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SOME ESTIMATES FOR SCHRÖDINGER TYPE OPERATORS ON
MUSIELAK-ORLICZ-HARDY SPACES

Sibei Yang

Abstract. Let L := −div(A∇) + V be a Schrödinger type operator with the
nonnegative potential V belonging to the reverse Hölder class RHq0(Rn) for
some q0 ∈ [n,∞) with n ≥ 3, where A satisfies the uniformly elliptic condition.
Assume that ϕ : Rn× [0,∞) → [0,∞) is a function such that ϕ(x, ·) is an Orlicz
function, ϕ(·, t) ∈ A∞(Rn) (the class of uniformly Muckenhoupt weights) and its
uniformly critical lower type index i(ϕ) ∈ ( n

n+α0
, 1], where α0 ∈ (0, 1] measures

the regularity of kernels of the semigroup generalized by L0 := −div(A∇). In
this article, we first prove that operators V L−1, V 1/2∇L−1 and ∇2L−1 are
bounded from the Musielak-Orlicz-Hardy space associated with L, Hϕ, L(Rn), to
the Musielak-Orlicz space Lϕ(Rn). Moreover, we also obtain the boundedness of
V L−1 and ∇2L−1 on Hϕ, L(Rn). All these results are new even when ϕ(x, t) :=
tp, with p ∈ ( n

n+α0
, 1], for all x ∈ Rn and t ∈ [0,∞).

1. INTRODUCTION

Let L := −Δ + V be the Schrödinger operator on the Euclidean space R
n with

n ≥ 3. When V is a nonnegative polynomial on Rn, the boundedness of ∇L−1/2,
L−1/2∇, ∇L−1∇, V 1/2∇L−1 and ∇2L−1 on Lp(Rn) with p ∈ (1,∞) was studied
in many articles (see, for example, [38, 46]). In particular, Zhong [46] proved that, in
this case, ∇L−1/2, ∇2L−1 and ∇L−1∇ are classical Calderón-Zygmund operators.

Moreover, Shen [37] generalized these results by extending the nonnegative poly-
nomial V to the case that V is nonnegative and belongs to the reverse Hölder class
RHq(Rn) with some q ∈ [n/2,∞]. Recall that it is said that f ∈ RHq(Rn) with
q ∈ (1,∞], if, when q ∈ (1,∞), f ∈ Lq

loc(R
n) and there exists a positive constant C

such that, for all balls B ⊂ R
n,

(1.1)
{

1
|B|

∫
B
|f(y)|q dy

}1/q

≤ C

|B|
∫

B
|f(y)| dy,
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or when q = ∞, f ∈ L∞
loc(R

n) and there exists a positive constant C such that, for
all balls B ⊂ R

n, ess sup y∈B |f(y)| ≤ C
|B|

∫
B |f(y)| dy. We remark that RHp(Rn) ⊂

RHq(Rn) for any 1 < q < p ≤ ∞ and, if V is a nonnegative polynomial, then
V ∈ RH∞(Rn) (see, for example, [16, 37]). Specifically, Shen [37] established the
boundedness of Liγ , ∇L−1/2, ∇2L−1 and ∇L−1∇ on some Lebesgue spaces Lp(Rn),
where i denotes the unit imaginary number, γ ∈ R and the ranges of p may depend
on n and q. Moreover, the boundedness of these operators implies immediately the
Sobolev W 2, p(Rn) regularity for the solution u to the equation −Δu+ V u = f when
f ∈ Lp(Rn) with some p ∈ (1, ∞). Furthermore, Shen [37] also established the
boundedness of V L−1 on Lp(Rn), which, together with the boundedness of ∇2L−1 on
Lp(Rn), further implies the following maximal inequality in Lp(Rn) (see also [1, 6]):

(1.2) ‖−Δf‖Lp(Rn) + ‖V f‖Lp(Rn) ≤ C ‖(−Δ + V )f‖Lp(Rn) ,

where f ∈ C∞
c (Rn) and C is a positive constant independent of f . In particular, when

V ∈ RHn(Rn), Shen [37, Theorem 0.8] proved that Liγ , ∇L−1/2 and ∇L−1∇ are
classical Calderón-Zygmund operators. Moreover, the weighted Lp(Rn)-boundedness
of these operators was studied in [42].

Recently, the boundedness of ∇2L−1 and V L−1 on the Musielak-Orlicz-Hardy
space Hϕ, L(Rn), associated with L, was studied in [10]. Recall that the Musielak-
Orlicz-Hardy space is a function space of Hardy-type which unify the classical Hardy
space, the weighted Hardy space, the Orlicz-Hardy space and the weighted Orlicz-
Hardy space, in which the spatial and the time variables may not be separable (see
[11, 17, 18, 26, 39, 40, 41, 44] for more details on the developments of Hardy-type
spaces and Musielak-Orlicz spaces). We also remark that the Musielak-Orlicz-Hardy
space appears naturally in many applications (see, for example, [7, 8, 9, 32]).

We point out that this kind of Musielak-Orlicz-Hardy spaces associated with oper-
ators generalizes the (Orlicz-)Hardy space and the (weighted) Hardy space associated
with operators, which has attracted great interests in recent years. Such function spaces
associated with operators play important roles in the study for the boundedness of sin-
gular integrals which may not fall within the scope of the classical Calderón-Zygmund
theory (see, for example, [2, 3, 12, 14, 15, 23, 24, 25, 28, 27, 29, 30, 43]).

From now on, let

(1.3) L := −div(A∇) + V

with some nonnegative potential V on R
n with n ≥ 3, where the coefficients matrix

A := {aij}1≤i, j≤n satisfies the following assumptions:
(A1) For any i, j ∈ {1, . . . , n}, aij is a measurable function on Rn. Moreover, there

exists a constant λ ∈ (0, 1] such that, for all i, j ∈ {1, . . . , n} and x, ξ ∈ R
n,

aij(x) = aji(x) and λ|ξ|2 ≤
n∑

i, j=1

aij(x)ξiξj ≤ λ−1|ξ|2.
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(A2) There exist constants α ∈ (0, 1] and K ∈ (0,∞) such that, for all i, j ∈
{1, . . . , n},

‖aij‖Cα(Rn) ≤ K,

where, for f ∈ Cα(Rn), ‖f‖Cα(Rn) := supx, y∈Rn, x �=y
|f(x)−f(y)|

|x−y|α .

(A3) There exists a constant α ∈ (0, 1] such that, for all i, j ∈ {1, . . . , n}, x ∈ Rn

and z ∈ Z
n,

aij ∈ C1+α(Rn), aij(x+ z) = aij(x) and
n∑

k=1

∂akj(x)
∂xk

= 0.

Let L be as in (1.3). Kurata and Sugano [31] studied the boundedness of V L−1,
V 1/2∇L−1 and ∇2L−1 on weighted Lebesgue spaces and Morrey spaces. Denote
by Aq(Rn) with q ∈ [1,∞] the class of Muckenhoupt weights (see, for example,
[18, 19, 21] for their definitions and properties). Specifically, it was proved in [31] that,
whenA in (1.3) satisfies the assumption (A1) and V ∈ RH∞(Rn), V L−1 is bounded on
the weighted space Lp

w(Rn), with p ∈ (1,∞) and w ∈ Ap(Rn), and the Morrey space
M q

p (Rn) with 1 < p < q < ∞; when A satisfies the assumptions (A1) and (A2) and
V ∈ RH∞(Rn), V 1/2∇L−1 is bounded on Lp

w(Rn), with p ∈ (1,∞) and w ∈ Ap(Rn),
and M q

p (Rn) with 1 < p < q < ∞; when A satisfies the assumptions (A1), (A2) and
(A3) and V ∈ RH∞(Rn), ∇2L−1 is bounded on Lp

w(Rn), with p ∈ (1,∞) and
w ∈ Ap(Rn), and M q

p (Rn) with 1 < p < q <∞.
Motivated by [10, 31], in this article, we establish the boundedness of the opera-

tors V L−1, V 1/2∇L−1 and ∇2L−1 on the Musielak-Orlicz-Hardy space Hϕ,L(Rn),
associated with L, where L is as in (1.3).

In order to state the main results of this article, let us first recall some notation
and definitions. Assume that the nonnegative function V on Rn belongs to the reserve
Hölder class RHq0(R

n) for some q0 ∈ [n/2,∞) with n ≥ 3. Denote by W 1, 2(Rn)
the usual Sobolev space on Rn equipped with the norm (‖f‖2

L2(Rn) +‖∇f‖2
L2(Rn))

1/2,
where ∇f denotes the distributional gradient of f . Let V ∈ RHq0(R

n) and

W
1, 2
V (Rn) :=

{
u ∈W 1,2(Rn) :

∫
Rn

|u(x)|2V (x) dx <∞
}
.

Denote by L the maximal-accretive operator (see [35, p. 23, Definition 1.46] for the
definition) on L2(Rn) with largest domain D(L) ⊂ W 1,2

V (Rn) such that, for any
f ∈ D(L) and g ∈W 1, 2

V (Rn),

〈Lf, g〉 :=
∫

Rn
A(x)∇f(x) · ∇g(x)dx+

∫
Rn
f(x)g(x)V (x) dx,
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where 〈·, ·〉 denotes the interior product in L2(Rn) and A satisfies the assumption (A1).
In this sense, for all f ∈ D(L), we write

(1.4) Lf := −div(A∇)f + V f.

Now we recall some notions for function spaces of Musielak-Orlicz type. We
first describe the growth function considered in this article. Recall that a function
Φ : [0,∞) → [0,∞) is called an Orlicz function if it is nondecreasing, Φ(0) = 0,
Φ(t) > 0 for any t ∈ (0,∞) and limt→∞ Φ(t) = ∞ (see, for example, [33, 36]).
We point out that, different from the classical definition of Orlicz functions, the Orlicz
functions in this article may not be convex. Moreover, Φ is said to be of upper type
p (resp. lower type p) for some p ∈ [0,∞), if there exists a positive constant C such
that, for all s ∈ [1,∞) (resp. s ∈ [0, 1]) and t ∈ [0,∞), Φ(st) ≤ CspΦ(t).

For a given function ϕ : Rn × [0,∞) → [0,∞) such that, for any x ∈ Rn, ϕ(x, ·)
is an Orlicz function, ϕ is said to be of uniformly upper type p (resp. uniformly lower
type p) for some p ∈ (0,∞) if there exists a positive constant C such that, for all
x ∈ R

n, t ∈ [0,∞) and s ∈ [1,∞) (resp. s ∈ [0, 1]), ϕ(x, st) ≤ Cspϕ(x, t). Let

(1.5) i(ϕ) := sup{p ∈ (0,∞) : ϕ is of uniformly lower type p}.

Observe that i(ϕ) may not be attainable, namely, ϕ may not be of uniformly lower type
i(ϕ); see below for some examples.

Definition 1.1. Let ϕ : R
n×[0,∞) → [0,∞) satisfy that x �→ ϕ(x, t) is measurable

for all t ∈ [0,∞). The function ϕ is said to satisfy the uniformly Muckenhoupt
condition for some q ∈ [1,∞), denoted by ϕ ∈ Aq(Rn), if, when q ∈ (1,∞),

Aq(ϕ) := sup
t∈(0,∞)

sup
B⊂Rn

1
|B|q

∫
B
ϕ(x, t) dx

{∫
B

[ϕ(y, t)]1−q dy

}q−1

<∞,

or, when q = 1,

A1(ϕ) := sup
t∈(0,∞)

sup
B⊂Rn

1
|B|

∫
B
ϕ(x, t) dx

(
ess sup

y∈B
[ϕ(y, t)]−1

)
<∞.

Here the first suprema are taken over all t ∈ (0,∞) and the second ones over all balls
B ⊂ R

n.
The function ϕ is said to satisfy the uniformly reverse Hölder condition for some

q ∈ (1,∞], denoted by ϕ ∈ RHq(Rn), if, when q ∈ (1,∞),

RHq(ϕ) := sup
t∈(0,∞)

sup
B⊂Rn

{
1
|B|

∫
B
[ϕ(x, t)]q dx

}1/q { 1
|B|

∫
B
ϕ(x, t) dx

}−1

<∞,
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or, when q = ∞,

RH∞(ϕ) := sup
t∈(0,∞)

sup
B⊂Rn

{
ess sup

y∈B
ϕ(y, t)

}{
1
|B|

∫
B
ϕ(x, t) dx

}−1

<∞.

