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EXTINCTION FOR A QUASILINEAR PARABOLIC EQUATION WITH A
NONLINEAR GRADIENT SOURCE

Dengming Liu* and Chunlai Mu

Abstract. We investigate the extinction, non-extinction and decay estimates of
the non-negative nontrivial weak solutions of the initial-boundary value problem
for the quasilinear parabolic equation with nonlinear gradient source.

1. INTRODUCTION

In this paper, we consider the following degenerate singular equation with nonlinear
gradient source⎧⎪⎪⎨

⎪⎪⎩
ut = div

(
uα |∇u|m−1 ∇u

)
+ λ |∇u|q , (x, t) ∈ Ω × (0,+∞) ,

u (x, t) = 0, (x, t) ∈ ∂Ω × (0,+∞) ,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.1)

where Ω ⊂ RN , N ≥ m+ 1, is an open bounded domain with smooth boundary ∂Ω,
m, q and λ are positive parameters, 0 < m+α < 1, and u0 ∈ L∞ (Ω) ∩W 1,m+1

0 (Ω)
is a nonzero nonnegative function.

Model (1.1) is encountered in a variety of physical phenomena and applications.
For instance, when α = 0, m = 1, the equation in problem (1.1) can be viewed as
the viscosity approximation of Hamilton-Jacobi type equation from stochastic control
theory [20]. In particular, when α = 0, m = 1 and q = 2, the equation in problem
(1.1) appears in the physical theory of growth and roughening of surfaces, where it
is known as the Kardar-Parisi-Zhang equation [14]. It is obvious that the equation in
problem (1.1) is degenerate and singular at the points where u = 0 or ∇u = 0, and
hence there is no classical solution in general. We introduce the definition of the weak
solution for problem (1.1) as follows.
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Definition 1.1. We say that a nonnegative measurable function u (x, t) defined in
Ω × (0, T ) is a weak solution of problem (1.1) if uα |∇u|m+1 ∈ L1

(
0, T ;L1 (Ω)

)
,

ut ∈ L2
(
0, T ;L2 (Ω)

)
, u ∈ C (0, T ;L∞ (Ω)) ∩ Lq

(
0, T ;W 1,q (Ω)

)
, and the integral

identity
∫

Ω
u (x, t2) ζ (x, t2) dx+

∫ t2

t1

∫
Ω

[
−uζt + uα |∇u|m−1 ∇u · ∇ζ

]
dxdt

=
∫

Ω
u (x, t1) ζ (x, t1) dx+ λ

∫ t2

t1

∫
Ω
|∇u|q ζdxdt

(1.2)

holds for any ζ ∈ C∞
0 (Ω × (0, T )) and 0 < t1 < t2 < T . Furthermore,

(1.3) u (x, 0) = u0 (x) a.e. x ∈ Ω.

Remark 1.1. The weak subsolution (resp. supersolution) of problem (1.1) can be
defined in the similar way. In fact, one needs only to change “ = ” in (1.2) and (1.3)
into “ ≤ ” (resp. “ ≥ ”) for every nonnegative ζ ∈ C∞

0 (Ω × (0, T )).

Recently, based on a priori estimates, the local existence of the solution for fast
diffusion equations with gradient source terms was studied in [25, 26, 27] through
an approximation and regularization process. Following a slight modification of those
arguments previously used in [25, 26, 27], we can prove the local existence result
of the weak solution for problem (1.1). Furthermore, from Theorem 3.9 in [24] and
Subsection 1.1 in [12], we know that comparison principle is granted for problem
(1.1). The main goal of this article is to investigate the extinction property of the
nonnegative weak solution u (x, t) of problem (1.1), namely, whether there exists a
finite time T > 0 such that u (x, t) is nontrivial for t ∈ (0, T ) but u (x, t) ≡ 0 for
any (x, t) ∈ Ω × [T,+∞). As one of the most remarkable properties that distinguish
nonlinear parabolic problems from the linear ones, the study of extinction and non-
extinction of nonnegative solutions to parabolic equations attracted extensive attentions
of mathematicians in the past few decades (see [3, 4, 5, 6, 10, 11, 13, 17, 21, 28, 31, 32]
and the references therein). For example, Gu [9] considered the following semilinear
heat equation with a cool source⎧⎪⎪⎨

