TAIWANESE JOURNAL OF MATHEMATICS Vol. 18, No. 5, pp. 1365-1375, October 2014 DOI: 10.11650/tjm.18.2014.4137 This paper is available online at http://journal.taiwanmathsoc.org.tw

## FIXED POINTS FOR MULTIVALUED CONTRACTIONS IN b-METRIC SPACES WITH APPLICATIONS TO FRACTALS

Cristian Chifu and Gabriela Petruşel

Abstract. The purpose of this paper is to present some fixed point results for multivalued operators in *b*-metric spaces endowed with a graph, as well as, some existence results for multivalued fractals in b-metric spaces, using contractive conditions of Ćirić type with respect to the functional H.

## 1. PRELIMINARIES

In this paper we will give some fixed point results for multivalued operators in b-metric spaces. Actually, the purpose of this paper is twofold.

First, we will present some fixed point results for Ćirić G-contraction in *b*-metric spaces endowed with a graph. The starting point for this is a result given by A. Nicolae, D. O'Regan and A. Petruşel in [7]. In this paper, the authors give some fixed point results for singlevalued and multivalued operators in metric spaces endowed with a graph. This approach, of using the context of metric spaces endowed with a graph, was recently introduced by J. Jachymski [5] and G. Gwóźdź-Lukawska, J. Jachymski [4].

The second purpose of this work is to give some existence results for the multivalued fractals in *b*-metric spaces. We will follow the approach given in [1].

Our results extend and complement some previous theorems given in [1, 2, 4, 5, 6], etc.

Since we will work in *b*-metric spaces, we start by presenting some notions about this type of spaces. For details see [3, 1, 2].

**Definition 1.1.** Let (X, d) be a set and let  $s \ge 1$  be a given real number. A function  $d: X \times X \to \mathbb{R}$  is said to be a b-metric if and only if for all  $x, y, z \in \mathbb{X}$ , the following conditions are satisfied:

1.  $d(x, y) = 0 \iff x = y;$ 

Received December 4, 2013, accepted January 20, 2014.

Communicated by Boris Mordukhovich.

2010 Mathematics Subject Classification: 47H10, 54H25, 47H04.

Key words and phrases: Fixed point, b-Metric space, Connected graph, Multivalued fractal.

2. d(x, y) = d(y, x);3.  $d(x, y) \le s [d(x, z) + d(z, y)].$ 

In this case, the pair (X, d) is called b - metric space with constant s.

**Remark 1.2.** The class of b-metric spaces is larger than the class of metric spaces since a b-metric space is a metric space when s=1.

**Example 1.3.** Let  $X = \{0, 1, 2\}$  and  $d : X \times X \to \mathbb{R}_+$  such that  $d(0, 1) = d(1, 0) = d(0, 2) = d(2, 0) = 1, d(1, 2) = d(2, 1) = \alpha \ge 2, d(0, 0) = d(1, 1) = d(2, 2) = 0$ . Then

$$d(x,y) \leq \frac{\alpha}{2} \left[ d(x,z) + d(z,y) \right], \text{ for } x, y, z \in X.$$

Then (X, d) is a b-metric space. If  $\alpha > 2$  the ordinary triangle inequality does not hold and (X, d) is not a metric space.

**Example 1.4.** The set 
$$l^p(\mathbb{R}) = \left\{ (x_n) \subset \mathbb{R} | \lim_{n=1}^{\infty} |x_n|^p < \infty \right\}, 0 < p < 1$$
, together with the functional  $d : l^p(\mathbb{R}) \times l^p(\mathbb{R}) \to \mathbb{R}_+, d(x, y) = \left( \lim_{n=1}^{\infty} |x - y|^p \right)^{1/p}$ , is a b-metric space with constant  $s = 2^{1/p}$ .

**Definition 1.5.** Let (X, d) be a *b*-metric space with constant *s*. Then the sequence  $(x_n)_{n \in \mathbb{N}} \subset X$  is called:

- 1. Convergent if and only if there exists  $x \in X$  such that  $d(x_n, x) \rightarrow 0$ , as  $n \rightarrow \infty$ ;
- 2. Cauchy if and only if  $d(x_n, x_m) \rightarrow 0$ , as  $n, m \rightarrow \infty$ .

