(29), similar to those used to derive (13), yield C

independent of k such that

(30)
Ek(t) + a1

∫ t

0

∫ 1

0
ψ′

kg1(ψ
′
k)dx ds

+a2

∫ t

0

∫ 1

0
zk(x, 1, t)g2(zk(x, 1, t))dx ds ≤ Ek(0) ≤ C,

where

Ek(t) =
1
2

∫ 1

0
{ρ1ϕ

′
k
2 + ρ2ψ

′
k
2 +K|ϕkx + ψk|2 + bψ2

kx}dx

+ξ
∫ 1

0

∫ 1

0
G2(zk(x, ρ, t)) dρ dx.

a1 = μ1 − ξ

τ
α2 − μ2α2 and a2 =

ξ

τ
α1 − μ2(1− α1).

for some C independent of k. These estimates imply that the solution (ϕk, ψk, zk)
exists globally in [0,+∞[.
Estimate (30) yields

(31) ϕk, ψk are bounded in L∞
loc(0,∞;H1

0(0, 1))

(32) ϕ′
k, ψ

′
k are bounded in L∞

loc(0,∞;L2(0, 1))

(33) ψ′
k(t)g1(ψ

′
k(t)) is bounded in L1((0, 1)× (0, T ))

(34) G2(zk(x, ρ, t)) is bounded in L∞
loc(0,∞;L1((0, 1)× (0, 1)))
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(35) zk(x, 1, t)g2(zk(x, 1, t)) is bounded in L1((0, 1)× (0, T ))

The second estimate. First, we estimateϕ′′
k(0) and ψ′′

k(0). Testing (22) by g′′jk(t), (25)
by g̃′′jk(t) and choosing t = 0 we obtain

ρ1‖ϕ′′
k(0)‖2 ≤ K(‖ϕ0kxx‖2 + ‖ψ0kx‖2)

and

ρ2‖ψ′′
k(0)‖2 ≤ b‖ψ0kxx‖2 +K(‖ϕ0kx‖2 + ‖ψ0k‖2) + μ1‖g1(ψ1k)‖2 + μ2‖g2(z0k)‖2.

Hence from (23), (24) and (29):

‖ϕ′′
k(0)‖2 ≤ C.

Since g1(ψ1k), g2(z0k) are bounded in L2(0, 1) by (H1), (23), (26), (27) and (29) yield

‖ψ′′
k(0)‖2 ≤ C.

Differentiating (22) and (25) with respect to t, we get

(36) (ρ1ϕ
′′′
k (t) −Kϕ′

kxx(t) −Kψ′
kx(t), wj) = 0

and

(37)
(ρ2ψ

′′′
k (t) − bψ′

kxx(t) +Kϕ′
kx(t) +Kψ′

k(t) + μ1ψ
′′2
k(t)g′1(ψ

′
k(t))

+μ2z
′
k(x, 1, t)g′2(zk(x, 1, t)), wj) = 0.

Multiplying (36) by g′′jk(t) and (37) by g̃′′jk(t), summing over j from 1 to k, it follows
that

(38)
1
2
d

dt

(
ρ1‖ϕ′′

k(t)‖2
2

)−K

∫ 1

0

(ϕ′
kx + ψ′

k)xϕ
′′
k dx = 0

(39)

1
2
d

dt

(
ρ2‖ψ′′

k(t)‖2
2 + b‖ψ′

kx(t)‖2
2

)
+K

∫ 1

0
(ϕ′

kx + ψ′
k)ψ

′′
k dx+ μ1

∫ 1

0
ψ′′2

k(t)g′1(ψ
′
k(t)) dx

+μ2

∫ 1

0

ψ′′
k(t)z

′
k(x, 1, t)g

′
2(zk(x, 1, t)) dx= 0.

Differentiating (28) with respect to t, we get

(τz′′k(t) +
∂

∂ρ
z′k, φj) = 0.
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Multiplying by h′jk(t), summing over j from 1 to k, it follows that

(40)
1
2
τ
d

dt
‖z′k(t)‖2

2 +
1
2
d

dρ
‖z′k(t)‖2

2 = 0.

Taking the sum of (38), (39) and (40), we obtain

1
2
d

dt

(
ρ1‖ϕ′′

k(t)‖2
2 + ρ2‖ψ′′

k(t)‖2
2 + b‖ψ′

kx(t)‖2
2

+K‖ϕ′
kx(t) + ψ′

k‖2
2 + τ‖z′k(x, ρ, t)‖2

L2((0,1)×(0,1))

)
+μ1

∫ 1

0

ψ′′2
k(t)g

′
1(ψ

′
k(t)) dx+

1
2

∫ 1

0

|z′k(x, 1, t)|2 dx

= −μ2

∫ 1

0
ψ′′

k(t)z′k(x, 1, t)g
′
2(zk(x, 1, t)) dx+

1
2
‖ψ′′

k(t)‖2
2.

Using (3), Cauchy-Schwarz and Young’s inequalities, we obtain

1
2
d

dt

(
ρ1‖ϕ′′

k(t)‖2
2 + ρ2‖ψ′′

k(t)‖2
2 + b‖ψ′

kx(t)‖2
2

+K‖ϕ′
kx(t) + ψ′

k‖2
2 + τ‖z′k(x, ρ, t)‖2

L2((0,1)×(0,1))

)
+μ1

∫ 1

0

ψ′′2
k(t)g

′
1(ψ

′
k(t)) dx+ c

∫ 1

0

|z′k(x, 1, t)|2 dx ≤ c′‖ψ′′
k(t)‖2

2.

