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MULTILINEAR ESTIMATES ON FREQUENCY-UNIFORM
DECOMPOSITION SPACES AND APPLICATIONS

Shaolei Ru

Abstract. We study multilinear operators T (f1, f2, ..., fm) that commutes with
simultaneous translations and prove that if T is bounded from Lp1×Lp2×...×Lpm

to Lp, then for any r � p, 0 < p, q � ∞ and

s >

{
n(1 − 1 ∧ 1

q
), (1

p
, 1

q
) ∈ D1;

n(1 ∨ 1
p
∨ 1

q
− 1

q
), (1

p
, 1

q
) ∈ R

2
+ − D1,

(D1 = {(1
p , 1

q ) ∈ R
2
+ : 1

q � 2
p , 1

p � 1
2})T is bounded from M s

p1,q × M s
p2,q ×

... × M s
pm,q to M s

r,q (which improves the results obtained by [5], [6].), where
M s

p,q is the modulation spaces. Besides, we also obtain the similar results for
Triebel-type spaces Ns

p,q introduced by [21] (T is bounded from Ns
p,q × Ns

p,q ×
...×Ns

p,q to Ns
p,q). As applications, we obtain the boundedness on the modulation

spaces for the bilinear Hilbert transform, bilinear fractional integral, the pointwise
product of functions, and the bilinear oscillatory integral along parabolas. Also, in
modulation spaces and Ns

p,q , we study the well-posedness of the Cauchy problem
for the fractional heat and Schrödinger equations with some new nonlinear terms.
Such nonlinear well-posedness problems are not studied in other function spaces.

1. INTRODUCTION AND NOTATION

In recent years, the study of multilinear integrals has been received more attention,
which is motivated not only as the generalization of the linear theory but also the natural
appearance of multilinear singular theory. Historically, the interest in the multilinear
operator initialed by Calderón about 50 years ago, in order to study the Cauchy integral
and the Hilbert transform on some Lipschitz curves. In this paper, we focus on the
boundedness of the multilinear operator on modulation spaces and Triebel-type spaces
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N s
p,q. As applications, we obtain the boundedness on the modulation spaces for the bi-

linear Hilbert transform, bilinear fractional integral, the pointwise product of functions,
and the bilinear oscillatory integral in along parabolas.

Let T : S(Rn) × S(Rn) × ... × S(Rn) → S ′(Rn) be a continuous multilinear
operator, from the product of Schwarz spaces into the space of tempered distributions,
which commutes with simultaneous translations. Then there exists a μ ∈ S ′(Rn×R

n×
...× R

n), the symbol of T, such that T (f1, f2, ..., fm)(x) is the pair 〈Fx, μ〉, with

Fx(ξ1, ..., ξm) =
m∏

j=1

f̂j(ξj)e2πi〈ξj,x〉.

More precisely, if μ is locally integrable function, we may write

(1)
T (f1, f2, ..., fm)(x) =

∫
Rnm

m∏
j=1

f̂j(ξj)e2πi〈ξj,x〉

·μ(ξ1, ξ2, ..., ξm)dξ1dξ2...dξm.

This μ is called the symbol (or multiplier) of the operator T. We always assume this μ

a locally integrable function in the following content. This assumption suffices in our
applications and in the rest theorems in this paper.

Multilinear analysis is one of active and important subjects in the study of harmonic
analysis and its related topics. [13], [19], and [20] give the boundedness of the bilinear
fractional integral and bilinear Hilbert transform on Lp(Rn). [6] gives the boundedness
of the multilinear operator T (f1, ..., fm) on the modulation spaces as follows.

Theorem A. Let T be defined by (1) with locally integrable μ ∈ S ′(Rn × R
n ×

... × R
n). If there exist p, p1, ..., pm ∈ (0, +∞] such that T can be extended to a

bounded operator from Lp1 × Lp2 × ...× Lpm to Lp

‖T (f1, f2, ..., fm)‖Lp(Rn) �
m∏

j=1

‖fj‖Lpj (Rn),

then for any r � max{1, p} and any rj � pj , we have

‖T (f1, f2, ..., fm)‖Ms
r,q(Rn) �

m∏
j=1

‖fj‖Ms
rj,q(Rn),

where 0 < q � 1, s � 0.

In this paper, the following theorem 1 modifies the technique in [6] with the Young
inequality of number series to improve the indices of Theorem A.
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Theorem 1. Let T be defined by (1) with locally integrable μ ∈ S ′(Rn×R
n× ...×

R
n). If there exist p, p1, ..., pm ∈ (0, +∞] such that T can be extended to a bounded

operator from Lp1 × Lp2 × ...× Lpm to Lp

‖T (f1, f2, ..., fm)‖Lp(Rn) �
m∏

j=1

‖fj‖L
pj (Rn),

then for any r � p, 0 < q � ∞ and any rj � pj , we have

‖T (f1, f2, ..., fm)‖Ms
r,q(Rn) �

m∏
j=1

‖fj‖Ms
rj,q(Rn),

where

s > σ(p, q) =

{
n(1− 1 ∧ 1

q ), ( 1
p , 1

q ) ∈ D1;
n(1 ∨ 1

p ∨ 1
q − 1

q ), ( 1
p , 1

q ) ∈ R
2
+ − D1

and
D1 = {(1

p
,
1
q
) ∈ R

2
+ :

1
q

� 2
p
,
1
p

� 1
2
}.