⎪⎪⎩
ut = Δu− up, (x, t) ∈ Ω × (0,+∞) ,

u (x, t) = 0, (x, t) ∈ ∂Ω × (0,+∞) ,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.4)

where p > 0, and proved that the nontrivial solution of problem (1.1) vanishes in finite
time if and only if p ∈ (0, 1). In other words, the strong absorption in problem (1.4)
causes extinction in finite time. Meanwhile, in [9], Gu also gave the necessary and
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sufficient conditions on the occurrence of extinction phenomenon of the weak solution
to the following p-Laplace equation⎧⎪⎪⎨

⎪⎪⎩
ut = div

(
|∇u|p−2 ∇u

)
− λuq, (x, t) ∈ Ω × (0,+∞) ,

u (x, t) = 0, (x, t) ∈ ∂Ω × (0,+∞) ,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.5)

where p > 1, λ and q are positive parameters.
Tian and Mu [29] studied the extinction behavior of the weak solution for a p-

Laplace equation with a hot source as the form⎧⎪⎪⎨
⎪⎪⎩

ut = div
(
|∇u|p−2 ∇u

)
+ λuq, (x, t) ∈ Ω × (0,+∞) ,

u (x, t) = 0, (x, t) ∈ ∂Ω × (0,+∞) ,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.6)

where λ, q > 0 and p ∈ (1, 2), and showed that q = p − 1 is the critical extinction
exponent of the weak solution of problem (1.6). Moreover, for the critical case q = p−1,
the authors pointed out that whether the weak solution vanishes in finite time or not
depends strongly on the first eigenvalue of p-Laplace equation with zero boundary
condition.

Jin et al. [15], Zhou and Mu [34] dealt with the following fast diffusive polytropic
filtration equation with source term⎧⎪⎪⎨

⎪⎪⎩
ut = div

(
|∇um|p−2 ∇um

)
+ λuq, (x, t) ∈ Ω × (0,+∞) ,

u (x, t) = 0, (x, t) ∈ ∂Ω × (0,+∞) ,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.7)

where p > 1, m, λ, q > 0, m (p− 1) < 1. The authors concluded that the critical
extinction exponent of the weak solution to problem (1.7) is q = m (p− 1). Further-
more, in the critical case q = m (p− 1), they pointed out that the value of parameter
λ plays an important role in determining the extinction property of the weak solution
for problem (1.7).

Let us point out that extinction behaviors for parabolic equations with both hot
source and cool source have been studied extensively by many researchers, such as
[7, 19, 20, 22, 30, 33], and so on.

However, to our best knowledge, there is little literature on the study of the ex-
tinction and non-extinction properties for parabolic equations with nonlinear gradient
terms. In [1], Benachour et al. discussed the following Cauchy problem for a viscous
Hamilton-Jacobi equation{

ut = Δu− |∇u|p , x ∈ RN , t > 0,

u (x, 0) = u0 (x) , x ∈ RN ,
(1.8)
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where p > 0, u0 (x) ∈ BC (
RN

)∩L1
(
RN

)
is nonnegative, here BC (

RN
)

denotes the
space of bounded and continuous functions in RN . The authors showed that extinction
phenomenon takes place for any nonnegative and integrable solution to problem (1.8)
if p ∈

(
0, N

N+1

)
. Moreover, they established some temporal decay estimates for the

L∞−norm of the nonnegative solutions in the case p ≥ N
N+1 . Later, Benachour et al.

[2] investigated problem (1.8) with p ∈ (0, 1) and u0 ∈ BC (
RN

)
. They pointed out

that the occurrence of the extinction phenomenon depends on the asymptotic behavior
of u0 as |x| tends to infinity. Roughly speaking, they proved that if the decay of
initial data u0 (x) is faster than that of |x|− p

1−p as |x| → ∞, then extinction occurs.
Otherwise, the solution of (1.8) is strictly positive for any positive initial data. In
addition, they also claimed that the critical extinction exponent p = N

N+1 introduced in
[1] is optimal.

