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THE MEAN MINKOWSKI MEASURES FOR CONVEX BODIES OF
CONSTANT WIDTH

HaiLin Jin and Qi Guo

Abstract. In this paper, we study the so-called mean Minkowski measures, pro-
posed and studied by Toth in a series of papers, for convex bodies of constant
width. We show that, with respect to the mean Minkowski measure, the com-
pletions of regular simplices are, as well as for many other measures, the most
asymmetric ones among all convex bodies of constant width.

1. INTRODUCTION

Measures of (central) symmetry or, as we prefer, asymmetry for convex bodies have
been extensively studied (see [6, 7, 8, 15, 18, 21]). For a given asymmetry measure
defined on some class of convex bodies, it is important to determine the extremal bodies
with maximal asymmetry measure. For instance, for many known asymmetry measures,
circles are most symmetric and, among 2-dimensional convex bodies of constant width,
the Reuleaux triangles are most asymmetric (see [1, 5, 11]). Recently Jin and Guo
extended such a result to the general n-dimensional cases as follows.

Theorem A. ([12, 13]). Let K be an n-dimensional convex body of constant
width. Then

1 ≤ as∞(K) ≤ n +
√

2n(n + 1)
n + 2

,

where as∞(·) denotes the Minkowski measure of asymmetry for convex bodies. Equality
holds on the left-hand side if and only if K is an Euclidean ball and on the right-hand
if and only if K is a completion of a regular simplex.
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In a series of papers ([20, 21, 22, 24, 25]), Toth introduced and studied, for an
n-dimensional convex body C (in this paper, we use C for a generic convex body and
K for a convex body of constant width), a family of measures (functions) of symmetry
σm := σm(C, · ) : int(C) → R, (m ≥ 1), called the mean Minkowski measures. They
enjoy many nice properties and give out some useful information about the shape of C.
As expected, among all σm, σn is the most important one. For instance, Toth proved
the following:

Theorem B. ([20]). Let C ⊂ Rn be a convex body. Then for any o ∈ int(C),

1 ≤ σn(C, o) ≤ n + 1
2

.

Equality holds on the left-hand side for some o ∈ int(C) if and only if C is a simplex,
and equality holds on the right-hand side for some o ∈ int(C) if and only if C is a
centrally symmetric convex body centered at o.

In this paper, we will study the mean Minkowski measure σn for convex bodies
K of constant width. More precisely, we will study the possible values of σn(K, o),
where o (called a base point by Toth) is chosen to be the (unique) ∞-critical point of
K (see below for definitions). The reason for such a choice is that the insphere and
circumsphere of a convex body of constant width are concentric (not true in general)
and, as shown in [12], the common center of its insphere and circumsphere is precisely
its (unique) ∞-critical point. In fact, as pointed out by Toth, even for general convex
bodies, the ∞-critical points are still the most important base points.

The main result in this paper is the following theorem.

Main Theorem. Let K be an n-dimensional convex body of constant width with
base point o, the unique ∞-critical point of K . Then

n + 1 −
√

2n(n + 1)
2

≤ σn(K, o) ≤ n + 1
2

.

Equality holds on the right-hand side if and only if K is an Euclidean ball and on
the left-hand if and only if K is a completion of a regular simplex.

2. PRELIMINARIES

Rn denotes the usual n-dimensional Euclidean space with the canonical inner prod-
uct 〈·, ·〉. A bounded closed convex set C ⊂ Rn is called a convex body if it has
non-empty interior. The family of all convex bodies in Rn is denoted by Kn. For this
and other concepts and notations our standard reference is [19].

For C ∈ Kn, its support function h(C, · ) is defined as h(C, u) := max{〈x, u〉 | x ∈
C}, u ∈ Sn−1 (the unit sphere of Rn). Then the width ω(C, u) of C in direction
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u ∈ Sn−1 is given by ω(C, u) = h(C, u) + h(C,−u). Geometrically, this is the
distance between the two parallel supporting hyperplanes of C orthogonal to u.