Here the first suprema are taken over all t ∈ (0,∞) and the second ones over all balls
B ⊂ Rn.

Recall that, in Definition 1.1, Ap(Rn), with p ∈ [1,∞), and RHq(Rn), with
q ∈ (1,∞], were respectively introduced by Ky [32] and D. Yang and S. Yang [45].

Let A∞(Rn) := ∪q∈[1,∞)Aq(Rn). The critical indices of ϕ ∈ A∞(Rn) are defined
as follows:

(1.6) q(ϕ) := inf {q ∈ [1,∞) : ϕ ∈ Aq(Rn)}
and

(1.7) r(ϕ) := sup {q ∈ (1,∞] : ϕ ∈ RHq(Rn)} .
Now we recall the notion of growth functions from Ky [32].
Definition 1.2. A function ϕ : Rn × [0,∞) → [0,∞) is called a growth function

if the following hold:
(i) ϕ is a Musielak-Orlicz function, namely,

(a) ϕ(x, ·) : [0,∞) → [0,∞) is an Orlicz function for all x ∈ Rn;
(b) ϕ(·, t) is a measurable function for all t ∈ [0,∞).

(ii) ϕ ∈ A∞(Rn).
(iii) The functionϕ is of uniformly lower type p for some p∈(0, 1] and upper type 1.

Clearly, ϕ(x, t) := ω(x)Φ(t) is a growth function if ω ∈ A∞(Rn) and Φ is an
Orlicz function of lower type p for some p ∈ (0, 1] and upper type 1. A typical example
of such Orlicz function Φ is Φ(t) := tp, with p ∈ (0, 1], for all t ∈ [0,∞) (see, for
example, [44, 45] for more examples of such Φ). Another typical example of growth
function is ϕ(x, t) := tα

[ln(e+|x|)]β+[ln(e+t)]γ
for all x ∈ R

n and t ∈ [0,∞) with any
α ∈ (0, 1] and β, γ ∈ [0,∞); more precisely, ϕ ∈ A1(Rn), ϕ is of uniformly upper
type α, and i(ϕ) = α which is not attainable (see [32]).

Recall that, for a Musielak-Orlicz function ϕ as in Definition 1.2, a measurable
function f on Rn is said to be in the Musielak-Orlicz space Lϕ(Rn) if∫

Rn

ϕ(x, |f(x)|) dx<∞.

Moreover, for any f ∈ Lϕ(Rn), define

‖f‖Lϕ(Rn) := inf
{
λ ∈ (0,∞) :

∫
Rn
ϕ

(
x,

|f(x)|
λ

)
dx ≤ 1

}
.
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Let L and ϕ be, respectively, as in (1.4) and Definition 1.2. We remark that, by
A in (1.4) satisfying the assumption (A1) and V nonnegative, we know that L is a
nonnegative self-adjoint operator in L2(Rn). Moreover, the Gaussian upper bound es-
timate for the kernels of the semigroup {e−tL}t>0 (see Lemma 2.6(i) below) further
implies that the semigroup {e−tL}t>0 satisfies the Davies-Gaffney estimates (see [45,
Assumption (B)] for the definition of the Davies-Gaffney estimate). Thus, L is a non-
negative self-adjoint operator on L2(Rn) satisfying the Davies-Gaffney estimates. Now
we recall the Musielak-Orlicz-Hardy space Hϕ, L(Rn) associated with L introduced in
[45].

For f ∈ L2(Rn) and x ∈ R
n, the Lusin area function SL(f)(x), associated with

L, is defined by

SL(f)(x) :=

{∫
Γ(x)

∣∣∣t2Le−t2L(f)(y)
∣∣∣2 dy dt

tn+1

}1/2

,

where Γ(x) is the cone defined by Γ(x) := {(y, t) ∈ Rn × (0,∞) : |y − x| < t}. A
function f ∈ L2(Rn) is said to be in the set H̃ϕ,L(Rn) if SL(f) ∈ Lϕ(Rn); moreover,
define

‖f‖Hϕ, L(Rn) := ‖SL(f)‖Lϕ(Rn)

= inf
{
λ ∈ (0,∞) :

∫
Rn

ϕ

(
x,
SL(f)(x)

λ

)
dx ≤ 1

}
.

The Musielak-Orlicz-Hardy spaceHϕ,L(Rn) is defined to be the completion of H̃ϕ,L(Rn)
respect with to the quasi-norm ‖ · ‖Hϕ, L(Rn).

Moreover, in order to state the main results of this article, we need another necessary
notation. By [4], we know that the following conclusion holds true.

Lemma 1.3. Let L0 := −div(A∇) with A satisfying the assumption (A1) and pt

be the kernel of the heat semigroup e−tL0 generated by L0. Then, for each y ∈ R
n

and t ∈ (0,∞), x �→ pt(x, y) and x �→ pt(y, x) are Hölder continuous functions in
R

n and there exists α0 ∈ (0, 1] such that, for any α ∈ (0, α0), there exist positive
constants C(α) and c0 such that, for any x, x+ h, y ∈ Rn satisfying |h| ≤ √

t,

|pt(x+ h, y)− pt(x, y)|+ |pt(y, x+ h) − pt(y, x)| ≤
C(α)

tn/2

[ |h|√
t

]α

e−
c0|x−y|2

t .

The first main result of this article is as follows.

Theorem 1.4. Let L and ϕ be, respectively, as in (1.4) and Definition 1.2. Assume
that V ∈ RHq0(R

n) with q0 ∈ [n,∞), i(ϕ) ∈ ( n
n+α0

, 1] and

(1.8) [r(ϕ)]′ <
n

nq(ϕ)/i(ϕ)− α0
,
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where i(ϕ), q(ϕ), r(ϕ) and α0 be, respectively, as in (1.5), (1.6), (1.7) and Lemma
1.3, and [r(ϕ)]′ := r(ϕ)/[r(ϕ)− 1].

(i) If A in (1.4) satisfies the assumptions (A1) and (A2), then the operator V L−1

is bounded from Hϕ,L(Rn) to Lϕ(Rn).
(ii) If A in (1.4) satisfies the assumptions (A1) and (A2), then the operator V 1/2∇L−1

is bounded from Hϕ,L(Rn) to Lϕ(Rn).
(iii) If A satisfies the assumptions (A1), (A2) and (A3), then the operator ∇2L−1

is bounded from Hϕ,L(Rn) to Lϕ(Rn).

To prove Theorem 1.4, we first establish an atomic characterization of the Musielak-
Orlicz-Hardy space Hϕ, L(Rn) (see Theorem 2.3 below). It is worth pointing out that
the atom used in this article was introduced in [10], which is different from that in
[45], but closer to that in [14, 15] in the spirit; the method used in this article to
establish the atomic decomposition for the space Hϕ,L(Rn) is similar to that used in
[10, Theorem 2.3], but quite different from that used in [14, 15] (see the introduction
of [10] for more details). Moreover, some upper bound estimates for the fundamental
solution of L (see Lemma 3.1 below) and the boundedness of V L−1, V 1/2∇L−1 and
∇2L−1 on the Lebesgue space Lp(Rn) (see Lemmas 3.2 and 3.3 below) are also used
in the proof of Theorem 1.4. Furthermore, we also need some properties for the growth
function ϕ (see Lemma 2.7 below) and the auxiliary function m(·, V ) determined by
the potential V (see (2.1) and Lemmas 2.5 and 3.4 below). In particular, it is worth
pointing out that the technique of smooth cut-off functions (see (3.33) below) and the
special structure of L also play a key role in the proof of Theorem 1.4(iii). Moreover,
different from the proof of [10, Theorem 1.4], the main new ingredient appeared in the
proofs for (i) and (ii) of Theorem 1.4 is that we use the different parting ring technique
of the entire R

n for the different Hϕ,L(Rn)-atom (see (3.8), (3.13) and (3.18) below).
Now we recall the definition of the Musielak-Orlicz-Hardy space Hϕ(Rn) intro-

duced in [32]. We first state some notions. In what follows, we denote by S(Rn)
the space of all Schwartz functions and by S ′(Rn) its dual space (namely, the space
of all tempered distributions). Let N := {1, . . .} and Z+ := {0} ∪ N. For any
θ := (θ1, . . . , θn) ∈ Z

n
+, let |θ| := θ1 + · · · + θn and ∂θ

x := ∂|θ|

∂x
θ1
1 ···∂xθn

n

. For m ∈ N,
define

Sm(Rn) :=

{
φ ∈ S(Rn) : sup

x∈Rn
sup

β∈Z
n
+, |β|≤m+1

(1 + |x|)(m+2)(n+1)|∂β
xφ(x)| ≤ 1

}
.

Then, for all f ∈ S ′(Rn) and x ∈ R
n, the non-tangential grand maximal function f∗m

of f is defined by setting,

f∗m(x) := sup
φ∈Sm(Rn)

sup
|y−x|<t, t∈(0,∞)

|f ∗ φt(y)|,
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where, for all t ∈ (0,∞), φt(·) := t−nφ( ·t). When m(ϕ) := �n[q(ϕ)/i(ϕ) − 1]�,
where q(ϕ) and i(ϕ) are, respectively, as in (1.6) and (1.5), and �s� for s ∈ R denotes
the maximal integer not more than s, we denote f∗m(ϕ) simply by f∗.

Definition 1.5. Let ϕ be as in Definition 1.2. The Musielak-Orlicz-Hardy space
Hϕ(Rn) is defined to be the space of all f ∈ S ′(Rn) such that f∗ ∈ Lϕ(Rn) with the
quasi-norm ‖f‖Hϕ(Rn) := ‖f∗‖Lϕ(Rn).

Now we state the second main result of this article as follows.

Theorem 1.6. Let L and ϕ be, respectively, as in (1.4) and Definition 1.2. Assume
that i(ϕ), q(ϕ), r(ϕ) and α0 are, respectively, as in (1.5), (1.6), (1.7) and Lemma
1.3. Let A in (1.4) satisfy the assumptions (A1), (A2) and (A3), V ∈ RHq0(R

n) with
q0 ∈ [n,∞), i(ϕ) ∈ ( n

n+α0
, 1] and

(1.9) q(ϕ)[r(ϕ)]′ <
n

nq(ϕ)/i(ϕ)− α0
.

Then

(i) the operator ∇2L−1 is bounded from Hϕ, L(Rn) to Hϕ(Rn);
(ii) the operator V L−1 is bounded on Hϕ,L(Rn).

Similar to the proof of [10, Theorem 1.4], we prove Theorem 1.6(i) by using the
atomic characterization of Hϕ, L(Rn) established in Theorem 2.3 below, some estimates
for the fundamental solution of L (see Lemma 3.1 below), the boundedness of V L−1

and ∇2L−1 on Lp(Rn) (see Lemmas 3.2 and 3.3 below), and some properties for ϕ
(see Lemma 2.7 below) and the auxiliary function m(·, V ) (see Lemmas 2.5 and 3.4
below). Moreover, similar to [10, Theorem 1.5], we prove (ii) of Theorem 1.6 via (i)
of this theorem and the atomic characterization of Hϕ,L(Rn) obtained in Theorem 2.3
below.

Moreover, we also have the following two remarks for Theorems 1.4 and 1.6.

Remark 1.7. Let L and ϕ be as in Theorem 1.4.

(i) By Remark 2.4(iii) below, we know that Hϕ(Rn) ⊂ Hϕ, L(Rn). Thus, the oper-
ators V L−1, V 1/2∇L−1 and ∇2L−1 are also bounded from the space Hϕ(Rn)
to Lϕ(Rn).