Integrating the last inequality over (0, t) and using Gronwall’s Lemma, we obtain

ρ1‖ϕ′′
k(t)‖2

2 + ρ2‖ψ′′
k(t)‖2

2 + b‖ψ′
kx(t)‖2

2

+K‖ϕ′
kx(t) + ψ′

k‖2
2 + τ‖z′k(x, ρ, t)‖2

L2((0,1)×(0,1))

≤ ecT
(
ρ1‖ϕ′′

k(0)‖2
2 + ρ2‖ψ′′

k(0)‖2
2 + b‖ψ′

kx(0)‖2
2 +K‖ϕ′

kx(0) + ψ′
k(0)‖2

2

+τ‖z′k(x, ρ, 0)‖2
L2((0,1)×(0,1))

)
for all t ∈ IR+, therefore, we conclude that

(41) ϕ′′
k, ψ

′′
k is bounded in L∞

loc(0,∞;L2)

(42) ϕ′
k, ψ

′
k is bounded in L∞

loc(0,∞;H1
0)

(43) z′k is bounded in L∞
loc(0,∞;L2((0, 1)× (0, 1)))

The third estimate. Replacing wj by −wjxx in (22) and (25), multiplying the result
by g′jk(t) and g̃′jk(t), summing over j from 1 to k, it follows that

(44)
1
2
d

dt

(
ρ1‖ϕ′

kx(t)‖2
2+
)

+K

∫ 1

0
(ϕx + ψ)xϕ

′
kxx dx = 0.
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(45)

1
2
d

dt

(
ρ2‖ψ′

kx(t)‖2
2 + b‖ψkxx(t)‖2

2

)
−K

∫ 1

0

(ϕx + ψ)ψ′
kxx dx+ μ1

∫ 1

0

|ψ′
kx(t)|2g′1(ψ′

k(t)) dx

+μ2

∫ 1

0
ψ′

kx(t)zkx(x, 1, t)g′2(zk(x, 1, t)) dx= 0.

Replacing φj by −φjxx in (28), multiplying the resulting equation by hjk(t), summing
over j from 1 to k, it follows that

(46)
1
2
τ
d

dt
‖zkx(t)‖2

2 +
1
2
d

dρ
‖zkx(t)‖2

2 = 0.

From (44), (45) and (46), we have

1
2
d

dt

(
ρ1‖ϕ′

kx(t)‖2
2 + ρ2‖ψ′

kx(t)‖2
2

+K‖ϕkxx + ψkx(t)‖2
2 + b‖ψkxx(t)‖2

2 + τ‖zkx(x, ρ, t)‖2
L2(0,1)×(0,1))

)
+μ1

∫ 1

0
|ψ′

kx(t)|2g′1(ψ′
k(t)) dx+

1
2

∫ 1

0
|zkx(x, 1, t)|2 dx

= −μ2

∫ 1

0
ψ′

kx(t)zkx(x, 1, t)g′2(zk(x, 1, t)) dx+
1
2
‖∇ψ′

k(t)‖2
2.

Using (3), Cauchy-Schwartz and Young’s inequalities, we obtain

1
2
d

dt

(
ρ1‖ϕ′

kx(t)‖2
2 + ρ2‖ψ′

kx(t)‖2
2

+K‖ϕkxx + ψkx(t)‖2
2 + b‖ψkx(t)‖2

2 + τ‖zkx(x, ρ, t)‖2
L2((0,1)×(0,1))

)
+μ1

∫ 1

0
|ψ′

kx(t)|2g′1(ψ′
k(t)) dx+ c

∫ 1

0
|zkx(x, 1, t)|2 dx ≤ c′‖ψ′

kx(t)‖2
2.

Integrating the last inequality over (0, t) and using Gronwall’s Lemma, we have

ρ1‖ϕ′
kx(t)‖2

2 + ρ2‖ψ′
kx(t)‖2

2 +K‖ϕkxx + ψkx(t)‖2
2 + b‖ψkxx(t)‖2

2

+τ‖zkx(x, ρ, t)‖2
L2((0,1)×(0,1))

≤ ecT
(
ρ1‖ϕ′

kx(0)‖2
2 + ρ2‖ψ′

kx(0)‖2
2 +K‖ϕkxx(0) + ψkx(0)‖2

2 + b‖ψkx(0)‖2
2

+τ‖zkx(x, ρ, 0)‖2
L2((0,1)×(0,1))

)
for all t ∈ IR+, therefore, we conclude that

(47) ϕk, ψk are bounded in L∞
loc(0,∞;H2 ∩H1

0 (0, 1)),

(48) zk is bounded in L∞
loc(0,∞;H1

0(0, 1;L2(0, 1))).
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Applying Dunford-Petti’s theorem we conclude from (31), (32), (33), (34), (41), (42),
(43), (47) and (48), after replacing the sequences ϕk, ψk and zk with a subsequence if
needed, that

(49)

