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SEMICLASSICAL SOLUTIONS FOR THE NONLINEAR
SCHRÖDINGER-MAXWELL EQUATIONS WITH CRITICAL

NONLINEARITY

Wen-nian Huang and X. H. Tang*

Abstract. In this paper, by using variational methods and critical point the-
ory, we study the existence of semiclassical solutions for the following nonlinear
Schrödinger-Maxwell equations{ −ε2�u + V (x)u + φu = K(x)|u|4u + f(x, u), in R

3,

−�φ = 4πu2, in R
3,

where ε > 0, V (x) ≥ 0 and K(x) > 0 for all x ∈ R
3, under some more

assumptions on V , K and f , we prove that the system has at least one nontrivial
solution for sufficient small ε > 0. Our approach is much more straightforward.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In this paper, we study the following electrostatic nonlinear Schrödinger-Maxwell
equations

(SMε)

{ −ε2�u + V (x)u + φu = K(x)|u|4u + f(x, u), in R
3,

−�φ = 4πu2, in R
3.

Such a system is also called Schrödinger-Poisson equations, which arise in an inter-
esting physical context. Indeed a similar system arises in many mathematical physics
contexts, such as in quantum electrodynamics, to describe the interaction between a
charge particle interacting with the electromagnetic field, and also in semiconductor
theory, in nonlinear optics and in plasma physics. For a more physical background of
system (SMε), we refer the readers to [7, 12] and the references therein.
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Since it was first introduced by V. Benci and D. Fortunato in [12] (where ε ≡ 1),
system (SMε) has been widely studied by many authors. The case ε ≡ 1 and V ≡ 1
( or being radially symmetric), has been studied under various conditions on f in
[4, 7, 17, 26]. When ε ≡ 1, V (x) is not a constant, the existence of infinitely many
large solutions for (SMε) has been considered in [8, 16, 23, 29] via the fountain theorem
(cf. [30, 35]). For more results of system (SMε) in the case ε ≡ 1, we refer the reader
to [2, 20] and the references therein. Meanwhile, When ε ≡ 1 and f(x, s) = f(s),
based on the well known Pohozaev type identity [15, 21, 22], some results on the
nonexistence of nontrivial solutions for system (SMε) were obtained in [8]. When ε

is not a constant, we refer the reader to [25, 31] and the references therein. Here we
strongly recommend the readers to [3] which include many aspects of (SMε). For more
results of system (1.1), we refer the reader to [32, 33] and the references therein.

In the paper [31], the authors studied the existence of semiclassical solutions of
(SMε) under the following assumptions on V and f :

(V0) V ∈ C(R3, R); V (0) = min V = 0; and there is b > 0 such that the set
Vb := {x ∈ R

3 : V (x) < b} has finite Lebesgue measure.

(K) K ∈ C(R3) and 0 < K1 := inf K ≤ sup K := K2 < ∞;

(f1) f ∈ C(R3 × R, R), and f(x, u) → o(|u|) uniformly for x ∈ R
3 as u → 0.

(f2) There are c0 > 0 and q < 6 such that |f(x, u)| ≤ c0(1 + |u|q−1) for all (x, u) ∈
R

3 × R.

(f3) There are a0 > 0, p > 4 and μ > 4 such that F (x, u) ≥ a0|u|p and μF (x, u) ≤
f(x, u)u for all (x, u), here and subsequently, we always denote F (x, u) =

∫ u
0 f(x, s)ds.

Then the authors established the following theorem :

Theorem A. [31]. Let (V0), (K) and (f1)-(f3) be satisfied. Then for any σ > 0
there is εσ > 0 such that if ε ≤ εσ , (SMε) has at least one least energy solution uε.

We remark that (f3) implies that there exist some α > 0 and M > 0 such that

(1.1) F (x, u) ≥ α|u|μ, for ∀(x, u) ∈ R
3 × R, |u| ≥ M.