Iagar and Laurençot [12] concerned with the following Cauchy problem{
ut = div

(
|∇u|p−2 ∇u

)
− |∇u|q , x ∈ RN , t > 0,

u (x, 0) = u0 (x) , x ∈ RN ,
(1.9)

where q > 0 and p ∈ (1, 2). Based on comparison principle and gradient estimates
of the solutions, they classify the behavior of the solutions for large time, obtaining
either positivity as t → ∞ for q > p − N

N+1 , optimal decay estimates as t → ∞ for

q ∈
[

p
2 , p− N

N+1

]
, or extinction in finite time for q ∈ (

0, p
2

)
. In addition, the authors

showed that how the diffusion prevents extinction in finite time in some ranges of
exponents where extinction occurs for the non-diffusive Hamilton-Jacobi equation.

Recently, Mu et al. [23] considered the following fast diffusion equation⎧⎪⎪⎨
⎪⎪⎩

ut = Δum + λ |∇u|p , x ∈ Ω, t > 0,

u (x, t) = 0, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.10)

where 0 < m < 1, p, λ > 0, and proved that p = m is the critical extinction exponent
of the nonnegative weak solution for problem (1.10).

Motivated by those works above, we consider the extinction property of the weak
solutions for problem (1.1) by using energy estimates approach and constructing suitable
subsolutions. The main results of this article are stated as follows.

Theorem 1.1. Assume that 0 < m + α < 1 and m + α < q < m+1
2−α , then the

nonnegative weak solution of problem (1.1) vanishes in finite time provided that u0 is
sufficiently small. Furthermore, we have⎧⎪⎨

⎪⎩
‖u‖ 2m+α

m
≤ ‖u0‖ 2m+α

m

[
1 −C6t ‖u0‖m+α−1

2m+α
m

] 1
1−m−α

, t ∈ [0, T1),

‖u‖ 2m+α
m

≡ 0, t ∈ [T1,+∞),
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for m
(

N−m−1
Nm+m+1 − 1

)
≤ α < 1, and

⎧⎪⎨
⎪⎩

‖u‖N(1−m−α)
m+1

≤ ‖u0‖N(1−m−α)
m+1

[
1 −C10t ‖u0‖m+α−1

N(1−m−α)
m+1

] 1
1−(m+α)

, t ∈ [0, T2),

‖u‖N(1−m−α)
m+1

≡ 0, t ∈ [T2,+∞),

for −m < α < m
(

N−m−1
Nm+m+1 − 1

)
, where C6, T1, T2 and C10 are positive constants,

given by (2.10), (2.11), (2.18) and (2.19), respectively.

Theorem 1.2. Assume that 0 < m+ α < 1 and q < m+ α, then for any nonzero
nonnegative initial data u0, the nonnegative weak solution u of problem (1.1) cannot
possess extinction phenomenon provided that λ is sufficiently large.

Theorem 1.3. Assume that 0 < m+ α < 1 and q = m+ α.
(1). The nonnegative weak solution of problem (1.1) vanishes in finite time provided

that λ is sufficiently small. Furthermore, we have⎧⎨
⎩ ‖u‖ 2m+α

m
≤ ‖u0‖2m+α

m

[
1 − C12t ‖u0‖m+α−1

2m+α
m

] 1
1−m−α

, t ∈ [0, T3),

‖u‖ 2m+α
m

≡ 0, t ∈ [T3,+∞),

for m
(

N−m−1
Nm+m+1 − 1

)
≤ α < 1, and

⎧⎪⎨
⎪⎩

‖u‖N(1−m−α)
m+1

≤ ‖u0‖N(1−m−α)
m+1

[
1 −C13t ‖u0‖m+α−1

N(1−m−α)
m+1

] 1
1−m−α

, t ∈ [0, T4),

‖u‖N(1−m−α)
m+1

≡ 0, t ∈ [T4,+∞),

for −m < α < m
(

N−m−1
Nm+m+1 − 1

)
, where T3, C12, T4 and C13 are positive constants,

given by (4.2), (4.3), (4.4) and (4.5), respectively.
(2). The nonnegative weak solution of problem (1.1) cannot vanish in finite time

provided that λ is sufficiently large.

Remark 1.2. From theorems 1.1, 1.2 and 1.3, we know that q = m + α is the
critical extinction exponent of the weak solution of problem (1.1).