**Definition 1.6.** Let (X, d) be a b - metric space with constant s. If Y is a nonempty subset of X, then the closure  $\overline{Y}$  of Y is the set of limits of all convergent sequences of points in Y, i.e.,

$$\overline{Y} := \{ x \in X : \exists (x_n)_{n \in \mathbb{N}}, x_n \to x, \text{ as } n \to \infty \}.$$

**Definition 1.7.** Let (X, d) be a b - metric space with constant s. Then a subset  $Y \subset X$  is called:

- closed if and only if for each sequence (x<sub>n</sub>)<sub>n∈ℕ</sub> ⊂ Y which converges to x, we have x ∈ Y;
- 2. compact if and only if for every sequence of elements of Y there exists a subsequence that converges to an element of Y;
- 3. bounded if and only if  $\delta(Y) := \{d(a, b) : a, b \in Y\} < \infty$ .

**Definition 1.8.** The b - metric space (X, d) is complete if every Cauchy sequence in X converges.

Let us consider the following families of subsets of a b-metric space (X, d):

$$\mathcal{P}(X) = \{Y | Y \subset X\}, P(X) := \{Y \in \mathcal{P}(X) | Y \neq \emptyset\}; P_b(X)$$
$$:= \{Y \in P(X) | Y \text{ is bounded } \},$$

 $P_{cl}(X) := \{Y \in P(X) | \ Y \text{ is closed}\}; P_{cp}(X) := \{Y \in P(X) | \ Y \text{ is compact}\}$ 

Let us define the gap functional  $D: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}$ ,as:

 $D(A,B) = \inf\{d(a,b) \mid a \in A, b \in B\}.$ 

In particular, if  $x_0 \in X$ , then  $D(x_0, B) := D(\{x_0\}, B)$ . The excess generalized functional  $\rho : P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}$ , as:

$$\rho(A, B) = \sup\{D(a, B) \mid a \in A\}.$$

The Pompeiu-Hausdorff generalized functional:  $H: P(X) \times P(X) \to \mathbb{R}_+ \cup \{+\infty\}$ , as:

$$H(A, B) = \max\{\rho(A, B), \rho(B, A)\}.$$

The generalized diameter functional:  $\delta : P(X) \times P(X) \to \mathbb{R}_+ \cup \{\infty\}$ , as:

$$\delta(A, B) = \sup\{d(a, b) \mid a \in A, b \in B\}.$$

In particular  $\delta(A) := \delta(A, A)$  is the diameter of the set A.

Let  $T : X \to P(X)$  be a multivalued operator and  $Graph(T) := \{(x, y) \in X \times X | y \in T(x)\}$  be the graphic of T. An element  $x \in X$  is called a fixed point for T if and only if  $x \in T(x)$ .

The set  $Fix(T) := \{x \in X | x \in T(x)\}$  is called the fixed point set of T, while  $SFix(T) = \{x \in X | \{x\} = T(x)\}$  is called the strict fixed point set of T. Notice that  $SFix(T) \subseteq Fix(T)$ .

The following properties of some of the functionals defined above will be used throughout the paper (see [2, 3] for details and proofs):

**Lemma 1.9.** Let (X,d) be a b-metric space with constant s and  $A, B \in P(X)$ . Suppose that there exists  $\eta > 0$  such that:

- (i) for each  $a \in A$ , there is  $b \in B$  such that  $d(a, b) \leq \eta$ ;
- (ii) for each  $b \in B$ , there is  $a \in A$  such that  $d(a, b) \leq \eta$ .
  - Then,  $H(A, B) \leq \eta$ .

**Lemma 1.10.** Let (X,d) be a b-metric space with constant s. Then

$$D(x, A) \leq s [d(x, y) + D(y, A)], \text{ for all } x, y \in X, A \subset X.$$

**Lemma 1.11.** Let (X,d) be a b-metric space with constant s and  $A, B \in P_b(X), a \in A$ . Then, for  $\varepsilon > 0$ , there exists  $b \in B$  such that  $d(a,b) \leq H(A,B) + \varepsilon$ .

*Proof.* Suppose that there exists  $\varepsilon > 0$  such that for every  $b \in B$ 

$$d(a,b) > H(A,B) + \varepsilon$$

If we take, in the above inequality, the infimum with respect to  $b \in B$ , then

$$H(A, B) \ge D(a, B) \ge H(A, B) + \varepsilon.$$

Hence  $\varepsilon \leq 0$  which is a contradiction.