And assumption (f3) is too strict for many cases, for example, let f(x, u) = 4u3 ln(2+
| cos |x||+u2)+ 2u5

2+| cos |x||+u2 , then F (x, u) = u4 ln(2+ | cos |x||+u2), one can easily
show that F (x, u) dose not satisfy (1.1). Actually by L’Hospital Principle we have

(1.2) lim
|u|→∞

F (x, u)
|u|μ → 0, for any μ > 4.

That is, f(x, u) does not satisfy (1.1). Hence Theorem A can not be applied in this
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case. However, one will see later that our results in this paper can also work in this
case.

In Theorem A, the number εσ is rather vague, so a natural question arises: Can
we use a more accurate number to replace εσ ? and we give a positive answer in
the present paper.

Let λ = ε−2, (SMε) becomes

(SMλ)

{ −�u + λV (x)u + λφu = λK(x)|u|4u + λf(x, u), in R
3,

−�φ = 4πu2, in R
3.

Now, let’s introduce some notations. For any 1 ≤ r < ∞, Lr(R3) is the usual Lebesgue
space with the norm

‖u‖r = (
∫

R3

|u|rdx)
1
r .

H1(R3) is the usual Sobolev space with the norm

‖u‖H1 = (
∫

R3
(|∇u|2 + u2)dx)

1
2 .

Define the space (see for instance in [30])

D1,2 = {u ∈ L2∗(R3) | ∇u ∈ L2(R3)}
with the norm

‖u‖D1,2 = (
∫

R3

|∇u|2) 1
2 ,

where 2∗ = 6 is the critical Sobolev exponent of R
3. Then D1,2 ↪→ L2∗ , let S be the

best embedding constant of this embedding, i.e. S satisfies:

(1.3) ‖u‖6 ≤ S‖u‖D1,2 .

Applying Lax-Milgram theorem (see [34]), for every u ∈ H1(R3), there exists a
unique φu ∈ D1,2(R3) (see [19]) such that

(1.4) −�φu = 4πu2.

Moreover, φu has the following integral expression

φu =
∫

R3

u2(y)
|x− y|dy.

Thus φu ≥ 0, from (1.3) and (1.4), for any u ∈ H1(R3) using Hölder inequality we
have

‖φu‖2
D1,2 = 4π

∫
R3

φuu2dx ≤ 4π‖φu‖6‖u‖2
12
5
≤ 4πS‖φu‖D1,2‖u‖2

12
5
.
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This implies that

(1.5) ‖φu‖D1,2 ≤ 4πS‖u‖2
12
5
,

and

(1.6)
∫

R3
φuu2dx ≤ 4πS2‖u‖4

12
5
.

Let
E =

{
u ∈ H1(R3) :

∫
R3

V (x)|u|2dx < +∞
}

and

‖u‖λ† =
{∫

R3

[|∇u|2 + λV (x)|u|2]dx

}1/2

, ∀ u ∈ E.

Analogous to the proof of [27, Lemma 1], by using (V0) and the Sobolev inequality,
one can demonstrate that there exists a constant γ0 > 0 independent of λ such that

(1.7) ‖u‖H1 ≤ γ0‖u‖λ†, ∀ u ∈ E, λ ≥ 1.

This shows that (E, ‖ · ‖λ†) is a Hilbert space for λ > 0. Furthermore, by virtue of the
Sobolev embedding theorem, we have

(1.8) ‖u‖s ≤ γs‖u‖H1 ≤ γsγ0‖u‖λ†, ∀ u ∈ E, λ ≥ 1, 2 ≤ s ≤ 2∗,

Now we define a functional Iε on E ×D1,2 by

(1.9)
Iε(u, φ) =

1
2

∫
R3

(ε2|∇u|2 + V (x)u2)dx− 1
16π

∫
R3

|∇φ|2dx

+
1
2

∫
R3

φu2dx−
∫

R3

F (x, u)dx− 1
6

∫
R3

K(x)u6dx.