The rest of this article is organized as follows. In Section 2, we will discuss the
extinction behaviour and decay estimate of the weak solution for problem (1.1) in the
case q ∈

(
m+ α, m+1

2−α

)
, and give the proof of Theorem 1.1. Section 3 is mainly about

the non-extinction property of problem (1.1) in the case q ∈ (0, m+ α) and the proof
of Theorem 1.2. Finally, the critical case q = m+α and the proof of Theorem 1.3 are
the main subject of Section 4.
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2. EXTINCTION OF THE SOLUTION

The main goal of this section is to discuss the extinction behavior of the weak
solution for problem (1.1) in the case q ∈

(
m + α, m+1

2−α

)
. By establishing appropriate

Lr-norm estimate of the weak solution, here r > 1, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Multiplying the first equation in (1.1) by us with s > 0,
and integrating over Ω, one has

1
s+ 1

d

dt

∫
Ω

us+1dx+ s

(
m+ 1

m+ α+ s

)m+1 ∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1
dx

= λ

(
m+ 1

m+ α + s

)q ∫
Ω
u

s(m+1)−q(α+s−1)
m+1

∣∣∣∇um+α+s
m+1

∣∣∣q dx.
(2.1)

Now, we will divide the proof of Theorem 1.1 into two cases according to the different
values of α.

Case 1. m
[

N−(m+1)
Nm+m+1 − 1

]
≤ α < 1. For this case, taking s = m+α

m in (2.1), then
(2.1) becomes

m

2m+ α

d

dt

∫
Ω
u

2m+α
m dx+

(
m

m+ α

)m ∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1
dx

= λ

(
m

m+ α

)q ∫
Ω
u

m+α(1−q)
m

∣∣∣∇um+α
m

∣∣∣q dx.(2.2)

Since q ∈
(
m+ α, m+1

2−α

)
, Young’s inequality can be used to obtain

(2.3)

∫
Ω
u

m+α(1−q)
m

∣∣∣∇um+α
m

∣∣∣q dx
≤ ε1

∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1
dx+C (ε1)

∫
Ω
u

(m+1)[m+α(1−q)]
m(m+1−q) dx.

Furthermore, Hölder’s inequality tells us

(2.4)
∫

Ω

u
(m+1)[m+α(1−q)]

m(m+1−q) dx ≤ |Ω|1−
(m+1)[m+α(1−q)]
(2m+α)(m+1−q)

(∫
Ω

u
2m+α

m dx

) (m+1)[m+α(1−q)]
(2m+α)(m+1−q)

.

Inserting this estimate into (2.3), we get

(2.5)

∫
Ω
u

m+α(1−q)
m

∣∣∣∇um+α
m

∣∣∣q dx
≤ ε1

∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1
dx+C (ε1) |Ω|1−

(m+1)[m+α(1−q)]
(2m+α)(m+1−q)

×
(∫

Ω
u

2m+α
m dx

) (m+1)[m+α(1−q)]
(2m+α)(m+1−q)

.



Extinction for a Quasilinear Parabolic Equation with a Nonlinear Gradient Source 1335

On the other hand, by using Hölder’s inequality and Sobolev embedding inequality, we
can easily arrive at the following estimate

∫
Ω

u
2m+α

m dx ≤ |Ω|1−
(2m+α)[N−(m+1)]

N(m+1)(m+α)

(∫
Ω

u
N(m+1)(m+α)
m[N−(m+1)] dx

) (2m+α)[N−(m+1)]
N(m+1)(m+α)

≤ κ1 |Ω|1−
(2m+α)[N−(m+1)]

N(m+1)(m+α)

(∫
Ω

∣∣∣∇um+α
m

∣∣∣m+1
dx

) 2m+α
(m+1)(m+α)

,

(2.6)

which implies that

C1

(∫
Ω
u

2m+α
m dx

) (m+1)(m+α)
2m+α

≤
∫

Ω

∣∣∣∇um+α
m

∣∣∣m+1
dx,(2.7)

where
C1 = κ

− (m+1)(m+α)
2m+α

1 |Ω|1−m+1
N

− (m+1)(m+α)
2m+α ,

and κ1 is the embedding constant, depending only on m, α and N . Choosing ε1
sufficiently small such that