A convex body K is said to be of constant width ω if ω(K, u) = ω for all
u ∈ Sn−1 (see [3, 10, 14, 16, 17]). The class of all convex bodies of constant
width is denoted by Wn. In R2, among 2-dimensional bodies of constant width, the
Reuleaux triangles are the most important ones. They have the minimal area among
2-dimensional bodies sharing the same constant width (see [3]). At the same time, it
is the most asymmetric bodies of constant width. In R3, Meissner’s bodies, also called
Meissner tetrahedron, are the most famous ones, since they are conjectured to solve the
open problem: Which bodies have the minimal volumes among 3-dimensional bodies
sharing the same constant width (see [14]).

A set C ∈ Kn is said to be complete if there is no C′ ∈ Kn such that C � C′

and diam(C) = diam(C′). For C ∈ Kn, any complete set C� with C ⊂ C� and
diam(C) = diam(C�) is called a completion of C. In Rn, a convex body is complete
iff it is of constant width, and every convex body has at least one completion (see [3]).

Let C ∈ Kn and x ∈ int(C). For a chord l of C through x, let γ(l, x) be the ratio,
not less than 1, in which x divides the length of l. Letting γ(C, x) = max{γ(l, x) | l 

x}, the Minkowski measure as∞(C) is defined by (see [6, 15])

as∞(C) = min
x∈int(C)

γ(C, x).

A point x ∈ int(C) satisfying γ(C, x) = as∞(C) is called an ∞-critical point of C

(see [8]). The set of all ∞-critical points of C is denoted by C∗. It is known that C∗

is a non-empty convex set (see [6, 9, 15]).
If x ∈ C∗, a chord l satisfying γ(l, x) = as∞(C) is called a critical chord of C.
For any x ∈ int(C), let

SC(x) = {p ∈ bd(C) | the chord pq 
 x and
xp

xq
= γ(C, x)},

where bd denotes the boundary, and pq denotes the segment with endpoints p, q or its
length alternatively if no confusing arise. It is known that SC(x) �= φ (see [15]).

The following is a list of some properties of the Minkowski measure of asymmetry
(see [15] for proofs).

Property 1. If C ∈ Kn, then 1 ≤ as∞(C) ≤ n. Equality holds on the left-hand
side if and only if C is centrally symmetric, and on the right-hand side if and only if
C is a simplex.

Property 2. For C ∈ Kn, as∞(C) + dimC∗ ≤ n, where dim means dimension.
Property 3. Given x ∈ relint(C∗), the relative interior of C∗, then for any y ∈

SC(x),

y +
as∞(C) + 1

as∞(C)
(C∗ − y) ⊂ bd(C) and y ∈ SC(x′) for ∀x′ ∈ C∗.



1286 HaiLin Jin and Qi Guo

This property shows that the set SC(x) stays the same as x ranges over relint(C∗).
We denote this set by C†.

Property 4. C† contains at least as∞(C) + 1 points.

In [12], Jin and Guo showed that if K ∈ Wn with width ω, then

(*) as∞(K) =
R(K)

ω − R(K)

where R(K) denotes the radius of the circumsphere of K.
We now recall the concept of mean Minkowski measures ([20]). Let C ∈ Kn and

(a base point) o ∈ int(C). For p ∈ bd(C), the line passing through o and p intersects
bd(C) in another point, called the opposite of p with respect to o and denoted by po.
Clearly, (po)o = p.

The distortion function Λ(C, ·) : bd(C) → R is defined by

Λ(C, p) =
op

opo
, p ∈ bd(C).

(Observe that maxp∈bd(C) Λ(C, p) = γ(C, o)).
For m ≥ 1, a finite set {p0, ..., pm} ⊂ bd(C) is called an m-configuration (relative

to o) if o is contained in the convex hull [p0, ..., pm] of {pi}m
i=0.