From the discussion above we know that Iε is well defined and Iε ∈ C1(E × D1,2),
it is well known that Iε’s critical points are the solutions of system (SMε). Moreover,
by (1.4), we have

(1.10)
Iε(u, φ) =

1
2

∫
R3

(ε2|∇u|2 + V (x)u2)dx

+
1
4

∫
R3

φuu2dx −
∫

R3
F (x, u)dx− 1

6

∫
R3

K(x)u6dx.

Let

(1.11)

Φλ(u) =
1
2

∫
R3

(|∇u|2 + λV (x)u2)dx +
λ

4

∫
R3

φuu2dx

−λ

∫
R3

F (x, u)dx− λ

6

∫
R3

K(x)u6dx

=
1
2
‖u‖2

λ† +
λ

4

∫
R3

φuu2dx − λ

∫
R3

F (x, u)dx− λ

6

∫
R3

K(x)u6dx,
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And it is well known that if u ∈ E is a critical point of Φλ, (i.e. Φ′
λ(u) = 0) then

(u, φu) is a solution of system (SMλ). Moreover, for ∀u, v ∈ E , one can easily know

〈Φ′
λ(u), v〉 =

∫
R3

(∇u∇v + λV (x)uv)dx + λ

∫
R3

φuuvdx

−λ

∫
R3

f(x, u)vdx− λ

∫
R3

K(x)|u|4uvdx.

Theorem 1.1 can be restated as

Theorem B. Let (V0), (K) and (f1)-(f3) be satisfied. Then for any σ > 0 there
is Λσ > 0 such that if λ ≥ Λσ, (1.4) has at least one positive solution uλ of least
energy.

To state the main results of this paper, we assume that
(f2′) There are c0 > 0 and 1 < p < 5 such that |f(x, u)| ≤ c0(1 + |u|p) for all

(x, u) ∈ R
3 × R.

(f3′)1 There exists a0 > 0 such that F (x, u) ≥ a0|u|4 for all (x, u) ∈ R
3 × R.

(f3′)2 There are a0 > 0 and 4 < q < 6 such that F (x, u) ≥ a0|u|q for all (x, u) ∈
R

3 × R.

Assumption (f1) implies that there exists some R0 > 0 such that

(1.12) tf(x, t) ≤ b

3
|t|2, ∀ (x, t) ∈ R

3 × R, |t| ≤ R0.

We further assume that

(f4) F (x, t) := 1
4tf(x, t) − F (x, t) + K(x)

12 u6 ≥ 0 for all (x, t) ∈ R
3 × R, and there

exist a1 > 0 and κ > 3
2 such that

|f(x, t)|κ ≤ a1|t|κF (x, t), ∀ (x, t) ∈ R
3 × R, |t| ≥ R0,

where R0 is the same as in (1.12).

Since q−6
q−2 < 0, we can let h0 > 1 such that

(1.13)
128π

3a0
h−1

0 ≤ b(2κ−3)/2

3κ(γ6γ0)3a1
,

and

(1.14)

(q−2)πa0

3

[ 3
(qπa0)

(
32π

3
+(πS2(

32π

3
)5/3)

q−2
q−4 (

3
(q−2)πa0

)
2

q−4 q−4
q−2

)
] q

q−2
h

q−6
q−2

0

≤ b(2κ−3)/2

3κ(γ6γ0)3a1
.
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Assumption (V0) implies that there exists some λ0 > 1 such that

(1.15) sup
λ1/2|x|≤2h0

|V (x)| ≤ h−2
0 , ∀ λ ≥ λ0.

Theorem 1.1. Assume that (V0), (f1), (f2’), (f3’)1 and (f4) satisfy . Then sys-
tem (SMε) possesses at least one nontrivial solutions uε such that 0 < Iε(uε) ≤

b(2κ−3)/2

3κ(γ6γ0)3a1
ε for 0 < ε ≤ min{λ−1/2

0 , [ 3S2h2
0

2a0
( 32π

3 )
5
3 ]−1/2}.