C2 =
(

m

m+ α

)m

− λε1

(
m

m+ α

)q

> 0,

then from (2.2), (2.5), and (2.7), it follows that

(2.8)

d

dt

∫
Ω
u

2m+α
m dx+ C3

(∫
Ω
u

2m+α
m dx

) (m+1)(m+α)
2m+α

≤ C4

(∫
Ω
u

2m+α
m dx

) (m+1)[m+α(1−q)]
(2m+α)(m+1−q)

,

where
C3 =

C1C2 (2m+ α)
m

,

and
C4 =

λ (2m+ α)C (ε1)
m

(
m

m+ α

)q

|Ω|1−
(m+1)[m+α(1−q)]
(2m+α)(m+1−q) .

Next, let u0 (x) be sufficiently small such that
(∫

Ω
u

2m+α
m

0 dx

)m(m+1)[q−(m+α)]
(2m+α)(m+1−q)

≤ C3C
−1
4 ,

then we have

(2.9)
d

dt

∫
Ω
u

2m+α
m dx ≤ C5

(∫
Ω
u

2m+α
m dx

) (m+1)(m+α)
2m+α

,
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where

C5 = C4

(∫
Ω
u

2m+α
m

0 dx

)m(m+1)[q−(m+α)]
(2m+α)(m+1−q)

−C3 < 0.

Integrating (2.9), we arrive at the following inequality

(∫
Ω
u

2m+α
m dx

)m[1−(m+α)]
2m+α

≤
(∫

Ω
u

2m+α
m

0 dx

)m[1−(m+α)]
2m+α

− C6t,

where

(2.10) C6 =
m (m+ α− 1)

2m+ α
C5 > 0,

as long as the right side is nonnegative. From this, one has

∫
Ω
u

2m+α
m dx ≤

∫
Ω
u

2m+α
m

0 dx

⎡
⎢⎢⎢⎢⎣1− C6t(∫

Ω u
2m+α

m
0 dx

)m[1−(m+α)]
2m+α

⎤
⎥⎥⎥⎥⎦

2m+α
m[1−(m+α)]

+

,

that is

‖u‖ 2m+α
m

≤ ‖u0‖ 2m+α
m

[
1 −C6t ‖u0‖m+α−1

2m+α
m

] 1
1−(m+α)

+
,

which implies that u (x, t) vanishes in finite time

(2.11) T1 = C−1
6 ‖u0‖1−(m+α)

2m+α
m

.

Case 2. −m < α < m
[

N−(m+1)
Nm+m+1 − 1

]
. For this case, choosing

s =
N [1 − (m+ α)] −m− 1

m+ 1
>
m+ α

m

in (2.1). By Sobolev embedding inequlity and the choice of s, we find

(∫
Ω

us+1dx

) m+α+s
(m+1)(s+1)

=
(∫

Ω

u
N(α+m+s)
N−(m+1) dx

)N−(m+1)
N(m+1)

≤ κ2

(∫
Ω

∣∣∣∇uα+m+s
m+1

∣∣∣m+1
dx

) 1
m+1

,

(2.12)
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where κ2 is the embedding constant, depending only on α, m and N . On the other hand,
since q ∈

(
m+ α, m+1

2−α

)
, according to Young’s inequality and Hölder’s inequality, we

obtain ∫
Ω
u

s(m+1)−q(α+s−1)
m+1

∣∣∣∇um+α+s
m+1

∣∣∣q dx
≤ ε2

∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1
dx+ C (ε2)

∫
Ω
u

s(m+1)−q(α+s−1)
m+1−q dx

≤ C (ε2) |Ω|1−
s(m+1)−q(α+s−1)

(s+1)(m+1−q)

(∫
Ω
us+1dx

) s(m+1)−q(α+s−1)
(s+1)(m+1−q)

+ ε2

∫
Ω

∣∣∣∇um+α+s
m+1

∣∣∣m+1
dx.