(ii) When ϕ(x, t) := tp, with p ∈ ( n
n+α0

, 1], for all x ∈ Rn and t ∈ [0,∞), it is easy
to see that (1.8) holds true. In this case, denote by Hp

L(Rn) the space Hϕ,L(Rn).
Moreover, it is easy to see that Lϕ(Rn) = Lp(Rn) and Hϕ(Rn) = Hp(Rn),
where Hp(Rn) denotes the classical Hardy space. Thus, V L−1, V 1/2∇L−1 and
∇2L−1 are bounded from Hp

L(Rn) to Lp(Rn), and from Hp(Rn) to Lp(Rn) by
(i) of this remark.
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(iii) Let LI := −Δ+V be the Schröldeger operator on Rn. Recall that, whenL = LI ,
namely, A in (1.4) is just the unit matrix, then α0 = 1. Let ϕ(x, t) := tp for
all x ∈ Rn and t ∈ [0,∞), where p ∈ ( n

n+1 , 1]. In this case, we denote the
space Hϕ, LI

(Rn) simply by Hp
LI

(Rn). It is worth pointing out that the space
Hp

LI
(Rn) has been studied in [14, 15, 28, 43]. Observe that, in this case, by the

definitions of i(ϕ), q(ϕ) and r(ϕ), we easily see that i(ϕ) = p, q(ϕ) = 1 and
r(ϕ) = ∞ and hence the condition (1.8) automatically holds true. We point out
that Theorem 1.4 is new even for Hp

LI
(Rn) with p ∈ ( n

n+1 , 1].
(iv) For ω ∈ A∞(Rn), we denote by qω and rω, respectively, the critical indexes of

ω defined by a way similar to (1.6) and (1.7). When ϕ(x, t) := ω(x)tp, with
p ∈ ( n

n+α0
, 1], for all x ∈ R

n and t ∈ [0,∞), by the definitions of i(ϕ), q(ϕ)
and r(ϕ), we see that i(ϕ) = p, q(ϕ) = qω and r(ϕ) = rω, and hence the
condition (1.8) becomes r′ω < n

nqω/p−α0
. Theorem 1.4 is also new even in this

case.
(v) We also give some examples of growth functions satisfying the assumptions in

Theorem 1.6.
(v)1 Assume that p ∈ ( n

n+α0
, 1] and a ∈ (n

p − (n + α0), 0]. Let ϕ(x, t) := |x|atp
for all x ∈ Rn and t ∈ [0,∞). It is easy to show that i(ϕ) = p, q(ϕ) = 1 and
r(ϕ) > n

n+α0−n/p . From this, we deduce that the assumption (1.8) holds true.
Thus, such ϕ satisfies the assumptions of Theorem 1.4.

(v)2 Assume that p ∈ ( n
n+α0

, 1], q ∈ (1, (n+α0)p
n ) and a ∈ (0, (q−1)n). Let ϕ(x, t) :=

|x|atp for all x ∈ R
n and t ∈ [0,∞). In this case, it is easy to see that i(ϕ) = p,

q(ϕ) < q and r(ϕ) = ∞. By this and the assumption for q, we see that (1.8)
holds true and hence such ϕ satisfies the assumptions of Theorem 1.4.

(v)3 Let ϕ(x, t) := tα

[log(e+|x|)]β+[log(e+t)]γ
, with α ∈ ( n

n+α0
, 1] and β, γ ∈ (0,∞),

for all x ∈ Rn and t ∈ [0,∞). In this case, it is easy to prove that ϕ satisfies
Definition 1.2, i(ϕ) = α, q(ϕ) = 1 and r(ϕ) = ∞. From this and α ∈ ( n

n+α0
, 1],

it follows that the assumption (1.8) automatically holds true and hence such ϕ
satisfies the assumptions of Theorem 1.6. Moreover, it is worth pointing out
that such a function ϕ naturally appears in the study of the pointwise multiplier
characterization for the BMO-type space (see [34, 32]).

Remark 1.8. Let L and ϕ be as in Theorem 1.6.

(i) By Remark 2.4(iii) below, we know that Hϕ(Rn) ⊂ Hϕ,L(Rn), which, together
with Theorem 1.6(i), implies that ∇2L−1 is also bounded on Hϕ, L(Rn).

(ii) Let ϕ(x, t) := tp, with p ∈ ( n
n+α0

, 1], for all x ∈ R
n and t ∈ [0,∞). Then we

know that ∇2L−1 is bounded from Hp
L(Rn) to Hp(Rn) and on Hp(Rn); V L−1

is bounded on Hp
L(Rn) and from Hp(Rn) to Hp

L(Rn). Theorem 1.6 is new even
in this case.
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(iii) Let ϕ(x, t) := tp for all x ∈ Rn and t ∈ [0,∞), where p ∈ ( n
n+α0

, 1]. Similar
to Remark 1.7(ii), we know that (1.9) automatically holds true. We point out
that Theorem 1.6 is new even for Hp

L(Rn) with p ∈ ( n
n+α0

, 1]. Moreover, when
L := LI , where LI is as in Remark 1.7(ii), (i) and (ii) of Theorem 1.6 are,
respectively, [10, Theorems 1.4 and 1.5].

(iv) When ϕ(x, t) := ω(x)tp, with ω ∈ A∞(Rn) and p ∈ ( n
n+α0

, 1], for all x ∈ R
n

and t ∈ [0,∞). Similar to Remark 1.7(iii), the condition (1.9) becomes qωr′ω <
n

nqω/p−α0
, where rω and qω are as in Remark 1.7(iii). Theorem 1.6 is also new

even in this case.
(v) Similar to Remark 1.7(v) and [10, Remark 1(v)], we also have the following

examples of growth functions satisfying the assumptions of Theorem 1.6.

(v)1 Assume that p ∈ ( n
n+α0

, 1] and a ∈ (n
p − (n+ α0), 0]. Let ϕ(x, t) := |x|atp for

all x ∈ R
n and t ∈ [0,∞).

(v)2 Assume that p ∈ ( n
n+α0

, 1], q ∈ (1, α0p
2n + [ α2

0p2

(2n)2
+ p]1/2) and a ∈ (0, (q− 1)n).

Let ϕ(x, t) := |x|atp for all x ∈ R
n and t ∈ [0,∞).

(v)3 Let ϕ(x, t) := tα

[log(e+|x|)]β+[log(e+t)]γ
, with α ∈ ( n

n+α0
, 1] and β, γ ∈ (0,∞),

for all x ∈ R
n and t ∈ [0,∞).

As a corollary of Theorem 1.6, we have the following maximal inequality.

Corollary 1.9. Let ϕ, L and V be the same as in Theorem 1.6. Then there exists
a positive constant C such that, for all f ∈ C∞

c (Rn),

(1.10) ‖−Δf‖Hϕ, L(Rn) + ‖V f‖Hϕ, L(Rn) ≤ C ‖Lf‖Hϕ, L(Rn) .

Remark 1.10. We point out that (1.10) is a variant of the maximal inequality (1.2)
in the space Hϕ,L(Rn) when L := LI is the Schrödinger operator, and hence further
completes (1.2). Indeed, when ϕ(x, t) := tp, with p ∈ ( n

n+α0
, 1], for all x ∈ Rn and

t ∈ [0,∞), (1.10) becomes that there exists a positive constant C such that, for all
f ∈ C∞

c (Rn),

‖−Δf‖Hp
L(Rn) + ‖V f‖Hp

L(Rn) ≤ C ‖Lf‖Hp
L(Rn) ,

which is also new.

The layout of this article is as follows. In Section 2, we establish an atomic
characterization of the space Hϕ,L(Rn) (see Theorem 2.3 below), which completely
covers [14, Theorem 1.11] by taking ϕ(x, t) := tp, with p ∈ ( n

n+μ0
, 1], for all x ∈ R

n

and t ∈ [0,∞), and A := I in (1.4), where μ0 is as in (2.2) below and I denotes the
unit matrix. Then, in Sections 3 and 4, we give the proofs of Theorems 1.4 and 1.6,
respectively.
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Finally we make some conventions on notation. Throughout the whole article, we
denote byC a positive constant which is independent of the main parameters, but it may
vary from line to line. We also use C(γ,β,...) to denote a positive constant depending
on the indicated parameters γ, β, . . .. The symbol A � B means that A ≤ CB. If
A � B and B � A, then we write A ∼ B. For any given normed spaces A and B
with the corresponding norms ‖ · ‖A and ‖ · ‖B, the symbol A ⊂ B means that, for
all f ∈ A, then f ∈ B and ‖f‖B � ‖f‖A. For any measurable subset E of Rn, we
denote by E� the set R

n \E and by χE its characteristic function. Moreover, for each
ball B ⊂ Rn, let S0(B) := 2B and Sj(B) := 2j+1B \ 2jB for j ∈ N. Finally, for
q ∈ [1,∞], we denote by q′ the conjugate exponent of q, namely, 1/q + 1/q′ = 1.

2. AN ATOMIC CHARACTERIZATION OF Hϕ, L(Rn)

To prove the main results of this article, similar to [10], in this section, we establish
an atomic characterization of Hϕ,L(Rn). We begin with the definition of (ϕ, q)m-atoms
introduced in [10, Definition 2.1]. To this end, we need the following auxiliary function
m(·, V ) introduced by Shen [37]. More precisely, let V be as in (1.4). For all x ∈ R

n,
the auxiliary function m(x, V ) is defined by

(2.1) [m(x, V )]−1 := sup

{
r ∈ (0,∞) :

1
rn−2

∫
B(x,r)

V (y) dy ≤ 1

}
.

Definition 2.1. Let ϕ and m(·, V ) be, respectively, as in Definition 1.2 and (2.1),
and q ∈ (1,∞]. A function a on R

n is called a (ϕ, q)m-atom associated with the ball
B := B(x0, r0), if

(i) supp (a) ⊂ B;
(ii) ‖a‖Lq(Rn) ≤ |B|1/q‖χB‖−1

Lϕ(Rn);
(iii)

∫
Rn a(x) dx = 0 if r0 < [m(x0, V )]−1.

Now we recall the definition of the atomic Musielak-Orlicz-Hardy space Hϕ, q
m (Rn)

introduced in [10, Definition 2.2].

Definition 2.2. Let ϕ, m(·, V ) and q be as in Definition 2.1. A function f ∈
L2(Rn) is said to be in the set H̃ϕ, q

m (Rn) if f =
∑

j λjaj in L2(Rn), where, for
each j, aj is a (ϕ, q)m-atom associated with the ball Bj and {λj}j ⊂ C satisfies that∑

j ϕ(Bj ,
|λj |

‖χBj
‖Lϕ(Rn)

) <∞. Define

Λ({λjaj}j) := inf

⎧⎨⎩λ ∈ (0,∞) :
∑

j

ϕ

(
Bj ,

|λj|
λ‖χBj‖Lϕ(Rn)

)
≤ 1

⎫⎬⎭
and ‖f‖Hϕ, q

m (Rn) := inf Λ({λjaj}j), where the infimum is taken over all decompo-
sitions of f as above. The atomic Musielak-Orlicz-Hardy space Hϕ, q

m (Rn) is then
defined to be the completion of H̃ϕ, q

m (Rn) with respect to the quasi-norm ‖ · ‖Hϕ,q
m (Rn).
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Moreover, by [20], we know thatRHq(Rn) has the property of the self-improvement.
Namely, if V ∈ RHq(Rn) for some q ∈ (1,∞), then there exists ε ∈ (0,∞), depend-
ing only on n and the constant C in (1.1), such that V ∈ RHq+ε(Rn). Thus, when
V ∈ RHq(Rn) for some q ≥ n/2 with n ≥ 3, there exists q0 > n/2 such that
V ∈ RHq0(R

n). For convenience, in what follows, we always assume that L is as in
(1.4) with V ∈ RHq0(R

n), q0 ∈ (n/2,∞) and n ≥ 3; moreover, let

(2.2) μ0 := min{α0, 2 − n/q0} ,
where α0 is as in Lemma 1.3.

Now we state the main result of this section as follows.

Theorem 2.3. Let ϕ and L be, respectively, as in Definition 1.2 and (1.4). Assume
that i(ϕ), q(ϕ) and μ0 are, respectively, as in (1.5), (1.6) and (2.2). Let q ∈ (1,∞)
satisfy μ0 + n/q >

nq(ϕ)
i(ϕ) . Then the spaces Hϕ, L(Rn) and Hϕ, q

m (Rn) coincide with
equivalent quasi-norms.