**Lemma 1.12.** Let (X,d) be a b-metric space with constant s and with  $d: X \times X \to \mathbb{R}_+$  a continuous b-metric and let  $A, B \in P_{cp}(X)$ . Then for each  $a \in A$  there exists  $b \in B$  such that

$$d(a,b) \le H(A,B).$$

**Lemma 1.13.** Let (X,d) be a b-metric space with constant  $s, A \in P(X)$  and  $x \in X$ . Then D(x, A) = 0 if and only if  $x \in \overline{A}$ .

2. FIXED POINT RESULT IN *b*-METRIC SPACES ENDOWED WITH A GRAPH

Let (X, d) be a *b*-metric space and  $\Delta$  be the diagonal of  $X \times X$ . Let *G* be a directed graph such that the set V(G) of its vertices coincides with X and  $\Delta \subseteq E(G)$ , E(G) being the set of the edges of the graph. Assuming that *G* has no parallel edges we will have that *G* can be identified with the pair (V(G), E(G)).

If x and y are vertices of G, then a path in G from x to y of length  $k \in \mathbb{N}$  is a finite sequence  $(x_n)_{n \in \{0,1,2,\dots,k\}}$  of vertices such that  $x_0 = x$ ,  $x_k = y$  and  $(x_{i-1}, x_i) \in E(G)$  for  $i \in \{1, 2, \dots, k\}$ .

Let us denote by  $\tilde{G}$  the undirected graph obtained from G by ignoring the direction of edges. Notice that a graph G is connected if there is a path between any two vertices and it is weakly connected if  $\tilde{G}$  is connected.

Let  $G^{-1}$  be the graph obtained from G by reversing the direction of edges. Thus,

$$E(G^{-1}) = \{ (x, y) \in X \times X : (y, x) \in E(G) \}.$$

Since it is more convenient to treat  $\tilde{G}$  as a directed graph for which the set of its edges is symmetric, under this convention, we have that

$$E(\tilde{G}) = E(G) \cup E(G^{-1})$$

1368

**Definition 2.1.** Let (X, d) be a complete b-metric space with constant s and G be a directed graph. We say that the triple (X, d, G) has the property (A) if for any sequence  $(x_n)_{n \in \mathbb{N}} \subset X$  with  $x_n \to x$ , as  $n \to \infty$ , and  $(x_n, x_{n+1}) \in E(G)$ , for  $n \in \mathbb{N}$ , we have  $(x_n, x) \in E(G)$ .

In this section we will prove some fixed point results for a multivalued operator satisfying a contractive condition of Ćirić type with respect to the functional H. The data dependence of fixed point set is also studied.

In [7] the following set is defined:

$$X_T := \{x \in X : \text{ there exists } y \in T(x) \text{ such that } (x, y) \in E(G)\}.$$

**Definition 2.2.** Let (X, d) be a complete b-metric space with constant s, G be a directed graph and  $T: X \to P_b(X)$  a multivalued mapping. The mapping T is said to be a multivalued Ciric G-contraction with constant a if  $0 < a < \frac{1}{s}$  and

- (a)  $H(T(x), T(y)) \leq a \max \{ d(x, y), D(x, T(x)), D(y, T(y)), \frac{1}{2s} [D(x, T(y)) + D(y, T(x))] \}, \text{ for all } (x, y) \in E(G);$
- (b) for  $(x, y) \in E(G)$ , if  $u \in T(x)$  and  $v \in T(y)$  are such that  $d(u, v) \leq ad(x, y) + \alpha$ , for some  $\alpha > 0$ , then  $(u, v) \in E(G)$ .

**Theorem 2.3.** Let (X, d) be a complete b-metric space with constant s and G be a directed graph such that the triple (X, d, G) has the property (A). If  $T : X \to P_{b,cl}(X)$  is a Ciric G-contraction, then:

- (i) For any  $x \in X_T$ ,  $T|_{[x]_{\widetilde{C}}}$  has a fixed point;
- (ii) If  $X_T \neq \emptyset$  and G is weakly connected, then T has a fixed point in X;
- (iii) If  $Y = \bigcup \{ [x]_{\widetilde{G}} ; x \in X_T \}$ , then  $T|_Y$  has a fixed point in Y;
- (iv)  $FixT \neq \emptyset$  if and only if  $X_T \neq \emptyset$ .