Theorem 1.2. Assume that (V0), (f1), (f2’), (f3’)1 and (f4) satisfy . Then sys-
tem (SMλ) possesses at least one nontrivial solutions uλ such that 0 < Φλ(uλ) ≤

b(2κ−3)/2

3κ(γ6γ0)3a1
λ−1/2 for λ ≥ max{λ0,

3S2h2
0

2a0
( 32π

3 )
5
3 }.

Theorem 1.3. Assume that (V0), (f1), (f2’), (f3’)2 and (f4) satisfy. Then sys-
tem (SMε) possesses at least one nontrivial solutions uε such that 0 < Iε(uε) ≤

b(2κ−3)/2

3κ(γ6γ0)3a1
ε for 0 < ε ≤ min{λ−1/2

0 , h
−2(q−3)

q−2

0 }.

Theorem 1.4. Assume that (V0), (f1), (f2’), (f3’)2 and (f4) satisfy . Then sys-
tem (SMλ) possesses at least one nontrivial solutions uλ such that 0 < Φλ(uλ) ≤

b(2κ−3)/2

3κ(γ6γ0)3a1
λ−1/2 for λ ≥ max{λ0, h

4(q−3)
q−2

0 }.

Remark 1.1. (i) Let f(x, u) = 4u3 ln(2 + | cos |x|| + u2) + 2u5

2+| cos |x||+u2 , then f

satisfies all the conditions in Theorem 1.1, but f does not satisfy assumption (f3).
(ii) In [31], the following fact

(1.16) inf{
∫

R3

|∇ϕ|2 : ϕ ∈ C∞
0 (R3), |ϕ|p = 1} = 0,

plays a key role in the proof of Theorem A. But in the present work, as one will find
in section 2, we don’t need (1.16). Meanwhile to make a complete understanding of
[31], one has to get some knowledge about spectral theory. But at the present work, we
also do not need spectral theory, so we believe that our approach is much more simple
and straightforward.

(iii) By (f1) and (f2’), one can easily show that for any ε > 0, there exists some
Cε > 0 such that (see [24])

(1.17) |f(x, u)| ≤ ε|u|+ Cε|u|p.
(1.17) plays an important role in our later discussions.

2. PROOF OF THEOREM 1.2 AND THEOREM 1.4

Let h0 and λ0 be the same as in (1.13)-(1.15). Set
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(2.1) ϑ(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
h0

, |x| ≤ h0,

1
h0

(2− |x|
h0

), h0 < |x| ≤ 2h0,

0, |x| > 2h0.

Then ϑ ∈ H1(R3), and

(2.2) ‖∇ϑ‖2
2 =

∫
R3

|∇ϑ(x)|2dx ≤
∫
|x|≤2h0

1
h4

0

dx =
32π

3
h−1

0 .

(2.3) ‖ϑ‖2
2 =

∫
R3

|ϑ(x)|2dx ≤
∫
|x|≤2h0

1
h2

0

dx =
32π

3
h0.

(2.4) ‖ϑ‖4
12
5

= (‖ϑ‖
12
5
12
5

)5/3 = (
∫

R3

|ϑ(x)| 125 dx)5/3 ≤ (
32π

3
)5/3h0.

(2.5) ‖ϑ‖4
4 =

∫
R3

|ϑ(x)|4dx ≥ 4π

3
h−1

0 .

(2.6) ‖ϑ‖q
q =

∫
R3

|ϑ(x)|qdx ≥ 4π

3
h3−q

0 .

Let eλ(x) = ϑ(λ
1
2 x), then one can easily show that

‖∇eλ‖2
2 = λ−1/2‖∇ϑ‖2

2, and ‖eλ‖s
s = λ−3/2‖ϑ‖s

s ∀ s ∈ [2, 6],

and ∫
φeλ

e2
λdx = λ−5/2

∫
φϑϑ2dx.

Lemma 2.1. Let a > 0, t ≥ 0 and 4 < q < 6. Then for any given M > 0, we
have

(2.7) at4 ≤ apMpt2

p
+

tq

p′Mp′ ,

where p = q−2
q−4 and p′ = 2

q−2 .