Let Cm(C) denote the set of all m-configurations of C. The mean Minkowski
measure σm(C, o) is defined by (see [20])

σm(C, o) = inf
{p0,...,pm}∈Cm(C)

m∑
i=0

1
1 + Λ(C, pi)

.

An m-configuration {p0, ..., pm} is called minimal if

σm(C, o) =
m∑

i=0

1
1 + Λ(C, pi)

.

Minimal configurations always exist since C is compact.
Since an 1-configuration of C is an opposite pair of points {p, po} ⊂ bd(C) and

Λ(C, po) = 1/Λ(C, p), we have
1

1 + Λ(C, p)
+

1
1 + Λ(C, po)

= 1.

This gives σ1(C) = 1.
The most important invariant is σn(C). As shown in [20], for k ≥ 1, we have

σn+k(C) = σn(C) +
k

1 + maxbd(C) Λ(C, ·).

Equivalently, {σm(C)}m≥n is arithmetic with difference 1/(1 + maxbd(C) Λ(C, ·)).
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3. PROOF OF MAIN THEOREM

In order to prove the Main Theorem, we need some lemmas. The first one concerns
the circumscribed balls of a regular simplex and its completions. It is shown by Vrecica
in [26] that, for a convex body C, there is a completion C� with the same circumscribed
ball as that of C. As it is well-known, an n-dimensional convex body (n ≥ 3) may
have many completions, and their circumscribed balls may not be the same. However,
for regular simplices, we have the following result.

Lemma 1. Let S be an n-dimensional regular simplex, and B be its circumscribed
ball. Then the circumscribed balls of all completions of S coincide with B.

Proof. Let e0, ..., en be the vertices of S and D = ∩i=0,...,nB(ei, e0e1), where
B(ei, e0e1) denotes the ball with radius e0e1 and center at ei. Let S� be a completion
of S. Then S� is a convex body of constant width e0e1. Therefore, S� has the spherical
intersection property: S� = ∩x∈S�B(x, e0e1). Thus, since e0, ..., en ∈ S�, we have
S� ⊂ D. This, together with D ⊂ B (to be shown below) implies that S� ⊂ B. Thus,
B is the circumscribed ball of S�.

It remains to show that D ⊂ B. Let o be the unique ∞-critical point (centroid as
well) of S. Clearly, we have B = B(o, oe0) (Theorem 1 in [12]). Let Hi (0 ≤ i ≤ n)
be the affine span of {ej}0≤j≤n,j �=i ; Hi is an affine hyperplane. Let H−

i be the closed
half-space, not containing o, determined by Hi. Then set Si = bd(B(ei, e0e1))∩H−

i .
Thus, for any x ∈ bd(D), there exists an i ∈ {0, · · · , n}, say i = 0, such that
x ∈ S0. Write ∠oe0x = α and ∠oe0e1 = β, then 0 ≤ α ≤ β ≤ π/2. Therefore,
by ox2 = oe2

0 + e0x
2 − 2oe0 · e0x cosα, oe2

1 = oe2
0 + e0e

2
1 − 2oe0 · e0e1 cosβ and

e0x = e0e1, we have ox ≤ oe1 = oe0. Thus, x ∈ B, and we obtain D ⊂ B.

Next lemma determines the mean Minkowski measures of a completion of a regular
simplex.

Lemma 2. Let S� be a completion of an n-dimensional regular simplex S and
base point o, the unique ∞-critical point of S�. Then σn(S�) = n + 1 −

√
2n(n+1)

2 .

Proof. By Lemma 1, S� and S have the same circumscribed ball B. By Theorem
1 of [12], o is the center of B. Also, o is the centroid of S. Denote by e0, ..., en the
vertices of S and by R the radius of B. Set d := diam(S) = diam(S�). In a regular
simplex S, oei = R = d

√
n

2(n+1) , i = 0, ..., n. Since S� is of constant width d, o is

also the ∞-critical point of S� (see [12]). Therefore, we have as∞(S�) = γ(S�, o) and
as∞(S�) = R/(d− R).