Remark 2.4.

(i) Theorem 2.3 completely covers [14, Theorem 1.11] by taking ϕ(x, t) := tp, with
p ∈ ( n

n+μ0
, 1], for all x ∈ Rn and t ∈ [0,∞), and A := I in (1.4), where I

denotes the unit matrix. Moreover, when A := I , μ0 = min{1, 2− n/q0} and
Theorem 2.3 is just [10, Theorem 2.3].

(ii) Let LI := −Δ + V , where V is as in (1.4). When L = LI , we denote the
Musielak-Orlicz-Hardy space Hϕ,L(Rn) by Hϕ,LI

(Rn). By Theorem 2.3 and
[10, Theorem 2.3], we conclude that, when ϕ, μ0 and q are as in Theorem 2.3,
Hϕ, L(Rn) = Hϕ, LI

(Rn) with equivalent quasi-norms.
(iii) Let ϕ be as in Theorem 2.3. Similar to [10, Remark 4(ii)], we see that Hϕ(Rn) ⊂

Hϕ, L(Rn).

To prove Theorem 2.3, we also need some estimates related to L. For the auxiliary
function m(·, V ), we have the following Lemma 2.5, which is just [37, Lemma 1.4].

Lemma 2.5. Let V and m(·, V ) be, respectively, as in (1.4) and (2.1). Then there
exist positive constants C1, C2, C3 and k0 such that, for all x, y ∈ Rn,

C−1
2 m(x, V ) ≤ m(y, V ) ≤ C2m(x, V ) if |x− y| ≤ C1[m(x, V )]−1,(2.3)

m(y, V ) ≤ C2[1 + |x− y|m(x, V )]k0m(x, V )

and

m(y, V ) ≥ C3m(x, V )
[1 + |x− y|m(x, V )]k0/(k0+1)

.
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Moreover, we also need the following estimates for the kernel of e−tL.

Lemma 2.6. Let L be as in (1.4) and Kt the kernel of e−tL. Assume that μ0 is
as in (2.2).

(i) For each t ∈ (0,∞), Kt is a measurable function on Rn × Rn and, for any
N ∈ N, there exist positive constants C(N) and α such that, for almost every
(x, y) ∈ R

n × R
n,

0 ≤ Kt(x, y) ≤
C(N)

tn/2
e−

α|x−y|2
t

{
1 +

√
tm(x, V ) +

√
tm(y, V )

}−N
.

Moreover, this estimate holds true also for t∂tKt.
(ii) For each y ∈ R

n and t ∈ (0,∞), x �→ Kt(x, y) and x �→ Kt(y, x) are Hölder
continuous functions in Rn and, for any N ∈ N and μ ∈ (0, μ0), there exist
positive constants C(N,μ) and α such that, for any x, x+ h, y ∈ Rn satisfying
|h| ≤ √

t,
|Kt(x+ h, y)−Kt(x, y)|+ |Kt(y, x+ h) −Kt(y, x)|

≤ C(N, μ)

tn/2

[ |h|√
t

]μ

e−
α|x−y|2

t

{
1 +

√
tm(x, V ) +

√
tm(y, V )

}−N
.

Proof. (i) of this lemma was obtained in [13, Theorem 2.1]. Moreover, similar
to the proof of [14, Theorem 2.11] and [15, Proposition 4.11], we can prove (ii). We
omit the details here.

Moreover, we also need some properties of ϕ in Definition 1.2. In what follows, for
any measurable subset E of R

n and t ∈ [0,∞), let ϕ(E, t) :=
∫
E ϕ(x, t) dx. We have

the following properties for A∞(Rn), whose proofs are similar to those in [19, 21];
see also [22].

Lemma 2.7.

(i) A1(Rn) ⊂ Ap(Rn) ⊂ Aq(Rn) for 1 ≤ p ≤ q <∞.
(ii) RH∞(Rn) ⊂ RHp(Rn) ⊂ RHq(Rn) for 1 < q ≤ p ≤ ∞.
(iii) If ϕ ∈ Ap(Rn) with p ∈ (1,∞), then there exists q ∈ (1, p) such that ϕ ∈

Aq(Rn).
(iv) A∞(Rn) = ∪p∈[1,∞)Ap(Rn) = ∪q∈(1,∞]RHq(Rn).
(v) If ϕ ∈ Ap(Rn) with p ∈ [1,∞), then there exists a positive constant C such that,

for all balls B1, B2 ⊂ Rn with B1 ⊂ B2 and t ∈ [0,∞), ϕ(B2,t)
ϕ(B1,t)

≤ C[ |B2|
|B1| ]

p.

(vi) If ϕ ∈ RHq(Rn) with q ∈ (1,∞], then there exists a positive constant C such
that, for all balls B1, B2 ⊂ Rn with B1 ⊂ B2 and t ∈ [0,∞), ϕ(B2,t)

ϕ(B1,t)
≥

C[ |B2|
|B1| ]

(q−1)/q.
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Remark 2.8. Denote by Ap(Rn), p ∈ [1,∞], and RHq(Rn), q ∈ (1,∞], respec-
tively, the class of Muckenhoupt weights and the class of weights satisfying the reverse
Hölder condition. Then the conclusion of Lemma 2.7 also holds true for the classes
Ap(Rn) and RHq(Rn) (see, for example, [19, 21]).

Now we prove Theorem 2.3 by using Lemmas 2.5 through 2.7.

Proof of Theorem 2.3. The proof of Theorem 2.3 is similar to that of [10, Theorem
2.3]. Here we give some necessary details. We first prove

(2.4) Hϕ, q
m (Rn) ∩ L2(Rn) ⊂ Hϕ, L(Rn) ∩ L2(Rn).

Let f ∈ Hϕ, q
m (Rn) ∩ L2(Rn). Then there exists a sequence {aj}j of (ϕ, q)m-atoms

and {λj}j ⊂ C such that

(2.5) f =
∑

j

λjaj in L2(Rn)

and

(2.6) ‖f‖H
ϕ, q
m (Rn) ∼ Λ({λjaj}j),

where, for each j, supp (aj) ⊂ Bj := B(xj, rj). By using Lemmas 2.5, 2.6 and
2.7, similar to the proof of [22, (4.7)], we know that, for any (ϕ, q)m-atom a with
supp (a) ⊂ B and λ ∈ C,

(2.7)
∫

Rn

ϕ (x, SL(λa)(x)) dx � ϕ

(
B,

|λ|
‖χB‖Lϕ(Rn)

)
.

From (2.5) and (2.7), it follows that, for all λ ∈ (0,∞),∫
Rn
ϕ

(
x,
SL(f)(x)

λ

)
dx �

∑
j

ϕ

(
Bj ,

|λj|
λ‖χBj‖Lϕ(Rn)

)
,

which, together with (2.6), implies that f ∈ Hϕ,L(Rn) ∩ L2(Rn) and ‖f‖Hϕ, L(Rn) �
‖f‖Hϕ, q

m (Rn). Thus, (2.4) holds true.
Moreover, similar to the proof of [10, (2.9)], we obtain that

(2.8) Hϕ,L(Rn) ∩ L2(Rn) ⊂ Hϕ, q
m (Rn) ∩ L2(Rn).

By (2.4) and (2.8), we conclude that Hϕ, q
m (Rn) ∩ L2(Rn) = Hϕ, L(Rn) ∩ L2(Rn)

with equivalent norms, which, together with the fact that Hϕ, q
m (Rn) ∩ L2(Rn) and

Hϕ,L(Rn) ∩ L2(Rn) are, respectively, dense in Hϕ, q
m (Rn) and Hϕ, L(Rn), and a den-

sity argument, then implies that the spaces Hϕ, q
m (Rn) and Hϕ,L(Rn) coincide with

equivalent quasi-norms. This finishes the proof of Theorem 2.3.
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3. PROOF OF THEOREM 1.4

In this section, we give out the proof of Theorem 1.4. We begin with some useful
auxiliary conclusions. In what follows, we always assume that V ∈ RHq0(R

n) with
q0 ∈ [n,∞) and n ≥ 3. Denote by Γ the fundamental solution for the operator L as
in (1.4). For Γ, we have the following estimates.

Lemma 3.1. Let L be as in (1.4) with V ∈ RHq0(R
n) and q0 ∈ [n,∞). Denote

the fundamental solution of L by Γ.

(i) Assume that the matrix A in (1.4) satisfies the assumption (A1). Then, for any
k ∈ N, there exists a positive constant C(k) such that, for any x, y ∈ R

n with
x �= y, |Γ(x, y)| ≤ C(k)

[1+|x−y|m(x,V )]k
1

|x−y|n−2 .

Assume further that A in (1.4) satisfies the assumptions (A1) and (A2). Then,
for any k ∈ N, there exists a positive constant C(k) such that, for any x, y ∈ R

n

with x �= y,
(ii) |∇xΓ(x, y)|≤ C(k)

[1+|x−y|m(x,V )]k
1

|x−y|n−1 and |∇yΓ(x, y)|≤ C(k)

[1+|x−y|m(x,V )]k
1

|x−y|n−1 ;

(iii) |∇x∇yΓ(x, y)| ≤ C(k)

[1+|x−y|m(x,V )]k
1

|x−y|n .

Proof. (i) and (ii) of this lemma were established in [31, Theorem 2.5]. Moreover,
by the fact that ∇yΓ(x, y) is the solution of Lu = 0, [31, (2.5)] and (ii), we conclude
that (iii) holds true, which completes the proof of Lemma 3.1.

Moreover, we also need the following Lp(Rn)-boundedness of V L−1, V 1/2∇L−1

and ∇2L−1.

Lemma 3.2. Let L be as in (1.4) with V ∈ RHq0(R
n) and q0 ∈ [n,∞).

(i) Assume that A in (1.4) satisfies the assumption (A1). Then, for any p ∈
(1, q0], there exists a positive constant C(p) such that, for all f ∈ Lp(Rn),
‖V L−1(f)‖Lp(Rn) ≤ C(p)‖f‖Lp(Rn).

(ii) Assume that A in (1.4) satisfies the assumptions (A1) and (A2). Then, for any
p ∈ (1, 2q0], there exists a positive constant C(p) such that, for all f ∈ Lp(Rn),∥∥∥V 1/2∇L−1(f)

∥∥∥
Lp(Rn)

≤ C(p)‖f‖Lp(Rn).

The proofs of (i) and (ii) of Lemma 3.2 are, respectively, similar to that of [37,
Theorems 3.1 and 4.13] and we omit the details.

Lemma 3.3. Let L be as in (1.4) with V ∈ RHq0(R
n) and q0 ∈ [n,∞). Assume

that A satisfies the assumptions (A1), (A2) and (A3). Then, for any p ∈ (1, q0], there
exists a positive constant C(p) such that, for all f ∈ Lp(Rn),

∥∥∇2L−1(f)
∥∥

Lp(Rn)
≤

C(p)‖f‖Lp(Rn).
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Proof. Let L0 := −div(A∇). Then L = L0 + V . It was proved in [5, Theorem
B] (see also [31, Theorem 2.7]) that ∇2L−1

0 is bounded on Lp(Rn) for any p ∈ (1,∞),
which, together with Lemma 3.2(i), implies that, for all f ∈ Lp(Rn) with p ∈ (1, q0],

‖∇2L−1f‖Lp(Rn) � ‖L0L
−1f‖Lp(Rn) ∼ ‖(L− V )L−1f‖Lp(Rn) � ‖f‖Lp(Rn).

This finishes the proof of Lemma 3.3.

Furthermore, we need the following estimates for the potential V , which were
established in [37, Lemma 1.2].

Lemma 3.4. Let V ∈ RHq0(R
n) with q0 ∈ [n/2,∞). Then there exists a positive

constant C such that, for all x ∈ Rn and 0 < r < R <∞,

1
rn−2

∫
B(x,r)

V (y) dy ≤ C

(
R

r

) n
q0

−2 1
Rn−2

∫
B(x,R)

V (y) dy.