{
ϕk → ϕ weak-star in L∞

loc(0,∞;H2 ∩H1
0 (0, 1))

ψk → ψ weak-star in L∞
loc(0,∞;H2 ∩H1

0 (0, 1)),{
ϕ′

k → ϕ′ weak-star in L∞
loc(0,∞;H1

0(0, 1))

ψk → ψ′ weak-star in L∞
loc(0,∞;H1

0(0, 1)),

(50)

{
ϕ′′

k → ϕ′′ weak-star in L∞
loc(0,∞;L2(0, 1))

ψ′′
k → ψ′′ weak-star in L∞

loc(0,∞;L2(0, 1)),

g1(ψ′
k) → χ weak-star in L2((0, 1)× (0, T )),

zk → z weak-star in L∞
loc(0,∞;H1

0((0, 1);L2(0, 1)),

(51) z′k → z′ weak-star in L∞
loc(0,∞;L2((0, 1)× (0, 1))),

g2(zk(x, 1, t)) → ψ weak-star in L2((0, 1)× (0, T ))

for suitable functions ϕ, ψ ∈ L∞(0, T ;H2 ∩ H1
0 (0, 1)), z ∈ L∞(0, T ;L2((0, 1) ×

(0, 1))), χ ∈ L2((0, 1)× (0, T )), ψ ∈ L2((0, 1)× (0, T )) for all T ≥ 0. We have to
show that (ϕ, ψ, z) is a solution of (8).

From (31) and (32) we have (ψ′
k) is bounded in L∞(0, T ;H1

0(0, 1)). Then (ψ′
k)

is bounded in L2(0, T ;H1
0). Since (ψ′′

k) is bounded in L∞(0, T ;L2(0, 1)), then (ψ′′
k)

is bounded in L2(0, T ;L2(0, 1)). Consequently (ψ′
k) is bounded in H1(Q) ,where

Q = (0, 1)× (0, T ).

Since the embedding H1(Q) ↪→ L2(Q) is compact, using Aubin-Lions theorem [14]
we can extract a subsequence (ψν) of (ψk) such that

ψ′
ν → ψ′ strongly in L2(Q).

Therefore

(52) ψ′
ν → ψ′ strongly and a.e on Q.

Similarly we obtain

(53) zν → z strongly and a.e on Q.

Lemma 3.1. For each T > 0, g1(ψ′), g2(z(x, 1, t)) ∈ L1(Q) and
‖g1(ψ′)‖L1(Q), ‖g2(z(x, 1, t))‖L1(Q) ≤ K1, where K1 is a constant independent of t.
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Proof. By ( H1) and (52) we have

g1(ψ′
k(x, t)) → g1(ψ′(x, t)) a.e. in Q,

0 ≤ g1(ψ′
k(x, t))ψ

′
k(x, t) → g1(ψ′(x, t))ψ′(x, t) a.e. in Q

Hence, by (33) and Fatou’s lemma we have

(54)
∫ T

0

∫ 1

0

u′(x, t)g1(ψ′(x, t)) dx dt≤ K for T > 0.

By Cauchy-Schwarz inequality and using (54), we have

∫ T

0

∫ 1

0
|g1(ψ′(x, t))| dx dt ≤ c|Q| 12

(∫ T

0

∫ 1

0
ψ′g1(ψ′) dx dt

)1
2

≤ c|Q| 12K 1
2 ≡ K1

Lemma 3.2. g1(ψ′
k) → g1(ψ′) in L1((0, 1) × (0, T )) and g2(zk) → g2(z) in

L1((0, 1)× (0, T )).

Proof. Let E ⊂ (0, 1)× [0, T ] and set

E1 =

{
(x, t) ∈ E; g1(ψ′

k(x, t)) ≤
1√|E|

}
, E2 = E \ E1,

where |E| is the measure of E . If M(r) := inf{|s|; s ∈ IR and |g1(s)| ≥ r},

∫
E
|g1(ψ′

k)| dxdt ≤
√

|E|+
(
M

(
1√|E|

))−1 ∫
E2

|ψ′
kg1(ψ

′
k)| dxdt.

Applying (33) we deduce that sup
k

∫
E
|g1(ψ′

k)| dxdt → 0 as |E| → 0. From Vitali’s

convergence theorem we deduce that g1(ψ′
k) → g1(ψ′) in L1((0, 1)× (0, T )), hence

g1(ψ′
k) → g1(ψ′) weak star in L2(Q).

Similarly, we have
g2(z′k) → g2(z′) weak star in L2(Q),

and this imply that

(55)
∫ T

0

∫ 1

0
g1(ψ′

k)v dx dt→
∫ T

0

∫ 1

0
g1(ψ′)v dx dt for all v ∈ L2(0, T ;H1

0)
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(56)
∫ T

0

∫ 1

0
g2(zk)v dx dt→

∫ T

0

∫ 1

0
g2(z)v dx dt for all v ∈ L2(0, T ;H1

0)

as k → +∞. It follows at once from (49), (50), (55), (56) and (51) that for each fixed
u, v ∈ L2(0, T ;H1

0(0, 1)) and w ∈ L2(0, T ;H1
0((0, 1)× (0, 1)))