Since, for p, q ∈ bd(S�) with o ∈ pq, op
oq = Λ(S�, p) and γ(C�, o) = maxbd(S�)

Λ(S, ·), we have

SS� (o) = {p ∈ bd(S�) | Λ(S�, p) = max
bd(S�)

Λ(S�, ·)}.
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Now we claim that ei ∈ SS� (o) for i = 0, ..., n. In fact

Λ(S�, ei) =
oei

oeo
i

=
oei

eieo
i − oei

≥ oei

d − oei
= R/(d− R) = γ(S�, o) = max

bd(S�)
Λ(S�, ·).

Hence, Λ(S�, ei) = maxbd(S�) Λ(S�, ·).
It is obvious that {e0, ..., en} ∈ Cn(S�). Now we claim that {e0, ..., en} is a

minimal n-configuration of S�. In fact,

σn(S�) = inf
{p0,...,pn}∈Cn(S�)

n∑
i=0

1
1 + Λ(S�, pi)

≤
n∑

i=0

1
1 + Λ(S�, ei)

.

On the other hand,

σn(S�) = inf
{p0,...,pn}∈Cn(S�)

n∑
i=0

1
1 + Λ(S�, pi)

≥
n∑

i=0

1
1 + maxbd(S�) Λ(S�, ·)

=
n∑

i=0

1
1 + Λ(S�, ei)

.

Hence, σn(S�) =
∑n

i=0
1

1+Λ(S�,ei)
= n+1

1+R/(d−R) = n + 1 −
√

2n(n+1)

2 .

Remark. From the proof of Lemma 2, we see that e0, e1, · · · , en ∈ SS�(o). This
implies that (S�)† contains at least n + 1 points. This is a significant improement
of Klee’s result of four points (Property 4 in Section 2) (noticing that, by Theorem

A, as∞(S�) ≤ n+
√

2n(n+1)

n+2 ≤ 1 +
√

2). In general, observing that S� is of constant
width, we have the following conjecture (Grünbaum had a general conjecture in the
early 1960’s).

Conjecture. For any convex body K of constant width, K† contains at least n+1
points.

Now we give the proof of Main Theorem.

Proof of the Main Theorem. First, Theorem B implies that σn(K, o) ≤ n+1
2 , and

that equality holds if and only if K is a centrally symmetric convex bodies centered at
o. In addition, the centrally symmetric convex bodies of constant width are precisely
Euclidean balls, so that the statement for the upper bound follows.
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For the inequality on the left-hand side, we have, by the definition of σn and
Theorem A,

σn(K) = inf
{p0,...,pn}∈Cn(K)

n∑
i=0

1
1 + Λ(K, pi)

≥
n∑

i=0

1
1 + maxbd(K) Λ(K, ·)

=
n + 1

1 + γ(K, o)
=

n + 1
1 + as∞(K)

≥ n + 1 −
√

2n(n + 1)
2

.

If equality holds, then as∞(K) = n+
√

2n(n+1)

n+2 . By Theorem A again, K is the
completion of a regular simplex. Conversely, if K is a completion of a regular simplex,

then σn(K) = n + 1−
√

2n(n+1)

2 by Lemma 2.
Since a Reuleaux triangle is the unique completion of a regular triangle, we have

the following

Corollary 1. Let K be a 2-dimensional convex body of constant width and the
base point o, the unique ∞-critical point of K . Then

3 −
√

3 ≤ σ2(K, o) ≤ 3
2
.

Equality holds on the right-hand side if and only if K is an Euclidean circle and
on the left-hand if and only if K is a Reuleaux triangle.

Meissner’s bodies are the completions of a regular tetrahedron. However, arbitrary
tetrahedron has infinite completions (see [4]). We have the following

Corollary 2. Let K be a 3-dimensional convex body of constant width and the
base point o, the unique ∞-critical point of K. Then

4 −
√

6 ≤ σ3(K, o) ≤ 2.

Equality holds on the right-hand side if and only if K is an Euclidean circle and
on the left-hand side if K is a Meissner’s body.
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