(2.13)

Choosing

ε2 <
s

λ

(
m+ 1

m+ α + s

)m+1−q

,

then from (2.1), (2.12) and (2.13), one has

d

dt

∫
Ω

us+1dx+C7

(∫
Ω

us+1dx

)m+α+s
s+1 ≤C8

(∫
Ω

us+1dx

) s(m+1)−q(α+s−1)
(s+1)(m+1−q)

,(2.14)

where

C7 =
s+ 1
κ2

[
s

(
m+ 1

m+ α + s

)m+1

− λε2

(
m+ 1

m+ α+ s

)q
]
> 0,

and
C8 = λC (ε2) |Ω|1−

s(m+1)−q(α+s−1)
(s+1)(m+1−q)

(
m+ 1

m+ α + s

)q

.

Choosing u0 sufficiently small such that

(2.15)
(∫

Ω
us+1

0 dx

) (m+1)[q−(m+α)]
(s+1)(m+1−q)

≤ C7C
−1
8 .

It follows easily from (2.14) and (2.15) that

(2.16)
d

dt

∫
Ω
us+1dx ≤ C9

(∫
Ω
us+1dx

)m+α+s
s+1

,

here

C9 = C8

(∫
Ω
us+1

0 dx

) (m+1)[q−(m+α)]
(s+1)(m+1−q)

− C7 < 0.
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Integrating (2.16), we get

(2.17)
∫

Ω
us+1dx ≤

∫
Ω
us+1

0 dx

⎡
⎣1 − C10t(∫

Ω u
s+1
0 dx

)1−(m+α)
s+1

⎤
⎦

s+1
1−(m+α)

+

,

that is

‖u‖N [1−(m+α)]
m+1

≤ ‖u0‖N [1−(m+α)]
m+1

[
1 −C10t ‖u0‖m+α−1

N [1−(m+α)]
m+1

] 1
1−(m+α)

+

,

which means that u (x, t) vanishes in finite time

(2.18) T2 = C−1
10 ‖u0‖1−(m+α)

N [1−(m+α)]
m+1

,

where

(2.19) C10 =
m (m+ α− 1)

2m+ α
C9 > 0.

The proof of Theorem 1.1 is complete.

3. NON-EXTINCTION OF THE SOLUTION

In this section, we will deal with the non-extinction of the weak solution for problem
(1.1) in the case q ∈ (0, m+ α) and give the proof of Theorem 1.2. Our main tool isthe
combination of constructing suitable positive weak subsolution and comparison principle.

Proof of Theorem 1.2. Let λ1 be the first eigenvalue and ψ (x) be the corresponding
eigenfunction of the following problem{

− div
(
Uα |∇U|m−1 ∇U

)
= λUα+1 |U|m−1 , x ∈ Ω,

U (x) = 0, x ∈ ∂Ω.
(3.1)

In what follows, we assume that ψ (x) > 0 and max
x∈Ω

ψ (x) = 1. Define a function

f (t) as follows
f (t) = d

1
m+α−q

(
1 − e−ct

) 1
1−q ,

where d ∈ (0, 1), and c > 0 will be determined later. Then it is easy to check that

(3.2) f (0) = 0 and f (t) ∈ (0, 1) for t > 0.

In addition, for convenience, we denote d = 1
a , where a ∈ (1,+∞) is a constant.

Taking
0 < c < (m+ α− q) a

1−q
m+α−q ,
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then using the inequality

(1 − x)a + ax < 1 for x, a ∈ (0, 1) ,

we have

f ′ (t) + afm+α − f q < 0.(3.3)

Letting
V1 (x, t) = f (t)ψ (x) .

Our next goal is to show that V1 (x, t) is a weak subsolution of problem (1.1). By a
straightforward computation, using (3.3) and the definition of ψ (x), we arrive at

I :=
∫ t

0

∫
Ω
V1sζdxds+

∫ t

0

∫
Ω
Vα

1 |∇V1|m−1 ∇V1 · ∇ζdxds−λ
∫ t

0

∫
Ω
|∇V1|q ζdxds

=
∫ t

0

∫
Ω
fs (s)ψ (x) ζ (x, s) dxds− λ

∫ t

0

∫
Ω
f q (s) |∇ψ|q ζ (x, s) dxds

+
∫ t

0

∫
Ω
fα+m (s)ψα (x) |∇ψ (x)|m−1 ∇ψ (x) · ∇ζ (x, s)dxds

<

∫ t

0

∫
Ω

[
f q (s) − afm+α (s)

]
ψ (x) ζ (x, s) dxds

− λ

∫ t

0

∫
Ω
f q (s) |∇ψ (x)|q ζ (x, s) dxds

+ λ1

∫ t

0

∫
Ω
fα+m (s)ψm+α (x) ζ (x, s) dxds

<

∫ t

0

∫
Ω
f q (s)

[
ψ (x) + λ1f

α+m−q (s)ψm+α (x) − λ |∇ψ (x)|q] ζ (x, s)dxds.