Moreover, if r := [m(x, V )]−1 with x ∈ R
n, then 1

rn−2

∫
B(x,r) V (y) dy = 1.

Now we prove Theorem 1.4 by using Lemmas 3.1 through 3.4.

Proof of Theorem 1.4. We first prove (i) of Theorem 1.4. Let f ∈ Hϕ,L(Rn) ∩
L2(Rn). Recall that, in this case, μ0 = α0. By the assumption [r(ϕ)]′ < n

nq(ϕ)/i(ϕ)−α0
,

we see that there exists

q ∈
(

[r(ϕ)]′,
n

nq(ϕ)/i(ϕ)− α0

)
.(3.1)

Thus, q > [r(ϕ)]′ and α0 +n/q > nq(ϕ)/i(ϕ). From this and Theorem 2.3, it follows
that there exist {λj}j ⊂ C and a sequence {aj}j of (ϕ, q)m-atoms such that

(3.2) f =
∑

i

λiai in L2(Rn) and ‖f‖Hϕ, L(Rn) ∼ Λ({λiai}i).

To finish the proof of Theorem 1.4(i), it suffices to prove that, for all λ ∈ C and
(ϕ, q)m-atoms a supported in the ball B := B(x0, r0),

(3.3)
∫

Rn

ϕ
(
x, |V L−1(λa)(x)|) dx � ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

If (3.3) holds true, from this, (3.2) and Lemma 3.2, we further deduce that, for all
λ ∈ (0,∞),∫

Rn

ϕ

(
x,

|V L−1(f)(x)|
λ

)
dx �

∑
i

∫
Rn

ϕ

(
x,

|V L−1(λiai)(x)|
λ

)
dx

�
∑

i

ϕ

(
Bi,

|λi|
λ‖χBi‖Lϕ(Rn)

)
,
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which implies that ‖V L−1(f)‖Lϕ(Rn) � ‖f‖Hϕ, L(Rn). By this and the fact that
Hϕ,L(Rn)∩L2(Rn) is dense in Hϕ,L(Rn), we further conclude that V L−1 is bounded
from Hϕ,L(Rn) to Lϕ(Rn).

Now we prove (3.3). We first write∫
Rn

ϕ
(
x, |V L−1(λa)(x)|) dx =

∫
4B

ϕ
(
x, |V L−1(λa)(x)|) dx+

∫
Rn\4B

· · ·(3.4)

=: I1,1 + I1,2.

Moreover, from (3.1) and the definitions of i(ϕ), q(ϕ) and r(ϕ), we deduce that there
exist p0 ∈ (0, (i(ϕ)) and q̃ ∈ (q(ϕ),∞) such that ϕ is of uniformly lower type p0,
ϕ ∈ Aq̃(Rn) ∩ RHq′(Rn) and

(3.5) α0 +
n

q
>
nq̃

p0
.

For I1,1, by the uniformly upper type 1 and lower type p0 properties of ϕ, Hölder’s
inequality, Lemma 3.2(i), ϕ ∈ RHq′(Rn) ⊂ RH(q/p0)′(R

n) and Lemma 2.7(v), we
know that

(3.6)

I1,1 �
∫

4B

ϕ
(
x, |λ|‖χB‖−1

Lϕ(Rn)

)[
|V L−1(a)(x)|‖χB‖Lϕ(Rn)

+ |V L−1(a)(x)|p0‖χB‖p0

Lϕ(Rn)

]
dx

� ‖χB‖Lϕ(Rn)‖V L−1(a)‖Lq(4B)

∥∥∥ϕ (
·, |λ|‖χB‖−1

Lϕ(Rn)

)∥∥∥
Lq′(4B)

+‖χB‖p0

Lϕ(Rn)
‖V L−1(a)‖p0

Lq(4B)

∥∥∥ϕ (
·, |λ|‖χB‖−1

Lϕ(Rn)

)∥∥∥
L(q/p0)′(4B)

� ‖χB‖Lϕ(Rn)‖a‖Lq(Rn)|B|−1/qϕ
(
4B, |λ|‖χB‖−1

Lϕ(Rn)

)
+‖χB‖p0

Lϕ(Rn)
‖a‖p0

Lq(Rn)
|B|−p0/qϕ

(
4B, |λ|‖χB‖−1

Lϕ(Rn)

)
� ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

Now we estimate the term I1,2 by considering the following two cases for r0.

Case 1. r0 ≥ [m(x0, V )]−1. In this case, for any given x ∈ Sj(B) := 2j+1B \
(2jB) with j ∈ N and j ≥ 2, from Lemma 2.5, we deduce that, for all y ∈ B,

|x− y|m(x, V ) � 2jr0m(x0, V )
[1 + 2jr0m(x0, V )]k0/(1+k0)

� 2j/(1+k0)r0m(x0, V ),

where k0 is as in Lemma 2.5, which, together with Lemma 3.1(i), implies that, for all
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x ∈ Sj(B) with j ≥ 2 and any k ∈ N,

(3.7)

∣∣V L−1(a)(x)
∣∣ � V (x)

∫
B

|a(y)|
[1 + |x− y|m(x, V )]k|x− y|n−2

dy

� (2jr0)2−n2−jk/(1+k0)[r0m(x0, V )]−k‖a‖L1(B)V (x)

� 2−[k/(1+k0)+n−2]j [r0m(x0, V )]−kr20‖χB‖−1
Lϕ(Rn)V (x).

By (3.7) and the uniformly upper type 1 and lower type p0 properties of ϕ, we conclude
that, for any j ∈ N with j ≥ 2,

(3.8)

Hj :=
∫

Sj (B)
ϕ

(
x, |V L−1(λa)(x)|) dx

� 2−[k/(1+k0)+n−2]j [r0m(x0, V )]−kr20

×
∫

Sj (B)
ϕ

(
x, |λ|‖χB‖−1

Lϕ(Rn)

)
V (x) dx

+2−[k/(1+k0)+n−2]jp0 [r0m(x0, V )]−kp0r2p0
0

×
∫

Sj (B)
ϕ

(
x, |λ|‖χB‖−1

Lϕ(Rn)

)
[V (x)]p0 dx =: Ej + Fj.

Now we estimate the term Ej . From [r(ϕ)]′ < n
nq(ϕ)/i(ϕ)−α0

< n/(n− 1), n ≥ 3
and q0 ∈ [n,∞), it follows that [r(ϕ)]′ < q0 and hence ϕ ∈ RHq′0(R

n). Moreover,
by V ∈ RHq0(R

n), Remark 2.8 and Lemma 2.7(iv), we conclude that there exists
q̃0 ∈ (1,∞) such that V ∈ Aq̃0

(Rn). Thus, from ϕ ∈ RHq′0(R
n) ∩ Aq̃(Rn), V ∈

RHq0(R
n)∩Aq̃0

(Rn), Lemma 2.7(v) and Remark 2.8, we deduce that, for any k ∈ N,

(3.9)

Ej � 2−[k/(1+k0)+n−2]j[r0m(x0, V )]−kr20

×‖V ‖Lq0(Sj(B))

∥∥∥ϕ(
·, |λ|‖χB‖−1

Lϕ(Rn)

)∥∥∥
Lq′

0(Sj(B))

� 2−[k/(1+k0)+2n−2]j[r0m(x0, V )]−kr
(2−n)
0 V (2jB)ϕ

(
2jB, |λ|‖χB‖−1

Lϕ(Rn)

)
� 2−[k/(1+k0)+2n−n(q̃0+q̃)−2]j[r0m(x0, V )]−kr

(2−n)
0 V (B)ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
� 2−[k/(1+k0)+2n−n(q̃0+q̃)−2]j[r0m(x0, V )]−(k+n−nq̃0−2)ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
,

where k0 is as in Lemma 2.5 and V (B) :=
∫
B V (x) dx.

For Fj , similar to (3.9), we know that, for any k ∈ N,

(3.10)
Fj � 2−[k/(1+k0)+2n−n(q̃0+q̃/p0)−2]jp0

×[r0m(x0, V )]−(k+n−nq̃0−2)p0ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.
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Taking k enough large in (3.8), (3.9) and (3.10) and then using (3.8), (3.9), (3.10)
and the fact that r0m(x0, V ) ≥ 1, we conclude that

(3.11)
I1,2 �

∞∑
j=2

Hj �
∞∑

j=2

2−[k/(1+k0)+2n−n(q̃0+q̃/p0)−2]jp0ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
�ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

Case 2. r0 ∈ (0, [m(x0, V )]−1). In this case, let j0 ∈ N such that

2j0−1r0 < [m(x0, V )]−1 ≤ 2j0r0.

For any x ∈ Sj(B) with j ∈ {2, . . . , j0 + 2}, by
∫

Rn a(x) dx = 0, the mean valued
theorem, Lemma 3.1(ii) and Hölder’s inequality, we conclude that, for any k ∈ N,

(3.12)

∣∣V L−1(a)(x)
∣∣=V (x)

∣∣∣∣∫
Rn

[Γ(x, y)− Γ(x, x0)]a(y) dy
∣∣∣∣

≤V (x)
∫

B
|∇yΓ(x, y1)||(y− x0)a(y)| dy

� (2jr0)−(n−1)rn+1
0 [1 + 2jr0m(x0, V )]−k‖χB‖−1

Lϕ(Rn)
V (x),

where y1 := x0 + θ(y − x0) with θ ∈ (0, 1). From this, the uniformly upper type 1
and lower type p0 properties of ϕ, it follows that, for any j ∈ {2, . . . , j0 + 2},

(3.13)

Jj :=
∫

Sj (B)
ϕ

(
x, |VL−1(λa)(x)|) dx

� (2jr0)−(n−1)rn+1
0 [1 + 2jr0m(x0, V )]−k

×
∫

Sj (B)

ϕ
(
x, |λ|‖χB‖−1

Lϕ(Rn)

)
V (x) dx

+(2jr0)−(n−1)p0r
(n+1)p0

0 [1 + 2jr0m(x0, V )]−kp0

×
∫

Sj (B)
ϕ

(
x, |λ|‖χB‖−1

Lϕ(Rn)

)
[V (x)]p0 dx =: Kj + Mj.

For Kj , by Hölder’s inequality, ϕ ∈ RHq′0(R
n) ∩ Aq̃(Rn), V ∈ RHq0(R

n), Lemma
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2.7(v) and Lemma 3.4, we see that, for any k ∈ N,

(3.14)

Kj ≤ (2jr0)−(n−1)rn+1
0 [1 + 2jr0m(x0, V )]−k‖V ‖Lq0(Sj(B))

×
∥∥∥ϕ(

·, |λ|‖χB‖−1
Lϕ(Rn)

)∥∥∥
Lq′

0(Sj(B))

� (2jr0)−(2n−1)rn+1
0 [1+2jr0m(x0, V )]−kϕ

(
2jB, |λ|‖χB‖−1

Lϕ(Rn)

)
V (2jB)

� (2jr0)−(2n−1)rn+1
0 [1+2jr0m(x0, V )]−kϕ

(
2jB, |λ|‖χB‖−1

Lϕ(Rn)

)
V (2jB)

� 2−(n+k+1−nq̃)[r0m(x0, V )]−k

[
1

2jr0m(x0, V )

]n/q0−2

ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
� 2−(n+k+n/q0−1−nq̃)[r0m(x0, V )]−(k+n/q0−2)ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

For Mj , similar to (3.14), we have

(3.15)
Mj � 2−(n+k+n/q0−1−nq̃/p0)p0[r0m(x0, V )]−(k+n/q0−2)p0

×ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

Taking k = 2 − n/q0 in (3.14) and (3.15) and then using (3.13), (3.14), (3.15), (3.5),
α0 ∈ (0, 1] and q > 1, we further conclude that

(3.16)

j0+2∑
j=2

Jj �
j0+2∑
j=2

2−(n+1−nq̃/p0)p0ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
� ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

From the definition of j0, we deduce that 2jr0m(x0, V ) ≥ 8 for any j ∈ N with
j ≥ j0 + 3. Let B̃0 := B(x0, r̃0) with r̃0 := [m(x0, V )]−1. Then ∪∞

j=j0+3Sj(B) ⊂
∪∞

j=2Sj(B̃0). By Lemma 2.5, we see that, for any x ∈ Sj(B̃0) with j ≥ 2 and y ∈ B,

|x− y|m(x, V ) � 2j[m(x0, V )]−1m(x0, V )
[1 + 2j[m(x0, V )]−1m(x0, V )]k0/(1+k0)