∫ T

0

∫ 1

0
(ρ1ϕ

′′
k −K(ϕkx + ψk)x)u dx dt

→
∫ T

0

∫ 1

0
(ρ1ϕ

′′ −K(ϕx + ψ)x)u dx dt

∫ T

0

∫ 1

0
(ρ2ψ

′′
k − bψkxx +K(ϕkx + ψk) + +μ1g1(ψ′

k) + μ2g2(zk))v dx dt

→
∫ T

0

∫ 1

0
(ρ2ψ

′′ − bψxx +K(ϕx + ψ) + μ1g1(ψ′) + μ2g2(z))v dx dt

∫ T

0

∫ 1

0

∫ 1

0

(τz′k +
∂

∂ρ
zk)w dx dρ dt→

∫ T

0

∫ 1

0

∫ 1

0

(τz′ +
∂

∂ρ
z)w dx dρ dt

as k → +∞. Hence∫ T

0

∫ 1

0
(ρ1ϕ

′′ −K(ϕx + ψ)x)u dx dt = 0

∫ T

0

∫ 1

0
(ρ2ψ

′′ − bψxx +K(ϕx + ψ) + μ1g1(ψ′) + μ2g2(z))v dx dt = 0

∫ T

0

∫ 1

0

∫ 1

0

(τu′ +
∂

∂ρ
z)w dx dρ dt = 0, w ∈ L2(0, T ;H1

0((0, 1)× (0, 1))).

Thus the problem (P ) admits a global weak solution (ϕ, ψ).

Uniqueness. Let (ϕ1, ψ1, z1) and (ϕ2, ψ2, z2) be two solutions of problem (8).
Then (w, w̃, ˜̃w) = (ϕ1, ψ1, z1)− (ϕ2, ψ2, z2) verifies

(57)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1wtt(x, t)−K(wx + w̃)x(x, t) = 0 in ]0, 1[×]0,+∞[,
ρ2w̃

′′(x, t)− bw̃xx(x, t) +K(wx + w̃)
+μ1g1(ψ′

1(x, t))− μ1g1(ψ′
2(x, t))

+μ2g2(z1(x, 1, t))− μ2g2(z2(x, 1, t)) = 0, in ]0, 1[×]0,+∞[,
τ ˜̃w

′
(x, ρ, t) + ˜̃wρ(x, ρ, t) = 0, in (0, 1)×]0, 1[×]0,+∞[

w(0, t) = w(1, t) = w̃(0, t) = w̃(1, t) = 0, t ≥ 0
˜̃w(x, 0, t) = ψ′

1(x, t)− ψ′
2(x, t) on ]0, 1[×[0,+∞[

w(x, 0) = w′(x, 0) = w̃(x, 0) = w̃′(x, 0) = 0, in ]0, 1[
˜̃w(x, ρ, 0) = 0 in ]0, 1[×]0, 1[



1426 Abbes Benaissa and Mounir Bahlil

Multiplying the first equation in (57) by w′, integrating over (0, 1) and using an inte-
gration by parts, we get

(58)
1
2
d

dt
(ρ1‖w′‖2

2) +K

∫ 1

0
(wx + w̃)xw

′ dx = 0

(59)
1
2
d

dt
(ρ2‖w̃′‖2

2 + b‖w̃x‖2
2) +K

∫ 1

0
(wx + w̃)w̃′ dx+ μ1(g1(ψ′

1) − g1(ψ′
2), w̃

′)

+μ2(g2(z1(x, 1, t))− g2(z2(x, 1, t)), w̃′) = 0.

Multiplying the second equation in (57) by ˜̃w, integrating over (0, 1)× (0, 1), we get

(60) τ
1
2
d

dt

∫ 1

0
‖ ˜̃w

′‖2
2 dρ+

1
2
(‖ ˜̃w(x, 1, t)‖2

2 − ‖w̃′‖2
2) = 0.

From (58), (59), (60 and using Cauchy-Schwarz inequality, we get

1
2
d

dt

(
ρ1‖w′‖2

2 + ρ2‖w̃′‖2
2 + b‖w̃x‖2

2 +K‖wx + w̃‖2
2 + τ

∫ 1

0
‖ ˜̃w

′‖2
2 dρ

)
+μ1(g1(ψ′

1) − g1(ψ′
2), w̃

′) +
1
2
‖ ˜̃w(x, 1, t)‖2

2

= −μ2(g2(z1(x, 1, t))− g2(z2(x, 1, t)), w̃′) +
1
2
‖w̃′‖2

2

≤ 1
2
‖w̃′‖2

2 + ||g(z1(x, 1, t))− g(z2(x, 1, t))||2||w̃′||2.

Using condition (3) and Young’s inequality, we obtain

1
2
d

dt

(
ρ1‖w′‖2

2 + ρ2‖w̃′‖2
2 + b‖w̃x‖2

2 +K‖wx + w̃‖2
2 + τ

∫ 1

0
‖ ˜̃w

′‖2
2 dρ

)
≤ c‖w̃′‖2

2,

where c is a positive constant. Then integrating over (0, t), using Gronwall’s lemma,
we conclude that

ρ1‖w′‖2
2 + ρ2‖w̃′‖2

2 + b‖w̃x‖2
2 +K‖wx + w̃‖2

2 + τ

∫ 1

0
‖ ˜̃w

′‖2
2 dρ = 0.