Proof. Let m = 2(q−4)
q−2 , n = 2q

q−2 , then mp = 2, np′ = q and m + n = 4. By the
well known Young inequality, we obtain

at4 = (aMtm)(
tn

M
) ≤ (aMtm)p

p
+

(tn/M)p′

p′
=

apMpt2

p
+

tq

p′Mp′ .
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We remark that the inequality (2.7) plays a key role in the proof of Lemma 2.3 below.

Lemma 2.2. Suppose that (V0), (f1), (f2’) and (f3’)1 are satisfied, then

(2.8)

sup{Φλ(seλ) : s ≥ 0}

≤ b(2κ−3)/2

3κ(γ6γ0)3a1
λ−1/2 ∀ λ ≥ max{λ0,

3S2h2
0

2a0
(
32π

3
)

5
3}.

Proof. By (1.6), (1.15), (2.2)-(2.5), for λ ≥ max{λ0,
3S2h2

0
2a0

( 32π
3 )

5
3}, we have

Φλ(seλ) =
s2

2
‖eλ‖2

λ†+
λs4

4

∫
R3

φeλ
e2
λdx−λ

∫
R3

F (x, seλ)dx−λ

6

∫
R3

K(x)(seλ)6dx

≤ s2

2
‖eλ‖2

λ† +
λs4

4

∫
R3

φeλ
e2
λdx − λ

∫
R3

F (x, seλ)dx

≤ λ− 1
2 [

s2

2
(‖∇ϑ‖2

2+
∫

V (λ− 1
2 x)ϑ2(x)dx)+

λ−1s4

4

∫
R3

φϑϑ2dx−a0‖ϑ‖4
4s

4]

≤ λ− 1
2 [

s2

2
(‖∇ϑ‖2

2+ sup
|x|≤2h0

V (λ− 1
2 x)‖ϑ‖2

2)+(λ−1πS2‖ϑ‖4
12
5
s4 − a0‖ϑ‖q

qs
q)]

≤ λ− 1
2 [

s2

2
(
32π

3
h−1

0 +
32π

3
h−1

0 ) + (λ−1πS2(
32π

3
)

5
3 h0 − 4a0π

3
h−1

0 )s4]

≤ λ− 1
2 [

32π

3
h−1

0 s2 − 2a0π

3
h−1

0 s4]

≤ 128πh−1
0

3a0
λ− 1

2

≤ b(2κ−3)/2

3κ(γ6γ0)3a1
λ−1/2.

Lemma 2.3. Suppose that (V0), (f1), (f2’) and (f3’)2 are satisfied, then

(2.9) sup{Φλ(seλ) : s ≥ 0} ≤ b(2κ−3)/2

3κ(γ6γ0)3a1
λ−1/2 ∀ λ ≥ max{λ0, h

4(q−3)
q−2

0 }.

Proof. Let M = [ 3hq−3
0

(q−2)πa0
]

2
q−2 , by (1.6), (1.15), (2.2)-(2.6) and Lemma 2.1, for

λ ≥ max{λ0, h
4(q−3)

q−2

0 }, we have

Φλ(seλ)

=
s2

2
‖eλ‖2

λ† +
λs4

4

∫
R3

φeλ
e2
λdx − λ

∫
R3

F (x, seλ)dx − λ

6

∫
R3

K(x)(seλ)6dx

≤ s2

2
‖eλ‖2

λ† +
λs4

4

∫
R3

φeλ
e2
λdx − λ

∫
R3

F (x, seλ)dx
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≤ λ− 1
2 [

s2

2
(‖∇ϑ‖2

2 +
∫

V (λ− 1
2 x)ϑ2(x)dx) +

λ−1s4

4

∫
R3

φϑϑ2dx − a0‖ϑ‖q
qs

q ]

≤ λ− 1
2 [

s2

2
(‖∇ϑ‖2

2 + sup
|x|≤2h0

V (λ− 1
2 x)‖ϑ‖2

2) + (λ−1πS2‖ϑ‖4
12
5
s4 − a0‖ϑ‖q

qs
q)]