Recalling that f , ψ ∈ (0, 1), then 0 < q < m+ α < 1 tells us that

ψ (x) + λ1f
α+m−q (s)ψm+α (x) < (λ1 + 1)ψm+α (x) .

If

λ >
(λ1 + 1) ‖ψ‖m+α

m+α

‖∇ψ‖q
q

,

then we can immediately get I < 0, which implies that V1 (x, t) is a strict weak sub-
solution of problem (1.1). Then by comparison principle, we know that u (x, t) >
V1 (x, t) > 0 for all (x, t) ∈ Ω× (0,+∞), which means that, for any nonzero nonneg-
ative initial data u0, the weak solution of problem (1.1) cannot vanish in finite time
provided that λ is sufficiently large. The proof of Theorem 1.2 is complete.
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4. CRITICAL CASE

This section is devoted to consider the critical case q = m+α and prove Theorem
1.3.

Proof of Theorem 1.3. (1). By the similar arguments in the proof of Theorem 1.1,
for m

[
N−(m+1)
Nm+m+1 − 1

]
≤ α < 1, we have

d

dt

∫
Ω

u
2m+α

m dx ≤ C11

(∫
Ω

u
2m+α

m dx

) (m+1)(m+α)
2m+α

,(4.1)

where

C11 =
2m+ α

m

(
m

m+ α

)m {
λ

(
m

m+ α

)α [
ε1C1 +C (ε1) |Ω|m[1−(m+α)]

2m+α

]
− C1

}
.

If

λ < C1

(
m

m+ α

)−α [
ε1C1 + C (ε1) |Ω|m[1−(m+α)]

2m+α

]−1

,

then we have C11 < 0. From (4.1), it follows that

‖u‖ 2m+α
m

≤ ‖u0‖2m+α
m

[
1 − C12t ‖u0‖m+α−1

2m+α
m

] 1
1−(m+α)

+
,

which implies that u (x, t) vanishes in finite time

(4.2) T3 = C−1
12 ‖u0‖1−(m+α)

2m+α
m

,

where

(4.3) C12 =
m (m+ α− 1)

2m+ α
C11 > 0.

Likewise, for −m < α < m
[

N−(m+1)
Nm+m+1 − 1

]
, we have

‖u‖N [1−(m+α)]
m+1

≤ ‖u0‖N [1−(m+α)]
m+1

[
1 −C13t ‖u0‖m+α−1

N [1−(m+α)]
m+1

] 1
1−(m+α)

+

holds for

λ <
s (s + 1)
κ2

(
m+ 1

m+ α+ s

)1−α [
C (ε2) |Ω|1−m−α

s+1 +
ε2 (s+ 1)

κ2

]−1

,
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which leads to u (x, t) vanishes in finite time

(4.4) T4 = C−1
13 ‖u0‖1−(m+α)

N [1−(m+α)]
m+1

,

where

C13 = (m+ α − 1)
(

m+ 1
m+ α+ s

)m+α {
λ

[
C (ε2) |Ω|1−m−α

s+1 +
ε2 (s+ 1)

κ2

]

− s (s+ 1)
κ2

(
m+ 1

m+ α + s

)1−α }
> 0.

(4.5)

(2). Letting
V2 (x, t) = [(1 −m− α) t]

1
1−m−α ψ (x) .

Similarly as in the proof of Theorem 1.2, we can easily verify that V2 (x, t) is a weak
subsolution of problem (1.1) if

λ >
(λ1 + 1) ‖ψ‖q

q

‖∇ψ‖q
q

,

therefore extinction phenomenon in finite time cannot occur for sufficiently large λ.
The proof of Theorem 1.3 is complete.
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