∼ 2−j/(1+k0),

where k0 is as in Lemma 2.5. From this,
∫

Rn a(x) dx = 0, the mean valued theorem,
Lemma 3.1(ii) and Hölder’s inequality, it follows that, for any x ∈ Sj(B̃0) with
j ∈ {2, . . .} and k ∈ N,

(3.17)

∣∣V L−1(a)(x)
∣∣ = V (x)

∣∣∣∣∫
Rn

[Γ(x, y)− Γ(x, x0)]a(y) dy
∣∣∣∣

≤ V (x)
∫

B

|∇yΓ(x, y1)||(y − x0)a(y)| dy

� 2−[k/(1+k0)+n−1]jrn+1
0 [m(x0, V )]n−1‖χB‖−1

Lϕ(Rn)V (x),
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where y1 := x0 + θ(y − x0) with θ ∈ (0, 1). By (3.17), the uniformly upper type 1
and lower type p0 properties of ϕ, we conclude that, for any j ∈ {2, . . .},

(3.18)

J̃j :=
∫

Sj (B̃0)

ϕ
(
x, |V L−1(λa)(x)|) dx

� 2−[k/(1+k0)+n−1]j r̃1−n
0 rn+1

0

∫
Sj(B̃0)

ϕ
(
x, |λ|‖χB‖−1

Lϕ(Rn)

)
V (x) dx

+2−[k/(1+k0)+n−1]jp0 r̃
(n−1)p0

0 r
(n+1)p0

0

×
∫

Sj (B̃0)
ϕ

(
x, |λ|‖χB‖−1

Lϕ(Rn)

)
[V (x)]p0 dx

=: K̃j + M̃j.

For K̃j , from Hölder’s inequality, ϕ ∈ RHq′0(R
n)∩Aq̃(Rn), V ∈ RHq0(R

n)∩Aq̃0
(Rn),

Lemma 2.7(v), (3.5) and r̃0 ≥ r0, we deduce that, for any k ∈ N,

(3.19)

K̃j ≤ 2−[k/(1+k0)+n−1]j r̃1−n
0 rn+1

0 ‖V ‖
Lq0(Sj (B̃0))

×
∥∥∥ϕ (

·, |λ|‖χB‖−1
Lϕ(Rn)

)∥∥∥
Lq′0(Sj (B̃0))

� 2−[k/(1+k0)+2n−1]j r̃1−2n
0 rn+1

0 ϕ
(
2jB̃0, |λ|‖χB‖−1

Lϕ(Rn)

)
V (2jB̃0)

� 2−[k/(1+k0)+2n−n(q̃+q̃0)−1]jϕ
(
B̃0, |λ|‖χB‖−1

Lϕ(Rn)

)
V (B̃0)

� 2−[k/(1+k0)+2n−n(q̃+q̃0)−1]j

[
r0
r̃0

]n+1−nq̃

ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
� 2−[k/(1+k0)+2n−n(q̃+q̃0)−1]jϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
For M̃j , similar to (3.19), we obtain that

(3.20) M̃j � 2−[k/(1+k0)+2n−n(q̃/p0+q̃0)−1]jp0ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

Taking k large enough in (3.19) and (3.20) and then using (3.18), (3.19) and (3.20),
we know that

(3.21)

∞∑
j=2

J̃j �
∞∑

j=2

2−[k/(1+k0)+2n−n(q̃/p0+q̃0)−1]jp0ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
� ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
,
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which, together with (3.16) and ∪∞
j=j0+3Sj(B) ⊂ ∪∞

j=2Sj(B̃0), implies that, in this
case,

I1,2 �
j0∑

j=2

Jj +
∞∑

j=2

J̃j � ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

From this, (3.4), (3.6) and (3.11), it follows that (3.3) holds true, which completes the
proof of Theorem 1.4(i).

Now we prove (ii) of this theorem. Let q be as in the proof of (i). Similar to the
proof of (i), it suffices to prove that, for all λ ∈ C and (ϕ, q)m-atoms a supported in
the ball B := B(x0, r0),∫

Rn

ϕ
(
x,

∣∣∣V 1/2∇L−1(λa)(x)
∣∣∣) dx � ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.(3.22)

Now we prove (3.22). We first write

(3.23)

∫
Rn

ϕ
(
x,

∣∣∣V 1/2∇L−1(λa)(x)
∣∣∣) dx=

∫
4B

ϕ
(
x,

∣∣∣V 1/2∇L−1(λa)(x)
∣∣∣) dx

+
∫

Rn\4B
· · · =: I2,1 + I2,2.

For I2,1, similar to (3.6), we see that

I2,1 � ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.(3.24)

Now we estimate the term I2,2 by considering the following two cases for r0.

Case 1. r0 ≥ [m(x0, V )]−1. In this case, by using Lemmas 2.5 and 3.1, similar
to (3.7), we conclude that, for any given x ∈ Sj(B) with j ∈ N and j ≥ 2 and k ∈ N,

(3.25)
∣∣∣V 1/2∇L−1(a)(x)

∣∣∣ � 2−[k/(1+k0)+n−1]jr0[r0m(x0, V )]−k‖χB‖−1
Lϕ(Rn),

where k0 is as in Lemma 2.2. From (3.25), the uniformly upper type 1 and lower type
p0 properties of ϕ, Hölder’s inequality and Lemma 2.7(v), and similar to (3.8), we
deduce that, for any k ∈ N,

(3.26)
Jj :=

∫
Sj (B)

ϕ
(
x,

∣∣∣V 1/2∇L−1(λa)(x)
∣∣∣) dx

� 2−[ k
1+k0

+ 3n
2
−nq̃

p0
−nq̃0

2
−1]p0j

ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

Taking k enough large in (3.26), then we see that

(3.27)
I2,2 �

∞∑
j=2

Jj �
∞∑

j=2

2−[ k
1+k0

+ 3n
2
−nq̃

p0
−nq̃0

2
−1]p0j

ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
� ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.
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Case 2. r0 ∈ (0, [m(x0, V )]−1). In this case, similar to Case 2 of the proof of
(i), let j0 ∈ N such that 2j0−1r0 < [m(x0, V )]−1 ≤ 2j0r0. For any x ∈ Sj(B) with
j ∈ {2, . . . , j0 + 2}, by

∫
Rn a(x) dx = 0, the mean valued theorem, Lemma 3.1(iii)

and Hölder’s inequality, similar to (3.12), we see that, for any k ∈ N,∣∣∣V 1/2∇L−1(a)(x)
∣∣∣ � (2jr0)−nrn+1

0 [1 + 2jr0m(x0, V )]−k‖χB‖−1
Lϕ(Rn)[V (x)]1/2.

From this, the uniformly upper type 1 and lower type p0 properties of ϕ, Hölder’s
inequality, ϕ ∈ RHq′0(R

n) ∩Aq̃(Rn), V ∈ RHq0(R
n), Lemma 2.7(v) and Lemma 3.4,

where q̃ is as (3.5), similar to (3.16), it follows that, for any j ∈ {2, . . . , j0 + 2},

j0+2∑
j=2

Jj � ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.(3.28)

Moreover, by
∫

Rn a(x) dx = 0, the mean valued theorem, Lemma 3.1(iii) and
Hölder’s inequality, similar to (3.17), we conclude that, for any x ∈ Sj(B̃0) with
j ∈ {2, . . .} and k ∈ N,∣∣∣V 1/2∇L−1(a)(x)

∣∣∣ � 2−[k/(1+k0)+n]jrn+1
0 r̃n

0‖χB‖−1
Lϕ(Rn)[V (x)]1/2,(3.29)

where B̃0 := B(x0, r̃0) with r̃0 := [m(x0, V )]−1, and k0 is as in Lemma 2.5. By
(3.29), the uniformly upper type 1 and lower type p0 properties of ϕ, Hölder’s inequality,
ϕ ∈ RHq′0(R

n) ∩ Aq̃(Rn), V ∈ RHq0(R
n) ∩ Aq̃0

(Rn) and Lemma 2.7(v), similar to
(3.21), we conclude that

∞∑
j=2

J̃j :=
∞∑

j=2

∫
Sj (B̃0)

ϕ
(
x,

∣∣∣V 1/2∇L−1(a)
∣∣∣) dx

�
∞∑

j=2

2−[ k
1+k0

+ 3n
2
−nq̃0

2
−nq̃

p0
]jp0ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)

� ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
,

which, together with (3.28) and ∪∞
j=j0+3Sj(B) ⊂ ∪∞

j=2Sj(B̃0), implies that, in this
case,

I2,2 �
j0+2∑
j=2

Jj +
∞∑

j=2

J̃j � ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

From this, (3.23), (3.24) and (3.27), we further deduce that (3.22) holds true, which
completes the proof of Theorem 1.4(ii).
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Finally, we prove (iii) of this theorem. Let q be as in the proof of (i). Similar to
the proof of (i), it suffices to prove that, for all λ ∈ C and (ϕ, q)m-atoms a supported
in the ball B := B(x0, r0),∫

Rn

ϕ
(
x,

∣∣∇2L−1(λa)(x)
∣∣) dx � ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.(3.30)

Now we prove (3.30). We first write

(3.31)

∫
Rn

ϕ
(
x,

∣∣∇2L−1(λa)(x)
∣∣) dx =

∫
16B

ϕ
(
x,

∣∣∇2L−1(λa)(x)
∣∣) dx

+
∫

Rn\16B

· · · =: I3,1 + I3,2.

For I3,1, similar to (3.6), we see that

I3,1 � ϕ
(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.(3.32)

Now we estimate the term I3,2 by considering the following two cases for r0.

Case 1. r0 ≥ [m(x0, V )]−1. In this case, let ψ ∈ C∞
c (R) such that ψ(t) ≡ 0

when t ∈ (−∞, 1/2] ∪ [4,∞), and ψ(t) ≡ 1 when t ∈ [1, 2]. For any j ∈ N and
x ∈ R

n, let ψj(x) := ψ( |x−x0|
2jr0

). Then, when j ∈ N with j ≥ 5, ψja ≡ 0, which,
together with the definition of L, shows that

(3.33)

L(ψjL
−1(a))

= V ψjL
−1(a)− div(A∇ψj)L−1(a)−A∇ψj · ∇L−1(a)

−div(A∇L−1(a))ψj −A∇L−1(a) · ∇ψj

= LL−1(a)ψj − div(A∇ψj)L−1(a)

−A∇ψj · ∇L−1(a) −A∇L−1(a) · ∇ψj

= −div(A∇ψj)L−1(a) −A∇ψj · ∇L−1(a)− A∇L−1(a) · ∇ψj.

This, together with the fact that ψj ≡ 1 on Sj(B) with j ∈ N and j ≥ 5, Lemma 3.3,
the assumption (A1) and Hölder’s inequality, implies that

(3.34)

∫
Sj (B)

∣∣∇2L−1(a)
∣∣q dx

=
∫

Sj (B)

∣∣∇2L−1(L(ψjL
−1(a)))(x)

∣∣q dx �
∫

Rn

∣∣L(ψjL
−1(a))(x)

∣∣q dx
�

∫
Rn

∣∣L−1(a)(x)div(A∇ψj)(x)
∣∣q dx+ ∫

Rn

∣∣∇ψj(x) · ∇L−1(a)(x)
∣∣q dx.
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Moreover, from the assumption (A3), we deduce that

−div(A∇) =
n∑

i=1

n∑
k=1

aik∂ik,(3.35)

which, together with the assumption (A1) and (3.34), implies that

(3.36)

∫
Sj (B)

∣∣∇2L−1(a)
∣∣q dx

�
∫

Rn

∣∣L−1(a)(x)∇2ψj(x)
∣∣q dx+

∫
Rn

∣∣∇ψj(x) · ∇L−1(a)(x)
∣∣q dx.