*Proof.* (i) Let  $x_0 \in X_T$ . There exists  $x_1 \in T(x_0)$  such that  $(x_0, x_1) \in E(G)$ . Since T is a Ciric G-contraction there exists  $a \in (0, \infty)$  with  $a < \frac{1}{s}$  such that

$$H (T (x_0), T (x_1)) \le a \max\{d(x_0, x_1), D(x_0, T(x_0)), D(x_1, T(x_1)), \frac{1}{2s} [D (x_0, T (x_1)) + D (x_1, T (x_0))]\} \le a \max\{d(x_0, x_1), D(x_1, T(x_1)), \frac{1}{2s} [D (x_0, T (x_1)) + D (x_1, T (x_0))]\}$$

Let us denote max  $\left\{ d(x_0, x_1), D(x_1, T(x_1)), \frac{1}{2s} \left[ D(x_0, T(x_1)) + D(x_1, T(x_0)) \right] \right\}$ :=  $M_1$ 

We have the following cases:

- If  $M_1 = d(x_0, x_1)$ , then  $H(T(x_0), T(x_1)) \le ad(x_0, x_1)$ ;
- If  $M_1 = D(x_1, T(x_1))$ , then

$$H(T(x_0), T(x_1)) \le aD(x_1, T(x_1)) \le aH(T(x_0), T(x_1)).$$

Thus imply that  $a \ge 1$  which is a contradiction.

• If  $M_1 = \frac{1}{2s} \left[ D(x_0, T(x_1)) + D(x_1, T(x_0)) \right]$ 

$$H(T(x_0), T(x_1)) \leq \frac{a}{2s} [D(x_0, T(x_1)) + D(x_1, T(x_0))]$$
  
$$\leq \frac{a}{2s} [sd(x_0, x_1) + sD(x_1, T(x_1))]$$
  
$$\leq \frac{a}{2} [d(x_0, x_1) + H(T(x_0), T(x_1))]$$
  
$$H(T(x_0), T(x_1)) \leq \frac{a}{2-a} d(x_0, x_1) \leq ad(x_0, x_1).$$

Hence  $H(T(x_0), T(x_1)) \leq ad(x_0, x_1)$ . Using Lemma 1.3., for  $\varepsilon = a$ , we obtain that there exists  $x_2 \in T(x_1)$  such that

$$d(x_1, x_2) \le H(T(x_0), T(x_1)) + a \le ad(x_0, x_1) + a.$$

We have:  $(x_0, x_1) \in E(G)$ ,  $x_1 \in T(x_0)$ ,  $x_2 \in T(x_1)$  and  $d(x_1, x_2) \leq ad(x_0, x_1) + a$ . Using (b) from Definition 2.2., we obtain that  $(x_1, x_2) \in E(G)$ .

Again we'll obtain that  $H(T(x_1), T(x_2)) \le ad(x_1, x_2) \le a^2 d(x_0, x_1) + a^2$ . Using Lemma 1.3., for  $\varepsilon = a^2$ , there exists  $x_3 \in T(x_2)$  satisfying

$$d(x_2, x_3) \le H(T(x_1), T(x_2)) + a^2 \le a^2 d(x_0, x_1) + 2a^2.$$

Continuing this process we have  $x_{n+1} \in T(x_n)$  such that  $(x_n, x_{n+1}) \in E(G)$  and  $d(x_n, x_{n+1}) \leq a^n d(x_0, x_1) + na^n$  for each  $n \in \mathbb{N}$ .

We have:

$$d(x_n, x_{n+p}) \leq sd(x_n, x_{n+1}) + s^2 d(x_{n+1}, x_{n+2}) + \dots + s^p d(x_{n+p-1}, x_{n+p})$$
  

$$\leq sa^n d(x_0, x_1) + sna^n + s^2 a^{n+1} d(x_0, x_1) + s^2 (n+1)a^{n+1} \dots + s^p a^{n+p-1} d(x_0, x_1) + s^p (n+p-1)a^{n+p-1}$$
  

$$= sa^n \frac{1 - (sa)^p}{1 - sa} d(x_0, x_1) + nsa^n \frac{1 - (sa)^p}{1 - sa} + sa^n \lim_{k=1}^{p-1} k(as)^k.$$

Hence, if  $n \to \infty$ ,  $d(x_n, x_{n+p}) \to 0$ . Thus the sequence  $(x_n)_{n \in \mathbb{N}}$  is a Cauchy sequence in a complete *b-metric* space. Hence there exists  $x \in X$  such that  $x_n \to x$ , as  $n \to \infty$ . By the property (A) we have that  $(x_n, x) \in E(G)$ , for each  $n \in \mathbb{N}$ .