≤ λ− 1
2 [

32π

3
h−1

0 s2 + λ−1πS2(
32π

3
)

5
3 h0s

4 − 4a0π

3
h

3−q
0 sq ]

≤ λ− 1
2 [

32π

3
h−1

0 s2+(λ−1πS2(
32π

3
)

5
3 h0)

q−2
q−4M

q−2
q−4

q−4
q−2

s2+
2

q−2
sq

M
q−2
2

− 4a0π

3
h3−q

0 sq]

≤ λ− 1
2 [(

32π

3
+ (πS2(

32π

3
)

5
3 )

q−2
q−4 (

3
(q − 2)πa0

)
2

q−2
q − 4
q − 2

h−1
0 s2 − 2a0π

3
h3−q

0 sq]

≤ (q−2)πa0

3
[

3
qπa0

(
32π

3
+(πS2(

32π

3
)5/3)

q−2
q−4 (

3
(q − 2)πa0

)
2

q−4
q−4
q−2

)]
q

q−2h
q−6
q−2

0 λ−1/2

≤ b(2κ−3)/2

3κ(γ6γ0)3a1
λ−1/2.

Remark 2.1. The discussion above implies that there exists some s0 > 0 such that

(2.10) Φλ(seλ) < 0 for ∀ s > s0.

In order to prove the main results in the present paper, we need a geometrical
result which is an expression of the Ambrosetti-Rabinowitz [5] mountain pass theorem
without the (PS)condition:

Lemma 2.4. [15]. Let Φ be a C1 function on a Banach space E . Suppose there
exists a neighborhood U of 0 in E and a constant ρ such that

(2.11) Φ(u) ≥ ρ, ∀ u ∈ ∂U,

and

(2.12) Φ(0) < ρ and Φ(v) < ρ for some v∈̄U.

Set
c = inf

ϕ∈Γ
max
s∈[0,1]

Φ(ϕ(s)) ≥ ρ,

where Γ = {ϕ ∈ C([0, 1], E) : ϕ(0) = 0 and ϕ(1) = v}. Then there is a sequence
(ui) such that

Φ(ui) → c and Φ′(ui) → 0 in E∗.

Lemma 2.5 Suppose that (V0),(f1), (f2’) and (f3’)1 (or (f3’)2) be satisfied. Then
Φλ satisfies all the assumptions in Lemma 2.4.
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Proof. It is obviously that Φλ(0) = 0 and (2.10) implies that Φλ(v) ≤ 0, where
v = seλ for some s > s0. Given λ ≥ λ0, let 0 < ε < 1

2λ(γ2γ0)2
then by (1.8), (1.11)

and (1.17) we obtain

Φλ(u) ≥ 1
2
‖u‖2

λ† − λ

∫
R3

F (x, u)dx− λ

6

∫
R3

K(x)u6dx

≥ 1
2
‖u‖2

λ† −
λε

2

∫
R3

u2(x)dx− λCε

p + 1

∫
R3

up+1(x)dx− λ

6

∫
R3

K(x)u6dx

≥ 1
2
‖u‖2

λ† −
λε

2
‖u‖2

2 −
λCε

p + 1
‖u‖p+1

p+1 −
λK2

6
‖u‖6

6

≥ 1
2
‖u‖2

λ†−
λε

2
(γ2γ0)2‖u‖2

λ† −
λCε

p+1
(γp+1γ0)p+1‖u‖p+1

λ† −λK2

6
(γ6γ0)6‖u‖6

λ†

≥ 1
4
‖u‖2

λ† −
λCε

p + 1
(γp+1γ0)p+1‖u‖p+1

λ† − λK2

6
(γ6γ0)6‖u‖6

λ†

= (
1
8
‖u‖2

λ† −
λCε

p + 1
(γp+1γ0)p+1‖u‖p+1

λ† ) + (
1
8
‖u‖2

λ† −
λK2

6
(γ6γ0)6‖u‖6

λ†)

Let ρ1 = [ 1
4λCε(γp+1γ0)p+1 ]

1
p−1 and ρ2 = [ 1

4λK2(γ6γ0)6
]
1
4 , pick ρ = min{ρ1, ρ2}, then

(2.13) Φλ(u) ≥ min{ p

4(p + 1)
ρ2

1,
5
24

ρ2
2} > 0 for all u ∈ E with ‖u‖λ† = ρ.