4. ASYMPTOTIC BEHAVIOR

Now we construct a Lyapunov functional L equivalent to E . For this, we define
several functionals which allow us to obtain the needed estimates.

Then we have the following estimate.

Lemma 4.1. Let (ϕ, ψ, z) be the solution of (8). Then the functional F1 defined
by

(61) F1(t) = −
∫ 1

0
(ρ1ϕtϕ+ ρ2ψtψ) dx
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satisfies, along the solution, the estimate

(62)

dF1(t)
dt

≤ −
∫ 1

0
(ρ1ϕ

2
t + ρ2ψ

2
t )dx+K

∫ 1

0
|ϕx + ψ|2dx

+c
∫ 1

0

ψ2
xdx+ c

∫ 1

0

g2
1(ψt)dx+ c

∫ 1

0

g2
2(z(x, 1, t))dx.

Proof. By taking the time derivative of (61)

dF1(t)
dt

= −
∫ 1

0
(ρ1ϕ

2
t + ρ2ψ

2
t )dx−

∫ 1

0
(ρ1ϕttϕ+ ρ2ψttψ)dx.

Therefore, by using the first and the second equations in (8) and some integrations by
parts, we obtain from the above inequality

(63)

dF1(t)
dt = −

∫ 1

0
(ρ1ϕ

2
t + ρ2ψ

2
t )dx+K

∫ 1

0
|ϕx + ψ|2dx

+b
∫ 1

0
ψ2

xdx+ μ1

∫ 1

0
ψg1(ψt)dx+ μ2

∫ 1

0
ψg2(z(x, 1, t))dx.

By exploiting Young’s inequality and Poincaré’s inequality, then (62) holds.

Lemma 4.2. Let (ϕ, ψ, z) be the solution of (8). Assume that

(64)
ρ1

K
=
ρ2

b
.

Then the functional F2 defined by

(65) F2(t) = ρ2

∫ 1

0
ψt(ϕx + ψ)dx+ ρ2

∫ 1

0
ψxϕt dx.

satisfies, along the solution, the estimate

(66)

dF2(t)
dt ≤ [bϕxψx]x=1

x=0 − (K − ε)
∫ 1

0
(ϕx + ψ)2dx

+ρ2

∫ 1

0
ψ2

t dx+
c

ε

∫ 1

0
g2
1(ψt)dx+

c

ε

∫ 1

0
g2
2(z(x, 1, t))dx

for any 0 < ε < 1.

Proof. Differentiating F2(t), with respect to t, we obtain

dF2(t)
dt

=
∫ 1

0
ρ2ψtt(ϕx + ψ)dx+

∫ 1

0
ρ2ψt(ϕx + ψ)tdx

+ρ2

∫ 1

0
ψxϕttdx+ ρ2

∫ 1

0
ψtxϕtdx.
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=
∫ 1

0
(ϕx + ψ)[bψxx − k(ϕx + ψ)− μ1g1(ψt)− μ2g2(z(x, 1, t)]dx

+ρ2

∫ 1

0
ψ2

t dx+
ρ2

ρ1

∫ 1

0
k(ϕx + ψ)xψx dx.

Then, by using Eqs.(8) and (64) we find

dF2(t)
dt

= [bϕxψx]x=1
x=0 −K

∫ 1

0
(ϕx + ψ)2dx+ ρ2

∫ 1

0
ψ2

t dx

−μ1

∫ 1
0 (ϕx + ψ)g1(ψt)dx− μ2

∫ 1
0 (ϕx + ψ)g2(z(x, 1, t))dx.

By the Young inequality (66) is established.

Lemma 4.3. Let m ∈ C1([0, 1]) be a function satisfying m(0) = −m(1) = 2.
Then there exists c > 0 such that, for any 0 < ε < 1, the functional F3 defined by

F3(t) =
b

4ε

∫ 1

0
ρ2m(x)ψtψx dx+

ε

k

∫ 1

0
ρ1m(x)ϕtϕx dx

satisfies, along the solution, the estimate

(67)

F ′
3(t) ≤ − b

2

4ε
((ψx(1, t))2 + (ψx(0, t))2) − ε((ϕx(1, t))2 + (ϕx(0, t))2)

+(
k

4
+
c

k
ε)
∫ 1

0

(ψ + ϕx)2 dx+ cερ1

∫ 1

0

ϕ2
t dx+

c

ε2

∫ 1

0

ψ2
x dx

+
c

ε

∫ 1

0
ψ2

t dx+ c

∫ 1

0
g2
1(ψt) dx+ c

∫ 1

0
g2
2(z(x, 1, t)) dx

Proof. Using Eqs. (8) and integrating by parts, obtain

F ′
3(t) =

b

4ε

[
−b((ψx(1, t))2 + (ψx(0, t))2) −

∫ 1

0

b

2
m′(x)ψ2

x dx

−k
∫ 1

0
m(x)ψx(ϕx + ψ) dx−

∫ 1

0
m(x)μ1g1(ψt)ψx dx

−
∫ 1

0
m(x)μ2g2(z(x, 1, t))ψx dx−

∫ 1

0

ρ2

2
m′(x)(ψt)2 dx

]
ε

k

[
−k((ϕx(1, t))2 + (ϕx(0, t))2) −

∫ 1

0

k

2
m′(x)ϕ2

x dx

+
∫ 1

0
km(x)ψxϕx dx−

∫ 1

0

ρ1

2
m′(x)(ϕt)2 dx

]
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Then by the Young and Poincaré inequalities and the fact that