For all x ∈ Sj(B) with j ≥ 5, by Lemma 3.1(i), (2.3) and Hölder’s inequality, we
conclude that, for any k ∈ N,

|L−1(a)(x)| �
∫

B

|a(y)|
[1 + |x− y|m(y, V )]k|x− y|n−2

dy

�
∫

B

|a(y)|
[1 + 2jr0m(x0, V )]k(2jr0)n−2

dy

� 2−jk(2jr0)−(n−2)‖a‖Lq(Rn)|B|1/q′ � 2−j(k+n−2)r20‖χB‖−1
Lϕ(Rn)

,

which, together with the fact that, for all z ∈ Rn, |∇2ψj(z)| � (2jr0)−2, implies that∫
Rn

∣∣L−1(a)(x)∇2ψj(x)
∣∣q dx � 2−jq(k+n−n/q)|B|‖χB‖−q

Lϕ(Rn)
.(3.37)

Furthermore, by using Lemma 3.1(ii) and the fact that, for all z ∈ Rn, |∇ψj(z)| �
(2jr0)−1, similar to the proof of [10, (3.11)], we see that∫

Rn

∣∣∇L−1(a)(x) · ∇ψj(x)
∣∣q dx � 2−jq(k+n−n/q) |B|‖χB‖−q

Lϕ(Rn).(3.38)

Thus, from (3.36), (3.37) and (3.38), it follows that, for all j ∈ N with j ≥ 5,∫
Sj (B)

∣∣∇2L−1(a)
∣∣q dx � 2−jq(k+n−n/q)|B|‖χB‖−q

Lϕ(Rn)
.(3.39)

Then, by using the uniformly upper type 1 and lower type p0 properties of ϕ, Hölder’s
inequality, (3.39), ϕ ∈ RHq′(Rn) ∩ Aq̃(Rn) and Lemma 2.7(v), similar to (3.6), we
know that, for any j ∈ N with j ≥ 5 and any given k ∈ N,∫

Sj (B)
ϕ

(
x,

∣∣∇2L−1(λa)(x)
∣∣) dx � 2−jp0(n+k−nq̃/p0)ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
,
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which further implies that

I3,2 =
∞∑

j=5

∫
Sj (B)

ϕ
(
x,

∣∣∇2L−1(λa)(x)
∣∣) dx � ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.(3.40)

Case 2. r0 ∈ (0, [m(x0, V )]−1). In this case, similar to the proof of [10, (3.14)],
we know that, for all x ∈ Sj(B) with j ∈ N and j ≥ 5,∣∣L−1(a)(x)

∣∣ � 2j(1−n)r20‖χB‖−1
Lϕ(Rn) and

∣∣∇L−1(a)(x)
∣∣ � 2−jnr0‖χB‖−1

Lϕ(Rn).

By this, similar to the proof of (3.39), we conclude that∫
Sj(B)

∣∣∇2L−1(a)(x)
∣∣q dx � 2−jq(n+1−n/q)|B|‖χB‖−q

Lϕ(Rn).(3.41)

Then, from the uniformly upper type 1 and lower type p0 properties of ϕ, Hölder’s
inequality, (3.41), ϕ ∈ RHq′(Rn) ∩ Aq̃(Rn) and Lemma 2.7(v), similar to (3.6), it
follows that, for any j ∈ N with j ≥ 5,∫

Sj(B)

ϕ
(
x,

∣∣∇2L−1(λa)(x)
∣∣) dx � 2−jp0(n+1−nq̃/p0)ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
,

which, together with (3.5) and α0 ∈ (0, 1], further implies that, in this case,

I3,2 =
∞∑

j=5

∫
Sj (B)

ϕ
(
x,

∣∣∇2L−1(λa)(x)
∣∣) dx � ϕ

(
B, |λ|‖χB‖−1

Lϕ(Rn)

)
.

By this, (3.31), (3.32) and (3.40), we conclude that (3.30) holds true, which completes
the proof of (iii) and hence the proof of Theorem 1.4.

4. PROOF OF THEOREM 1.6

In this section, we give out the proof of Theorem 1.6. To this end, we need the
molecular characterization of Hϕ(Rn) established in [22, Theorem 4.13]. To state
the molecular characterization of the space Hϕ(Rn), we first recall the definitions of
(ϕ, q, s, ε)-molecules and molecular Musielak-Orlicz-Hardy spaces Hq, s, ε

ϕ,mol(R
n).

Definition 4.1. Let ϕ be as in Definition 1.2, q ∈ (1,∞), s ∈ Z+ and ε ∈ (0,∞).
A function α ∈ Lq(Rn) is called a (ϕ, q, s, ε)-molecule associated with the ball B, if

(i) for each j ∈ Z+, ‖α‖Lq(Sj(B)) ≤ 2−jε|2jB|1/q‖χB‖−1
Lϕ(Rn), where S0(B) := 2B

and Sk(B) := 2k+1B \ (2kB) when k ∈ N;
(ii)

∫
Rn α(x)xβ dx = 0 for all β ∈ Z

n
+ with |β| ≤ s.
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Definition 4.2. Let ϕ be as in Definition 1.2, q ∈ (1,∞), s ∈ Z+ and ε ∈ (0,∞).
The molecular Musielak-Orlicz-Hardy space, Hq, s, ε

ϕ,mol(R
n), is defined to be the space

of all f ∈ S ′(Rn) satisfying that f =
∑

j λjαj in S ′(Rn), where {λj}j ⊂ C, {αj}j is
a sequence of (ϕ, q, s, ε)-molecules, respectively, associated to the balls {Bj}j , and

∑
j

ϕ

(
Bj,

|λj|
‖χBj‖Lϕ(Rn)

)
<∞,

where, for each j, the molecule αj is associated with the ball Bj . Moreover, define

‖f‖H
q, s, ε
ϕ, mol(R

n) := inf
{
Λ

(
{λjαj}j

)}
,

where the infimum is taken over all the decompositions of f as above and

Λ
(
{λjαj}j

)
:= inf

⎧⎨⎩λ ∈ (0,∞) :
∑

j

ϕ

(
Bj ,

|λj|
λ‖χBj‖Lϕ(Rn)

)
≤ 1

⎫⎬⎭ .

Then we have the following conclusion, which is just [22, Theorem 4.11].

Lemma 4.3. Let ϕ be as in Definition 1.2. Assume that s ∈ Z+ with s ≥
�n(q(ϕ)/i(ϕ) − 1)�, ε ∈ (max{n + s, nq(ϕ)/i(ϕ)},∞) and p ∈ (q(ϕ)[r(ϕ)]′,∞),
where q(ϕ), i(ϕ) and r(ϕ) are, respectively, as in (1.5), (1.6) and (1.7). Then Hϕ(Rn)
and Hp, s, ε

ϕ,mol(R
n) coincide with equivalent quasi-norms.

Now we prove Theorem 1.6 by using Theorem 2.3, Lemmas 3.1, 3.3 and 4.3.

Proof of Theorem 1.6. We first prove (i) of this theorem. Let f ∈ Hϕ,L(Rn) ∩
L2(Rn). We first recall that, in this case, μ0 = α0. From q(ϕ)[r(ϕ)]′ < n

nq(ϕ)/i(ϕ)−α0
,

it follows that there exists

q ∈
(
q(ϕ)[r(ϕ)]′,

n

nq(ϕ)/i(ϕ)− α0

)
.(4.1)

Thus, q > q(ϕ)[r(ϕ)]′ and α0 + n/q > nq(ϕ)/i(ϕ). By this and Theorem 2.3,
we know that there exist {λj}j ⊂ C and a sequence {aj}j of (ϕ, q)m-atoms such
that f =

∑
j λjaj in L2(Rn) and ‖f‖Hϕ, L(Rn) ∼ Λ({λjaj}j), which, together with

Lemma 3.3, q0 ∈ [n,∞) and n ≥ 3, implies that

(4.2) ∇2L−1(f) =
∑

j

λj∇2L−1(aj)

in L2(Rn). Let p ∈ (q(ϕ)[r(ϕ)]′, q]. To finish the proof of Theorem 1.6, it suffices to
prove that, for any (ϕ, q)m-atom a supported in the ball B := B(x0, r0), ∇2L−1(a)
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is a harmless constant multiple of a (ϕ, p, 0, ε)-molecule associated with the ball B
for some ε > nq(ϕ)/i(ϕ). If this claim holds true, from this, (4.2), Lemma 4.3 and
‖f‖Hϕ, L(Rn) ∼ Λ({λjaj}j), we further deduce that f ∈ Hϕ(Rn) and∥∥∇2L−1(f)

∥∥
Hϕ(Rn)

� Λ({λjaj}j) � ‖f‖Hϕ, L(Rn),

which is desired.
Now we prove that ∇2L−1(a) is a harmless constant multiple of a (ϕ, p, 0, ε)-

molecule by considering the following two cases for r0.
Case 1. r0 ∈ [[m(x0, V )]−1,∞). In this case, to prove that

∫
Rn ∇2L−1(a) dx = 0,

we first prove that ∇L−1(a), ∇2L−1(a) ∈ L1(Rn). Write

(4.3)
∫

Rn

∣∣∇L−1(a)(x)
∣∣ dx =

∞∑
j=0

∫
Sj (B)

∣∣∇L−1(a)(x)
∣∣ dx =:

∞∑
j=0

Ij .

When j ∈ {0, 1, 2}, by Fubini’s theorem, Lemma 3.1(ii) and Hölder’s inequality, we
conclude that

(4.4)

Ij ≤
∫

Sj(B)

∫
B
|∇xΓ(x, y)a(y)| dy dx

≤
∫

B

{∫
S̃j (B)

|∇xΓ(x, y)| dx
}
|a(y)| dy

≤
∫

B

{∫
S̃j (B)

|x− y|1−n dx

}
|a(y)| dy

� r0‖a‖L1(Rn) � r0‖a‖Lq(Rn)|B|1/q′ � r0|B|‖χB‖−1
Lϕ(Rn),

where S̃j(B) := 2j+2B \ (2j−1B) with j ∈ Z+, and 2−1B := ∅. When j ∈ N with
j ≥ 3, from Lemma 3.1(ii), (2.3) and r0 ≥ [m(x0, V )]−1, it follows that, for all k ∈ N

and x ∈ Sj(B),∣∣∇L−1(a)(x)
∣∣ �

∫
B

|a(y)|
[1 + |x− y|m(y, V )]k|x− y|n−1

dy

�
∫

B

|a(y)|
[2jr0m(x0, V )]k(2jr0)n−1

dy

� 2−kj(2jr0)1−n‖a‖L1(Rn) � 2−j(k+n−1)r0‖χB‖−1
Lϕ(Rn),

which implies that, for all j ∈ N with j ≥ 3,

(4.5) Ij � 2−(k−1)jr0|B|‖χB‖−1
Lϕ(Rn).

By (4.3), (4.4) and (4.5), we know that ∇L−1(a) ∈ L1(Rn).
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Now we prove that ∇2L−1(a) ∈ L1(Rn). Write

(4.6)
∫

Rn

∣∣∇2L−1(a)(x)
∣∣ dx =

∞∑
j=0

∫
Sj (B)

∣∣∇2L−1(a)(x)
∣∣ dx =:

∞∑
j=0

IIj.

By the choice of q and q0 ≥ n, we see that q < n
nq(ϕ)/i(ϕ)−α0

≤ n/(n−α0) < n ≤ q0,
which, together with p ≤ q, implies that p < q0. When j ∈ {0, 1, . . . , 4}, from
p < q0, Lemma 3.3 and Hölder’s inequality, it follows that

(4.7)
IIj ≤

{∫
Sj (B)

∣∣∇2L−1(a)(x)
∣∣p dx}1/p

|Sj(B)|1/p′

� ‖a‖Lp(Rn)|Sj(B)|1/p′ � |B|‖χB‖−1
Lϕ(Rn).

For j ≥ 5, by (3.41) and Hölder’s inequality, we see that, for any given k ∈ N,∫
Sj (B)

∣∣∇2L−1(a)(x)
∣∣ dx ≤

{∫
Sj (B)

∣∣∇2L−1(a)(x)
∣∣q dx}1/q

|2jB|1/q′

� 2−jk|B|‖χB‖−1
Lϕ(Rn)

.