Hence by the above relation and the definition of Ciric G-contraction, we obtain that

$$0 \leq \lim_{n \to \infty} H\left(Tx_n, Tx\right) \leq \lim_{n \to \infty} d\left(x_n, x\right) = 0.$$

Now, we prove that  $x \in T(x)$ . We have:

$$D(x, T(x)) \leq sd(x, x_{n+1}) + sD(x_{n+1}, T(x)) \\ \leq sd(x, x_{n+1}) + sH(T(x_n), T(x)) \to 0, \text{ as } n \to \infty.$$

Thus D(x, T(x)) = 0, which implies that  $x \in T(x)$ .

On the other hand, since  $(x_n, x) \in E(G)$ , for  $n \in \mathbb{N}$ , we conclude that  $(x_0, ..., x_{kn}, x)$  is a path in G, and thus  $x \in [x_0]_{\widetilde{G}}$ .

(ii) Since  $X_T \neq \emptyset$ , there exists  $x_0 \in X_T$ . As the graph G is weakly connected we have that  $[x_0]_{\widetilde{G}} = X$ , then by (i), T has a fixed point in X.

(iii) it's a consequence of (i) and (ii).

(iv) If  $FixT \neq \emptyset$ , then there exists  $x \in T(x)$ . Since  $\Delta \subset E(G)$  we have that  $(x, x) \in E(G)$  and thus  $x \in X_T$ .

Now, if  $X_T \neq \emptyset$ , from (i) we have that  $FixT \neq \emptyset$ .

**Theorem 2.4.** Let (X, d) be a complete b-metric space with constant s and G be a directed graph such that the triple (X, d, G) has the property (A). Let  $T_1, T_2 : X \to P_{cp}(X)$  be two multivalued Ciric G-contractions with the constants  $a_1$  and  $a_2$ . Suppose that:

(a) there exists  $\eta > 0$  such that  $\delta(T_1(x), T_2(x)) \leq \eta$ , for all  $x \in X$ ;

(b)  $\forall x \in X$ ,  $X_{T_1} \neq \emptyset$  and  $X_{T_2} \neq \emptyset$ .

In these conditions we have:

$$H(Fix(T_1), Fix(T_2)) \le \frac{\eta s}{1 - s \max\{a_1, a_2\}} + \frac{s \max\{a_1, a_2\}}{(1 - s \max\{a_1, a_2\})^2}$$

*Proof.* We'll show that for every  $x_1^* \in Fix(T_1)$ , there exists  $x_2^* \in Fix(T_2)$  such that

$$d(x_1^*, x_2^*) \le \frac{s\eta}{1 - sa_2} + \frac{sa_2}{(1 - sa_2)^2}.$$

Let  $x_1^* \in Fix(T_1)$  arbitrary. Then  $(x_1^*, x_1^*) \in E(G)$  (since  $\Delta \subseteq E(G)$ ) and so  $x_1^* \in X_{T_1} = \{x \in X : \text{ there exists } y \in T_1(x) \text{ such that } (x, y) \in E(G)\}$ . Thus, as in the proof of Theorem 2.1. we construct a sequence  $(x_n)_{n \in \mathbb{N}} \subset X$  of successive approximations of  $T_2$ , with  $x_0 := x_1^*$  having the following properties:

- (1)  $(x_n, x_{n+1}) \in E(G) \cap Graph(T_2)$ , for each  $n \in \mathbb{N}$ ;
- (2)  $d(x_n, x_{n+1}) \le a_2^n d(x_0, x_1) + na_2^n$ , for each  $n \in \mathbb{N}$ ;

If we consider that the sequence  $(x_n)_{n \in \mathbb{N}}$  converges to  $x_2^*$ , we have that  $x_2^* \in Fix(T_2)$ . Moreover, for each  $n \ge 0$ , we have:

$$d(x_n, x_{n+p}) \le sa_2^n \frac{1 - (sa_2)^p}{1 - sa_2} d(x_0, x_1) + nsa_2^n \frac{1 - (sa_2)^p}{1 - sa_2} + sa_2^n \lim_{k=1}^{p-1} k(sa_2)^k, \ p \in \mathbb{N}^*.$$