ϕ2
x ≤ 2(ψ + ϕx)2 + 2ψ2

we obtain

F ′
3(t) ≤ b

4ε
[−b((ψx(1, t))2 + (ψx(0, t))2)

+
c

ε

∫ 1

0
ψ2

x dx+ ε
k

b

∫ 1

0
(ψ + ϕx)2 dx

+ε
∫ 1

0
g2
1(ψt) dx+ ε

∫ 1

0
g2
2(z(x, 1, t)) dx+ c

∫ 1

0
ψ2

t dx

]
ε

k

[
−k((ϕx(1, t))2 + (ϕx(0, t))2) + c

∫ 1

0
ψ2

x dx

+c
∫ 1

0
(ψ + ϕx)2 dx+ c

∫ 1

0
ϕ2

t dx

]

This gives (67).

Lemma 4.4. Assume that (H1) hold. Then, for sufficiently small ε, the functional
F defined by

F (t) = 2cεF1(t) + F2(t) + F3(t)

satisfies, along the solution, the estimate

(68)
F ′(t) ≤ −k

2

∫ 1

0
(ψ + ϕx)2 dx− τ

∫ 1

0
ϕ2

t dx+ c

∫ 1

0
ψ2

t dx+ +c
∫ 1

0
ψ2

x dx

+c
∫ 1

0
g2
1(ψt) dx+ c

∫ 1

0
g2
2(z(x, 1, t)) dx,

where τ = cερ1.

Proof. Using Lemmas 4.1, 4.2, 4.3 and the fact that

(69) [bϕxψx]x=1
x=0 ≤ ε[ϕ2

x(1) + ϕ2
x(0)] +

b2

4ε
[ψ2

x(1) + ψ2
x(0)]

for any 0 < ε < 1, we obtain (68).
Next, we introduce the following functional

(70) I(t) =
∫ 1

0
(ρ2ψtψ + ρ1ϕtω)dx,

where w is the solution of

(71) −ωxx = ψx, ω(0) = ω(1) = 0.

Then we have the following estimate.
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Lemma 4.5. Let (ϕ, ψ, z) be the solution of (8), then for any δ > 0, we have the
following estimate

(72)

dI(t)(t)
dt

≤ −b
2

∫ 1

0
ψ2

x(x, t)dx+
c

δ

∫ 1

0
ψ2

t (x, t)dx

+δ
∫ 1

0
ϕ2

t (x, t)dx+ c

∫ 1

0
g2
1(ψt)dx+ c

∫ 1

0
g2
2(z(x, 1, t))dx.

Proof. Using Eqs. (8), we have

(73)

dI(t)
dt

= −b
∫ 1

0
ψ2

xdx+ ρ2

∫ 1

0
ψ2

t dx−K

∫ 1

0
ψ2dx

+K
∫ 1

0
ω2

xdx+ ρ1

∫ 1

0
ψtωtdx− μ1

∫ 1

0
ψg1(ψt)dx

−μ2

∫ 1

0

ψg2(z(x, 1, t))dx.

It is clear that, from (71), we have

(74)

∫ 1

0
ω2

xdx ≤
∫ 1

0
ψ2dx ≤

∫ 1

0
ψ2

xdx∫ 1

0
ω2

t dx ≤
∫ 1

0
ω2

txdx ≤
∫ 1

0
ψ2

t dx

By using Young’s inequality and Poincaré’s inequality, the last two terms in (73) can
be estimated as

(75)
μ1

∫ 1

0
ψg1(ψt)dx+ μ2

∫ 1

0
ψg2(z(x, 1, t))dx

≤ b

2

∫ 1

0

ψ2
xdx+ c

∫ 1

0

g2
1(ψt)dx+ c

∫ 1

0

g2
2(z(x, 1, t))dx.

Consequently, from (73)-(75), we obtain (72).

Now, let us introduce the following functional

(76) I3(t) =
∫ 1

0

∫ 1

0
e−2τρG2(z(x, ρ, t)) dρ dx.

Then the following result holds.

Lemma 4.6. Let (ϕ, ψ, z) be the solution of (8). Then it holds

(77)
d

dt
I3(t) ≤ −2I3(t) − e−2τ

τ

∫ 1

0
G2(z(x, 1, t))dx+

1
τ

∫ 1

0
G2(ψt(x, t)) dx.
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Proof. Differentiating (76) with respect to t and using the third equation in (8), we
have

d

dt
I3(t) =

∫ 1

0

∫ 1

0
e−2τρzt(x, ρ, t)g2(z(x, ρ, t)) dρ dx

= −1
τ

∫ 1

0

∫ 1

0
e−2τρzρ(x, ρ, t)g2(z(x, ρ, t)) dρ dx

= −1
τ

∫ 1

0

∫ 1

0

e−2τρ d

dρ
G2(z(x, ρ, t)) dρ dx

= −1
τ

∫ 1

0

∫ 1

0

[
d

dρ

(
e−2τρG2(z(x, ρ, t))