Hence by Lemma 2.5 we obtain

Lemma 2.6. Suppose that (V0), (f1), (f2’), and (f3’1) (or (f3’)2) are satisfied.
Then there exist a constant cλ ∈ (0, sups≥0 Φλ(seλ)] and a sequence {un} ⊂ E

satisfying

(2.14) Φλ(un) → cλ, ‖Φ′
λ(un)‖ → 0.

Lemma 2.7. Suppose that (V0), (f1), (f2’), (f3’1) (or (f3’)2) and (f4) are satisfied.
Then any sequence {un} ⊂ E satisfying (2.14) is bounded in E .

Proof. By (f4) one has

Φλ(un)− 1
4
〈Φ′

λ(un), un〉 =
1
4
‖un‖2

λ†+λ

∫
R3

[
1
4
f(x, un)un−F (x, un) +

K(x)
12

u6]dx

≥ 1
4
‖un‖2

λ†,

hence for sufficiently large n,

4cλ + ‖un‖λ† + o(1) ≥ ‖un‖2
λ†.
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This implies that {un} is bounded in E .

Proof of Theorem 1.2 Applying Lemmas 2.2 and 2.7, we deduce that there exists
a bounded sequence {un} ⊂ E satisfying (2.14) with

(2.15) cλ ≤ b(2κ−3)/2

3κ(γ6γ0)3a1
λ−1/2 for λ ≥ max{λ0,

3S2h2
0

2a0
(
32π

3
)

5
3}

Without loss of generality, by Eberlein-Shmulyan theorem (see for instance in [34]),
passing to a subsequence if necessary, there exists a uλ ∈ E such that

(2.16) un ⇀ uλ in E

un ⇀ uλ in (E, ‖ · ‖λ†) and and uλ is a critical point of Φλ. Hence (uλ, φuλ
) is a

solution of (SMλ). Now we shall prove uλ �= 0.
Arguing by contradiction, suppose that uλ = 0, i.e. un ⇀ 0 in E , and so un → 0

in Ls
loc(R

3), 2 ≤ s < 6 and un → 0 a.e. on R
3. Since Vb is a set of finite measure

and un ⇀ 0 in E , there holds

(2.17) ‖un‖2
2 =

∫
R3\Vb

u2
ndx +

∫
Vb

u2
ndx ≤ 1

λb
‖un‖2

λ† + o(1).

For s ∈ (2, 6), it follows from (1.8), (2.17) and the Hölder inequality that

(2.18)
‖un‖s

s ≤ ‖un‖2(6−s)/(6−2)
2 ‖un‖6(s−2)/(6−2)

6

≤ (γ6γ0)
3(s−2)

2 (λb)−
6−s
4 ‖un‖s

λ† + o(1).

According to (f4) and (2.17), one can get that

(2.19) λ

∫
|un|≤R0

f(x, un)undx ≤ λb

3

∫
|un|≤R0

|un|2dx ≤ 1
3
‖un‖2

λ† + o(1).

By virtue of (1.11) and (2.14) , for sufficiently large n, we have

Φλ(un) − 1
4
〈Φ′

λ(un), un〉 =
1
4
‖un‖2

λ† + λ

∫
RN

F (x, un)dx = cλ + o(1).

Thus

(2.20) λ

∫
RN

F (x, un)dx ≤ cλ + o(1).