Letting  $p \to \infty$  we get that

$$d(x_n, x_2^*) \le \frac{sa_2^n}{1 - sa_2} d(x_0, x_1) + \frac{nsa_2^n}{1 - sa_2} + \frac{sa_2}{(1 - sa_2)^2}, \forall n \in \mathbb{N}.$$

Choosing n = 0 in the above relation, we obtain

$$\begin{aligned} d(x_1^*, x_2^*) &\leq \frac{s}{1 - sa_2} d(x_1^*, x_1) + \frac{sa_2}{(1 - sa_2)^2} \leq \frac{s}{1 - sa_2} \delta(T_1(x_1^*), T_2(x_1^*)) + \frac{sa_2}{(1 - sa_2)^2} \\ &\leq \frac{s\eta}{1 - sa_2} + \frac{sa_2}{(1 - sa_2)^2}. \end{aligned}$$

Interchanging the roles of  $T_1$  and  $T_2$  we obtain that for every  $u \in Fix(T_2)$ , there exists  $v \in Fix(T_1)$  such that

$$d(u,v) \le \frac{s\eta}{1-sa_1} + \frac{sa_1}{(1-sa_1)^2}.$$
  
Thus,  $H(Fix(T_1), Fix(T_2)) \le \frac{\eta s}{1-s\max\{a_1,a_2\}} + \frac{s\max\{a_1,a_2\}}{(1-s\max\{a_1,a_2\})^2}.$ 

**Remark 2.5.** It is an open question to develop the above theorems to the case of multivalued operators satisfying Ćirić type conditions with respect to the functional  $\delta$ , see [3].

## 3. FIXED POINT RESULTS FOR MULTIVALUED FRACTALS IN b-METRIC SPACES

Let (X, d) be a b-metric space with constant s and  $F_1, ..., F_m : X \to P(X)$  be multivalued operators. The system  $F = (F_1, ..., F_m)$  is called an iterated multifunction system (IMS).

If  $F = (F_1, ..., F_m)$  is such that  $F_i : X \to P_{cp}(X), i = \overline{1, m}$ , are upper semicontinuos, then the operator  $T_F$  defined as

$$T_{F}(Y) = \bigcup_{i=1}^{m} F_{i}(Y), \text{ for each } Y \in P_{cp}(X),$$

is called the multi-fractal operator generated by the iterated multifunction system  $F = (F_1, ..., F_m)$ .

Since the operators  $F_i: X \to P_{cp}(X), i = \overline{1, m}$ , are upper semicontinuos, then  $T_F: P_{cp}(X) \to P_{cp}(X)$ .

A nonempty compact subset  $A^* \subset X$  is said to be a multivalued fractals with respect to the iterated multifunction system  $F = (F_1, ..., F_m)$  if and only if it is a fixed point for the associated multi-fractal operator, i.e.  $T_F(A^*) = A^*$ .

In this section we prove some existence and the uniqueness results for the selfsimilar set (fractal) of an iterated multifunction system in complete *b-metric* spaces.

**Definition 3.1.** Let (X, d) be a b-metric space with constant s.  $f : X \to X$  is said to be a Ćirić operator if there exists  $a \in (0, \infty)$  with  $a < \frac{1}{s}$  such that  $d(f(x), f(y)) \le a \max \{ d(x, y), d(x, f(x)), d(y, f(y)), \frac{1}{2s} [d(x, f(y)) + d(y, f(x))] \}$ , for all  $x, y \in X$ .

**Definition 3.2.** Let (X, d) be a b-metric space with constant s.  $F : X \to P_{cp}(X)$  is said to be a multivalued Ciric-type operator if there exists  $a \in (0, \infty)$  with  $a < \frac{1}{s}$  such that

 $H(F(x),F(y)) \leq a \max\left\{d(x,y), \frac{1}{2s}\left[D\left(x,F\left(y\right)\right) + D\left(y,F\left(x\right)\right)\right]\right\}, \text{ for all } x,y \in X.$ 

**Theorem 3.3.** Let (X, d) be a b-metric space with constant s and let  $f : X \to X$  be a Ciric type operator with constant  $a \in (0, \frac{1}{s})$ . Then

- (*i*)  $Fixf = \{x^*\};$
- (ii)  $\forall x \in X$  the sequence  $(f^n(x))_{n \in \mathbb{N}} \xrightarrow{d} x^*$ , as  $n \to \infty$ .