)
+ 2τe−2τρG2(z(x, ρ, t))

]
dρ dx

= −1
τ

∫ 1

0

[
e−2τG2(z(x, 1, t))−G2(ψt(x, t))

]
dx

−2
∫ 1

0

∫ 1

0

e−2τρG(z(x, ρ, t)) dρ dx

≤ −2
∫ 1

0

∫ 1

0
e−2τρG2(z(x, ρ, t)) dρ dx− 1

τ

∫ 1

0
e−2τG2(z(x, 1, t))dx

+
1
τ

∫ 1

0
G2(ψt(x, t))dx dx

≤ −2I3(t) − e−2τ

τ

∫ 1

0

G2(z(x, 1, t))dx+
1
τ

∫ 1

0

G2(ψt(x, t)) dx.

For N1, N2 > 0, let

(78) L(t) = N1E(t) +N2I(t) + F (t) + I3(t).

By combining (13), (68), (72), (77), we obtain

(79)

d

dt
L(t) ≤ −

(
N1a1 − α2

τ

) ∫ 1

0

ψtg1(ψt(x, t)) dx

−
(
N1a2 + α1

e−2τ

τ
−(N2c+c)c3

)∫ 1

0
z(x, 1, t)g2(z(x, 1, t)) dx

−
(
N2

b

2
− c

)∫ 1

0
ψ2

x dx

− (τ̃ −N2δ)
∫ 1

0

ϕ2
t dx+

(
N2

c

δ
+ c
) ∫ 1

0

ψ2
t dx

−k
2

∫ 1

0
(ψ + ϕx)2 dx+ (N2c+ c)

∫ 1

0
g2
1(ψt) dx.

At this point, we have to choose our constants very carefully. First, let us choose N2

sufficiently large so that (
N2

b

2
− c

)
> 0.
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Next, we choose δ sufficiently small such that

(τ̃ −N2δ) > 0.

Then, we pick the constant N1 > 0 sufficiently large such that(
N1a1 − α2

τ

)
and (

N1a2 + α1
e−2τ

τ
− (N2c+ c)c3

)
.

Thus, (79) becomes

(80)

d

dt
L(t) ≤ −d1

∫ 1

0

ψ2
x dx− d2

∫ 1

0

ϕ2
t dx− k

2

∫ 1

0

(ψ + ϕx)2 dx

+c
∫ 1

0
((ψt)2 + g2

1(ψt)) dx

≤ −dE(t) + c

∫ 1

0
((ψt)2 + g2

1(ψt)) dx.

At this stage, we are in position to compare L(t) with E(t). We have the following
Lemma.

Lemma 4.7. For N1 large enough, there exist two positive constants β1 and β2

depending on N1, N2 and ε, such that

(81) β1E(t) ≤ L(t) ≤ β2E(t) ∀t ≥ 0.

Proof. We consider the functional

H(t) = N2I(t) + F (t) + I3(t)

and show that
|H(t)| ≤ ĈE(t), C > 0.

from (61),(70),(65) and (76), we obtain

(82)

|H(t)| ≤ N2

∣∣∣∣
∫ 1

0
ρ2ψtψ + ρ1ϕtω)(x, t)dx

∣∣∣∣+
∣∣∣∣−
∫ 1

0
(ρ1ϕtϕ+ ρ2ψtψ)dx

∣∣∣∣
+
∣∣∣∣ρ2

∫ 1

0
ψt(ϕx + ψ)dx+ ρ2

∫ 1

0
ψxϕt dx

∣∣∣∣
+
∣∣∣∣ b4ε

∫ 1

0
ρ2m(x)ψtψx dx+

ε

k

∫ 1

0
ρ1m(x)ϕtϕx dx

∣∣∣∣
+
∣∣∣∣
∫ 1

0

∫ 1

0
e−2τρG2(z(x, ρ, t)) dρ dx

∣∣∣∣ .
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By using (74),(71), the trivial relation∫ 1

0

ϕ2(x, t)dx ≤ 2
∫ 1

0

(ϕx + ψ)2(x, t)dx+ 2
∫ 1

0

ψ2
x(x, t)dx,

Young’s and Poincaré’s inequalities, we get

(83)

|H(t)| ≤ α1

∫ 1

0
ϕ2

t (x, t)dx+ α2

∫ 1

0
ψ2

t (x, t)dx

+α3

∫ 1

0

(ϕx + ψ)2(x, t)dx+ α4

∫ 1

0

ψ2
x(x, t)dx

+
∫ 1

0

∫ 1

0
G2(z(x, ρ, t))dx dρ

where the positive constants α1, α2, α3, α4 are determined as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 =
N2ρ1

2
+ ρ2 +

ερ1

K
,

α2 =
N2ρ2

2
+ ρ2 +

ρ2b

2ε
,

α3 = ρ1 +
ρ2

2
+

2ερ1

K
,

α4 = ρ2 +
N2

2
ρ2 + ρ1 +

ρ2b

2ε
+

2ερ1

K
,

According to (83) , we have
|H(t)| ≤ ĈE(t)

for
Ĉ = 2 max

{
α1

ρ1
,
α2

ρ2
,
α3

k
,
α4

b
,

1
2ξ

}
.