Using (f4), (2.15), (2.18) with s = 2κ/(κ− 1) and (2.20) , we obtain
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λ

∫
|un|>R0

f(x, un)undx

≤ λ

(∫
|un|>R0

( |f(x, un)|
|un|

)κ

dx

)1/κ

‖un‖2
s

≤ λ(γ6γ0)
3(s−2)

s (λb)−
6−s
2s ‖un‖2

λ†a
1/κ
1 c

1/κ
λ λ−1/κ

=
a

1/κ
1 (γ6γ0)3/κ

b(2κ−3)/2κ

[
λ1/2cλ

]1/κ ‖un‖2
λ† + o(1)

≤ 1
3
‖un‖2

λ† + o(1),(2.21)

this, together with (2.14) and (2.19) , implies that

(2.22) o(1) = 〈Φ′
λ(un), un〉 = ‖un‖2

λ† − λ

∫
R3

f(x, un)undx ≥ 1
3
‖un‖2

λ† + o(1).

This results in the fact that ‖un‖λ† → 0. Consequently, it follows from (f1), (1.11)
and (2.14) that

0 < cλ = lim
n→∞ Φλ(un) = Φλ(0) = 0.

This contradiction shows uλ �= 0. By a standard argument, we easily certify that
Φ′

λ(uλ) = 0 and Φλ(uλ) ≤ cλ. Then uλ is a positive solution of (SMλ) ,

Remark 2.2. Theorem 1.1 is a direct corollary of Theorem 1.2. By the same
method, we can prove Theorem 1.4 and Theorem 1.3, hence we omit the detail of the
proof.

Remark 2.3. Let f(x, u) = 4u3 ln(2+| cos |x||+u2)+ 2u5

2+| cos |x||+u2 , then F (x, u) =

u4 ln(2+| cos |x||+u2) and F (x, u) := 1
4uf(x, u)−F (x, u)+K(x)

12 u6 = u6

2(2+| cos |x||+u2)
+

K(x)
12 u6, then it is obvious that f satisfies (f1),(f2’), and (f3’)1. Now we shall show that

f also satisfies assumption (f4), hence Theorem 1.1 can be applied . Let G(x, u) =
|f(x,t)|κ
|t|κF(x,t) for |u| ≥ R0, choose some κ ∈ ( 3

2 , 2) then by L’Hospital Principle, we have

0 ≤ lim
|u|→∞

G(x, u) = lim
|u|→∞

|4u3 ln(2 + | cos |x||+ u2) + 2u5

2+| cos |x||+u2 |κ

|u|κ[ u6

2(2+| cos |x||+u2)
+ K(x)u6

12 ]

≤ lim
|u|→∞

|4u3 ln(3 + u2) + 2u5

2+u2 |κ
|u|κ · u6

2(3+u2)

≤ lim
u→+∞

|8u3 ln(3 + u2)|κ
|u|κ · u6

2(3+u2)

= lim
u→+∞

|8u3 ln(2 + u2)|κ
|u|κ · u4

2

= 2 · 8κ · lim
u→+∞

lnκ(3 + u2)
u4−2κ
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= 2 · 8κ · lim
u→+∞[

ln(3 + u2)

u
4−2κ

κ

]κ = 2 · 8κ · [ lim
u→+∞

ln(3 + u2)

u
4−2κ

κ

]κ

= 2 · 8κ · [ lim
u→+∞

2u

(3 + u2)u
4−3κ

κ · 4−2κ
κ

]κ

= 2 · 8κ · ( κ

4− 2κ
)κ · 2κ[ lim

u→+∞
1

(3 + u2)u
4−4κ

κ

]κ

≤ 2 · 8κ · ( κ

4− 2κ
)κ · 2κ[ lim

u→+∞
1

u
4−2κ

κ

]κ

= 2 · 8κ · ( κ

4− 2κ
)κ · 2κ lim

u→+∞
1

u4−2κ

= 0.

This implies that there exists some sufficiently large R > 0 such that 0 < G(x, u) ≤
1 for all |u| ≥ R and x ∈ R

3, let M = supR0≤|u|≤R, x∈ R3 G(x, u) and a1 =
max{1, M}, then we know that f satisfies the assumption (f4).
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