From this, (4.6) and (4.7), we deduce that ∇2L−1(a) ∈ L1(Rn).
To prove that

∫
Rn ∇2L−1(a)(x) dx = 0, we borrow some ideas from the proof of

[27, Theorem 7.4]. Take a family of functions, {φj}j∈N ⊂ C∞
c (Rn), such that

(i)
∑∞

j=1 φj(x) = 1 for almost every x ∈ R
n;

(ii) for each j ∈ N, supp (φj) ⊂ 2Bj , φj ≡ 1 on Bj and 0 ≤ φj ≤ 1;

(iii) there exists a positive constant C such that, for all j ∈ N and x ∈ R
n, |φj(x)|+

|∇φj(x)| ≤ C;

(iv) there exists N0 ∈ N such that
∑∞

j=1 χ2Bj ≤ N0.

Using the properties of {φj}j∈N and the facts that ∇L−1(a), ∇2L−1(a) ∈ L1(Rn),
we see that ∫

Rn

∇2L−1(a)(x) dx =
∞∑

j=1

∫
Rn

∇(φj∇L−1(a))(x) dx.

For each j ∈ N, let ηj ∈ C∞
c (Rn) such that ηj ≡ 1 on 2Bj and supp (ηj) ⊂ 4Bj .

Then, by integral by parts, we conclude that, for each i ∈ {1, 2, . . . , n},

(4.8)

∫
Rn

∂(φj∇L−1(a))(x)
∂xi

dx =
∫

Rn
ηj(x)

∂(φj∇L−1(a))(x)
∂xi

dx

= −
∫

Rn
φj(x)∇L−1(a)(x)

∂ηj(x)
∂xi

dx = 0,
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which implies that
∫

Rn ∇2L−1(a)(x) dx = 0. Moreover, from the boundedness of
∇2L−1 on Lp(Rn) and (3.39), we deduce that, for each j ∈ Z+ and any given k ∈ N,∥∥∇2L−1(a)

∥∥
Lp(Sj(B))

� 2−j(k+n)|2jB|1/p‖χB‖−1
Lϕ(Rn).

Thus, ∇2L−1(a) is a harmless constant multiple of a (ϕ, p, 0, k+n)-molecule, which
is desired.

Case 2. r0 ∈ (0, [m(x0, V )]−1). In this case, similar to the proof of Case 1,
we need to prove that ∇L−1(a), ∇2L−1(a) ∈ L1(Rn). We first prove ∇L−1(a) ∈
L1(Rn). From the proof of (4.4), it follows that (4.4) is also valid in this case. When
j ∈ N with j ≥ 5, by using Lemma 3.1(iii),

∫
B a(x) dx = 0, the mean valued theorem

and Hölder’s inequality, similar to [10, (3.14)], we know that, for all k ∈ N and
x ∈ Sj(B), ∣∣∇L−1(a)(x)

∣∣ � 2−j(k+n)r0[r0m(x0, V )]−k‖χB‖−1
Lϕ(Rn),(4.9)

which further implies that∫
Sj (B)

∣∣∇L−1(a)(x)
∣∣ dx � 2−jk[r0m(x0, V )]−kr0|B|‖χB‖−1

Lϕ(Rn).

From this, (4.3) and (4.4), it follows that ∇L−1(a) ∈ L1(Rn).
Now we prove that ∇2L−1(a) ∈ L1(Rn). In this case, we see that, for each

j ∈ {0, . . . , 4}, (4.7) also holds true. When j ∈ N with j ≥ 5, similar to the proof of
[10, (3.14)], we know that, for all x ∈ Sj(B),∣∣L−1(a)(x)

∣∣ � 2j(1−n)r20‖χB‖−1
Lϕ(Rn) and

∣∣∇L−1(a)(x)
∣∣ � 2−jnr0‖χB‖−1

Lϕ(Rn).

By this, similar to the proof of (3.39), we conclude that{∫
Sj (B)

∣∣∇2L−1(a)(x)
∣∣p dx}1/p

� 2−j(n+1)|2jB|1/p‖χB‖−1
Lϕ(Rn)

,(4.10)

which, together with Hölder’s inequality, implies that, for each j ∈ N with j ≥ 5,∫
Sj(B)

∣∣∇2L−1(a)(x)
∣∣ dx � 2−j|B|‖χB‖−1

Lϕ(Rn).

From this, (4.6) and (4.7), it follows that ∇2L−1(a) ∈ L1(Rn). Then, by (4.8), we
see that

∫
Rn ∇2L−1(a)(x) dx = 0. From this and (4.10), we deduce that ∇2L−1(a)

is a harmless constant multiple of a (ϕ, p, 0, n+ 1)-molecule, which is desired. This
finishes the proof of Theorem 1.6(i).
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Now we prove (ii) of this theorem by using Theorem 2.3 and (i). Let f ∈
Hϕ,L(Rn)∩L2(Rn) and q be as in (4.1). By Theorem 2.3, we conclude that there exist
{λj}j ⊂ C and a sequence {aj}j of (ϕ, q)m-atoms such that f =

∑
j λjaj in L2(Rn)

and ‖f‖Hϕ, L(Rn) ∼ Λ({λjaj}j), which, together with Lemma 3.2(i), q0 ∈ [n,∞) and
n ≥ 3, implies that

(4.11) V L−1(f) =
∑

j

λjV L
−1(aj)

in L2(Rn). Let p ∈ (1, q]. To finish the proof of Theorem 1.6(ii), it suffices to
prove that, for any (ϕ, q)m-atom a supported in the ball B := B(x0, r0), there exist
{μi}i ⊂ C and a sequence {αi}i of (ϕ, p)m-atoms such that

(4.12) V L−1(a) =
∑

i

μiαi

in L2(Rn) and, for all λ ∈ (0,∞),

(4.13)
∑

i

ϕ

(
Bi,

|μi|
λ‖χBi‖Lϕ(Rn)

)
� ϕ

(
B,

1
λ‖χB‖Lϕ(Rn)

)
,

where, for each i, supp (αi) ⊂ Bi. If (4.12) and (4.13) hold true, from these, (4.11)
and ‖f‖Hϕ, L(Rn) ∼ Λ({λjaj}j), it follows that V L−1(f) ∈ Hϕ, L(Rn) and∥∥V L−1(f)

∥∥
Hϕ, L(Rn)

� Λ({λjaj}j) � ‖f‖Hϕ, L(Rn),

which is desired.
Now we prove (4.12) and (4.13) by considering the following two cases for r0.

Case 1. r0 ∈ [[2m(x0, V )]−1,∞). In this case, let Sj(B) with j ∈ Z+ be as in
the proof of (i). Then,

(4.14) V L−1(a) =
∞∑
i=0

V L−1(a)χSj (B) =:
∞∑
i=0

bi.

By Lemma 3.2(i), we know that

‖b0‖Lp(Rn) ≤ ‖V L−1(a)‖Lp(Rn) � ‖a‖Lp(Rn) � |B|1/p‖χB‖−1
Lϕ(Rn)

.

From this, supp (b1) ⊂ 2B and 2r0 ≥ [m(x0, V )]−1, we deduce that there exists a
positive constant C̃0 such that b0/C̃0 is a (ϕ, p)-atom. Let μ0 := C̃0 and α0 := b0/C̃0.
Then, b0 = μ0α0 and, for all λ ∈ (0,∞),

(4.15) ϕ

(
2B,

μ0

λ‖χ2B‖Lϕ

)
� ϕ

(
B,

1
λ‖χB‖Lϕ(Rn)

)
.
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Moreover, by (3.35), (3.39) and Hölder’s inequality, we conclude that, for any i ∈ N

and k ∈ (n[q(ϕ)/i(ϕ)− α0],∞),

‖bi‖Lp(Rn) =
∥∥div(A∇L−1(a))

∥∥
Lp(Si(B))

�
∥∥∇2L−1(a)

∥∥
Lp(Si(B))

� 2−i(k+n)|2i+1B|1/p‖χB‖−1
Lϕ(Rn),

which, together with supp (bi) ⊂ 2i+1B, implies that there exists a positive constant
C̃1 such that ‖χB‖Lϕ(Rn)bi

C̃12−i(k+n)‖χ2i+1B‖Lϕ(Rn)
is a (ϕ, p)m-atom. Let

μi :=
C̃12−i(k+n)‖χ2i+1B‖Lϕ(Rn)

‖χB‖Lϕ(Rn)
and αi :=

‖χB‖Lϕ(Rn)bi

C̃12−i(k+n)‖χ2i+1B‖Lϕ(Rn)

.

Then, αi is a (ϕ, p)m-atom and bi = μiαi. Moreover, from k > n[q(ϕ)/i(ϕ)− α0]
and the definitions of i(ϕ) and q(ϕ), we deduce that there exist p0 ∈ (0, i(ϕ)) and
q̃ ∈ (q(ϕ),∞) such that ϕ is of uniformly lower type p0, ϕ ∈ Aq̃(Rn) and k+ nα0 >

nq̃/p0. By this, the definition of μi and Lemma 2.7(v), we further conclude that, for
all λ ∈ (0,∞),

(4.16)

∞∑
i=1

ϕ

(
2i+1B,

|μi|
λ‖χ2i+1B‖Lϕ(Rn)

)
�

∞∑
i=1

2−i[(k+n)p0−nq̃])ϕ

(
B,

1
λ‖χB‖Lϕ(Rn)

)
� ϕ

(
B,

1
λ‖χB‖Lϕ(Rn)

)
,

which, together with (4.14) and (4.15), implies that (4.12) and (4.13) hold true in this
case.

Case 2. r0 ∈ (0, [2m(x0, V )]−1). In this case, from Case 2 of the proof of
Theorem 1.6(i), it follows that ∇L−1(a), ∇2L−1(a) ∈ L1(Rn), which, together with
(3.35) and the assumption (A1), implies that ∇L−1(a), div(A∇L−1(a)) ∈ L1(Rn).
Then, by the fact that

∫
Rn a(x) dx = 0 and repeating the proof of (4.8), we conclude

that ∫
Rn

div(A∇L−1(a))(x) dx = 0,

which, together with −div(A∇L−1(a))+V L−1(a) = a and
∫

Rn a(x) dx = 0, implies
that ∫

Rn

V L−1(a)(x) dx=
∫

Rn

[
a(x) + div(A∇L−1(a))(x)

]
dx = 0.

For i ∈ Z+, let mi :=
∫
Si(B) α(x) dx, χ̃i :=

χSi(B)

|Si(B)| and Mi := αχSi(B) −miχ̃i. Then

V L−1(a) =
∞∑
i=0

Mk +
∞∑
i=0

miχ̃i.
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For any j ∈ N+, let Nj :=
∑∞

k=j mk. From
∫

Rn V L
−1(a)(x) dx = 0, it follows that

V L−1(a) =
∞∑
i=0

Mi +
∞∑
i=0

Ni+1(χ̃i+1 − χ̃i).

It is obvious that, for each i ∈ Z+,
∫

Rn Mi(x) dx = 0 and
∫

Rn Ni+1[χ̃i+1(x) −
χ̃i(x)] dx = 0. By using Lemma 3.2(i) and (4.10), similar to the proofs of (4.15)
and (4.16), we know that there exist {μ1, i}i∈Z+, {μ2, i}i∈Z+ ⊂ C and two sequences
{α1, i}i∈Z+ and {α2, i}i∈Z+ of (ϕ, p)m-atoms such that Mi = μ1, iα1, i, Ni+1(χ̃i+1 −
χ̃i) = μ2, iα2, i and, for all λ ∈ (0,∞),∑

i∈Z+

ϕ

(
2i+1B,

|μ1, i|
λ‖χ2i+1B‖Lϕ(Rn)

)
+

∑
i∈Z+

ϕ

(
2i+1B,

|μ2, i|
λ‖χ2i+1B‖Lϕ(Rn)

)

� ϕ

(
B,

1
λ‖χB‖Lϕ(Rn)

)
,

which, together with (4.16), implies that (4.12) and (4.13) hold true in this case. This
finishes the proof of (ii) and hence the proof of Theorem 1.6.
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