Therefore, we obtain
|L(t)−N1E(t)| ≤ ĈE(t).

So, we can choose N1 large enough so that β1 = N1 − Ĉ > 0, β2 = N1 + Ĉ > 0.
Then (81) holds true.

Therefore, (80) takes the form

(84)
d

dt
L(t) ≤ −C3E(t) +C5(‖u′‖2

2 + ‖g1(ut)‖2
2),

where C3, C4 and C5 are three positive constants.
Now, we estimate the last term in the right hand side of (84). We define

Ω+ = {x ∈ (0, 1) : |u′| ≥ ε′}, Ω− = {x ∈ (0, 1) : |u′| ≤ ε′}.
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From (1) and (2), it follows that

(85)
∫

Ω+

(|u′|2 + |g1(u′)|2) dx ≤ μ1

∫
Ω+

u′g1(u′) dx ≤ −μ1E
′(t).

Case 1: H is linear on [0, ε′]. In this case one can easily check that there exists
μ′1 > 0, such that |g1(s)| ≤ μ′1|s| for all |s| ≤ ε′, and thus

(86)
∫

Ω−
(|u′|2 + |g1(u′)|2) dx ≤ μ′1

∫
Ω−

u′g1(u′) dx ≤ −μ′1E ′(t).

Substitution of (85) and (86) into (84) gives

(87) (L(t) + μE(t))′ ≤ −c1H2(E(t))

where μ = C5(μ1 +μ′1) and here and in the sequel we take Ci to be a generic positive
constant.
Case 2: H ′(0) = 0 and H ′′ > 0 on ]0, ε′].
Since H is convex and increasing, H−1 is concave and increasing. By the virtue of
(1), the reversed Jensen’s inequality for concave function, and (13), it follows that

(88)

∫
Ω−

(|u′|2 + |g1(u′)|2) dx

≤
∫

Ω−
H−1(u′g1(u′)) dx

≤ |Ω|H−1

(
1
|Ω|
∫

Ω−
u′g1(u′) dx

)
≤ CH−1(−C′E ′(t)).

A combination of (84), (85) and (88) yields

(89) (L(t) +C5μ1E(t))′ ≤ −C3E(t) + C̃5H
−1(−C′E ′(t)), t ≥ 0.

Let us denote by H∗ the conjugate function of the convex function H , i.e.,

H∗(s) = sup
t∈IR+

(st−H(t)).

Then H∗ is the Legendre transform of H , which is given by

(90) H∗(s) = s(H ′)−1(s) −H [(H ′)−1(s)], ∀s ≥ 0

and which satisfies the following inequality

(91) st ≤ H∗(s) +H(t), ∀s, t ≥ 0.
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The relation (90) and the fact that H ′(0) = 0 and (H ′)−1, H are increasing functions
yield

(92) H∗(s) ≤ s(H ′)−1(s), ∀s ≥ 0.

Making use of E ′(t) ≤ 0, H ′′(t) ≥ 0, (89) and (92) we derive for ε0 > 0 small enough

(93)

[H ′(ε0E(t)){L(t) + C5μ1E(t)}+ C̃5C
′E(t)]′

= ε0E
′(t)H ′′(ε0E(t))(L(t) +C5μ1E(t))

+H ′(ε0E(t))(L′(t) +C5μ1E
′(t)) + C̃5C

′E ′(t)

≤ −C3H
′(ε0E(t))E(t) + C̃5H

′(ε0E(t))H−1(−C′E ′(t)) + C̃5C
′E ′(t)

≤ −C3H
′(ε0E(t))E(t) + C̃5H

∗(H ′(ε0E(t)))

≤ −C3H
′(ε0E(t))E(t) + C̃5H

′(ε0E(t))ε0E(t)

≤ −C̃3H
′(ε0E(t))E(t)

= −C̃3H2(E(t)).

We note that in the second inequality, we have used (91) and 0 ≤ H ′(ε0E(t)) ≤
H ′(ε0E(0)).
Let

(94)

L̃(t) ={
L(t)+μE(t) if H is linear on [0, ε′]

H ′(ε0E(t)){L(t)+C5μ1E(t)}+C̃5C
′E(t) if H ′(0)=0 and H ′′>0 on ]0, ε′].

From (87) and (93), it follows

(95) L̃′(t) ≤ −c4H2(E(t)), ∀t ≥ 0.

On the other hand, after choosingM > 0 larger if needed, we can observe from Lemma
4.7 that L(t) is equivalent to E(t). So, L̃(t) is also equivalent to E(t). By the fact
that H2 is increasing, we obtain

(96) L̃′(t) ≤ −c̃4H2(L̃(t)), ∀t ≥ 0.

Noting that H ′
1 = −1/H2 (see (12)), we infer from (96)

L̃′(t)H ′
1(L̃(t)) ≥ c̃4, ∀t ≥ 0.

A simple Integration over (0, t) yields

H1(L̃(t)) ≥ H1(L̃(0)) + c̃4t.
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Then, exploiting the fact that H−1
1 is decreasing, we infer

L̃(t) ≤ H−1
1

(
H1(L̃(0)) + c̃4t

)
Consequently, the equivalence of L, L̃ and E , yields the estimate

E(t) ≤ ω1H
−1
1 (ω2t+ ω3) .
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