*Proof.* The existence of the fixed point and (ii) follows from Theorem 2.3. So we have to prove the uniqueness.

Suppose that  $x^*, y^* \in Fixf, x^* \neq y^*$ .

 $\begin{array}{rcl} \text{Then} & d\left(x^{*},y^{*}\right) & = & d\left(f\left(x^{*}\right),f\left(y^{*}\right)\right) & \leq & a\max\left\{d(x^{*},y^{*}),\frac{1}{2s}\left[d\left(x^{*},f\left(y^{*}\right)\right)\right. + d\left(y^{*},f\left(x^{*}\right)\right)\right]\right\}. \end{array}$ 

If  $\max \left\{ d(x^*, y^*), \frac{1}{2s} \left[ d(x^*, f(y^*)) + d(y^*, f(x^*)) \right] \right\} = d(x^*, y^*)$ , then we obtain that  $a \ge 1$  which is a contradiction.

If  $\max \left\{ d(x^*, y^*), \frac{1}{2s} \left[ d(x^*, f(y^*)) + d(y^*, f(x^*)) \right] \right\} = \frac{1}{2s} \left[ d(x^*, f(y^*)) + d(y^*, f(x^*)) \right]$ , then  $d(x^*, y^*) \le \frac{a}{s} d(x^*, y^*)$ . Thus,  $\frac{a}{s} \ge 1$  again a contradiction.

**Theorem 3.4.** Let (X, d) be a complete b-metric space with constant s, such that  $d: X \times X \to \mathbb{R}_+$  is a continuous b-metric. Let  $F_i: X \to P_{cp}(X), i = \overline{1, m}$ , be upper semicontinuos multivalued Ciric-type operators. Then, the multivalued operator  $T_F$  generated by the iterated multifunction system  $F = (F_1, ..., F_m)$ , by the relation  $T_F(Y) = \bigcup_{i=1}^m F_i(Y)$ , for each  $Y \in P_{cp}(X)$ , verify the following conditions:

- (i)  $T_F: (P_{cp}(X), H) \to (P_{cp}(X), H);$
- (ii)  $T_F$  is a Ciric type operator, in the sense that

$$H(T_F(Y_1), T_F(Y_2)) \le a \max\{H(Y_1, Y_2), H(Y_1, T_F(Y_1), H(Y_2, T_F(Y_2), \frac{1}{2s}[H(Y_1, T_F(Y_2) + H(Y_2, T_F(Y_1)]]\}$$

(iii) There exists a unique multivalued fractal  $A_{T_F}^* \in P_{cp}(X)$  such that  $(T_F^n(A))_{n \in \mathbb{N}} \xrightarrow{H} A_{T_F}^*$ , as  $n \to \infty$ , for every  $A \in P_{cp}(X)$ .

*Proof.* (i) By the upper semicontinuity of the operators  $F_i$ ,  $i = \overline{1, m}$ , we have that  $T_F: (P_{cp}(X), H) \to (P_{cp}(X), H)$ .

(ii) We will prove first that for any  $Y_1, Y_2 \in P_{cp}(X)$  we have

$$H(F_i(Y_1), F_i(Y_2)) \le a_i \max\{H(Y_1, Y_2), H(Y_1, F_i(Y_1), H(Y_2, F_i(Y_2), \frac{1}{2s} [H(Y_1, F_i(Y_2) + H(Y_2, F_i(Y_1)])]\}, i = \overline{1, m}.$$

For this purpose, let  $Y_1, Y_2 \in P_{cp}(X)$ . For each  $i = \overline{1, m}$  we have:

$$\begin{split} \rho(F_i(Y_1), F_i(Y_2)) &= \sup_{x \in Y_1} \rho(F_i(x), F_i(Y_2)) \\ &= \sup_{x \in Y_1} (\inf_{y \in Y_2} (\rho(F_i(x), F_i(y)))) \leq \sup_{x \in Y_1} (\inf_{y \in Y_2} (H(F_i(x), F_i(y)))) \\ &\leq \sup_{x \in Y_1} (\inf_{y \in Y_2} (a_i \max\{d(x, y), \frac{1}{2s} [D(x, F_i(y)) + D(y, F_i(x))]\})) \\ &\leq a_i \max\{H(Y_1, Y_2), \frac{1}{2s} [\rho(Y_1, F_i(Y_2)) + \rho(Y_2, F_i(Y_1))]\} \\ &\leq a_i \max\{H(Y_1, Y_2), \frac{1}{2s} [H(Y_1, F_i(Y_2)) + H(Y_2, F_i(Y_1))]\} \\ &\leq a_i \max\{H(Y_1, Y_2), H(Y_1, F_i(Y_1), H(Y_2, F_i(Y_2), \frac{1}{2s} [H(Y_1, F_i(Y_2)) + H(Y_2, F_i(Y_2), \frac{1}{2s} [H(Y_1, F_i(Y_2)) + H(Y_2, F_i(Y_1))]\} \end{split}$$

Hence, for each  $i = \overline{1, m}$  we have

$$\begin{aligned} H(F_i(Y_1), F_i(Y_2)) &\leq a_i \max\{H(Y_1, Y_2), H(Y_1, F_i(Y_1), H(Y_2, F_i(Y_2), \\ & \frac{1}{2s} \left[H(Y_1, F_i(Y_2) + H(Y_2, F_i(Y_1))\right]\}. \end{aligned}$$

Using the following property

$$H\left(\bigcup_{i=1}^{m} F_{i}(Y_{1}), \bigcup_{i=1}^{m} F_{i}(Y_{2})\right) \leq \max\left\{H\left(F_{i}(Y_{1}), F_{i}(Y_{2})\right), ..., H\left(F_{i}(Y_{1}), F_{i}(Y_{2})\right)\right\},$$

we obtain that

$$H(T_F(Y_1), T_F(Y_2)) \leq \max_{i \in \{1, 2, \cdots, m\}} \{H(F_i(Y_1), F_i(Y_2))\}$$
  
$$\leq a \max\{H(Y_1, Y_2), H(Y_1, T_F(Y_1)), H(Y_2, T_F(Y_2)), \frac{1}{2s} [H(Y_1, T_F(Y_2)) + H(Y_2, T_F(Y_1))]\},$$

where  $a := \max_{i \in \{1, 2, \cdots, m\}} a_i$ .

(iii) from (ii) we have  $T_F$  is a (singlevalued) Ćirić type operator on the complete *b*-metric space  $(P_{cp}(X), H)$ , and thus, by Theorem 3.1., we obtain that  $Fix(T_F) = \{A_{T_F}^*\}$  and  $T_F^n(A) \to A_{T_F}^*$ , as  $n \to \infty$ , for each  $A \in P_{cp}(X)$ .

## REFERENCES

- 1. M. Boriceanu, M. Bota and A. Petruşel, Multivalued fractals in b-metric spaces, *Cent. Eur. J. Math.*, 8(2) (2010), 367-377.
- 2. M. Boriceanu, A. Petruşel and A. I. Rus, Fixed point theorems for some multivalued generalized contraction in *b*-metric spaces, *Internat. J. Math. Statistics*, **6** (2010), 65-76.
- 3. S. Czerwik, Nonlinear set-valued contraction mappings in *b*-metric spaces, *Atti Sem. Mat. Univ. Modena*, **46** (1998), 263-276.
- 4. G. Gwóźdź-Lukawska and J. Jachymski, IFS on a metric space with a graph structure and extensions of the Kelisky-Rivlin theorem, *J. Math. Anal. Appl.*, **356** (2009), 453-463.
- 5. J. Jachymski, The contraction principle for mappings on a metric space with a graph, *Proc. Amer. Math. Soc.*, **136** (2008), 1359-1373.
- 6. J. Harjani and K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, *Nonlinear Anal.*, **71** (2009), 3403-3410.
- A. Nicolae, D. O'Regan and A. Petruşel, Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph, *J. Georgian Math. Soc.*, 18 (2011), 307-327

Cristian Chifu and Gabriela Petruşel Babeş-Bolyai University Cluj-Napoca Faculty of Business Department of Business Horea street, No. 7, Cluj-Napoca Romania E-mail: Cristian.Chifu@tbs.ubbcluj.ro Gabi.Petrusel@tbs.ubbcluj.ro