Recall the bilinear Hilbert transform

H(f, g)(x) = p.v.

∫
R

f(x + t)g(x− t)
t

dt

and bilinear fractional integral

Bα(f, g) =
∫

Rn

f(x + t)g(x− t)
|t|n−α

dt.

As applications of Theorem 1, we easily obtain the boundedness on the modulation
spaces for the bilinear Hilbert transform and the bilinear fractional integral.

Corollary 1. Let 0 < α < n, 1/p1 + 1/p2 > α/n, 1/p = 1/p1 + 1/p2 −α/n and
p1, p2 > 1. We say that (r, p1, p2) is an α-triplet if

1/r � 1/p1 + 1/p2 − α/n.

If (r, p1, p2) is an α-triplet, then for 0 < q � ∞ and s > σ(p, q), we have

‖Bα(f, g)‖Ms
r,q

� ‖f‖Ms
p1,q

‖g‖Ms
p2,q

.

Proof. Since

Bα(f, g)(x) 

∫

Rn

∫
Rn

f̂ (ξ1)ĝ(ξ2)|ξ1 − ξ2|−αe2πi〈x,(ξ1+ξ2)〉dξ1dξ2.
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Corollary 1 follows from ‖Bα(f, g)‖Lp(Rn) � C‖f‖Lq(Rn)‖g‖Lr(Rn) (Grafakos [13]
and Kenig and Stein [19]) and Theorem 1.

Corollary 2. Suppose 1 < p1, p2 � ∞, 2/3 < p < ∞, r � p and 1/p =
1/p1 + 1/p2. Then for 0 < q � ∞ and s > σ(p, q), we have

‖H(f, g)‖Ms
r,q

� ‖f‖Ms
p1,q

‖g‖Ms
p2,q

.

Proof. Since

H(f, g)(x) 

∫

R

∫
R

f̂ (ξ1)ĝ(ξ2)sgn(ξ1 − ξ2)e2πi〈x,(ξ1+ξ2)〉dξ1dξ2.

Corollary 2 follows from ‖H(f, g)‖Lp(R) � C‖f‖Lq(R)‖g‖Lr(R) (Lacey and Thiele[20])
and Theorem 1. For more details on the bilinear Hilbert transform and its many exten-
sions and developments, one can refer to [22, 9, 12, 7, 10].

Corollary 3. Suppose that r � p with 1/p =
∑m

j=1 1/pj . Then for 0 < q � ∞
and s > σ(p, q), we have

‖
m∏

j=1

fj‖Ms
r,q(Rn) �

m∏
j=1

‖fj‖Ms
pj,q(Rn).

Proof. In the above operator T (f1, f2, ..., fm), if we let μ(ξ1, ξ2, ..., ξm) ≡ 1, then

T (f1, f2, ..., fm)(x) =
m∏

j=1

fj(x).

By the Hölder inequality

‖
m∏

j=1

fj‖Lp(Rn) �
m∏

j=1

‖fj‖Lpj (Rn).

So the theorem follows from Theorem 1.
We also study the bilinear oscillating integral along the parabola

Tβ(f, g)(x) =
∫ 1

−1
f(x − t)g(x − t2)ei|t|−β dt

|t| , where β > 0.

Corollary 4. Let r � 2, 0 < q � ∞ and 0 < p1 � ∞, 0 < p2 � 2. If β > 1,
for s > n(1 ∨ 1

q − 1
q ), we have

‖Tβ(f, g)‖Ms
r,q(R) � ‖f‖Ms

p1,q(R)‖g‖Ms
p2,q(R).
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Proof. In [1], Fan and Li showed

‖Tβ(f, g)‖L2(R) � C‖f‖L∞(R)‖g‖L2(R)

provided β > 1. Thus the theorem follows from the above inequality and Theorem 1.
Based on the above observation, we naturally want to know if there is a similar

discussion as Theorem 1 on N s
p,q. Unfortunately, because the multilinear operator T

does not have an �r-valued extension, we cannot obtain results as better as Theorem 1.
Despite this, we still can obtain the multilinear estimates on N s

p,q as follows.
Assume Tμf = μ∨ ∗ f and

(2) T (f1, f2, ..., fm)(x) = Tμ1f1...Tμmfm.

Theorem 2. Let T be defined by (2) with μi ∈ HL(Rn), L > n( 1
min(1,p) − 1

2 ),
i = 1, ..., m. Then, for 0 < p < ∞, 1 − 1

p+1 < q � ∞, we have

‖T (f1, f2, ..., fm)(x)‖Ns
p,q

� ‖f1‖Ns
p,q

...‖fm‖Ns
p,q

,

where HL(Rn) denote the Sobolev spaces,

s >

⎧⎪⎨⎪⎩
n(1 − 1

q ), ( 1
p , 1

q ) ∈ D1;
0, ( 1

p , 1
q ) ∈ D2;

np( 1
p − 1

q ), ( 1
p , 1

q ) ∈ D3

and

R
2
+ = {(1

p
,
1
q
) ∈ R

2 :
1
p

� 0,
1
q

� 0}; D1 = (0, 1]× [0, 1],

D2 = {(1
p
,
1
q
) ∈ R

2
+ :

1
q
− 1 <

1
p

<
1
q
,
1
q

> 1},

D3 = {(1
p
,
1
q
) ∈ R

2
+ :

1
p

� 1
q
,
1
p

> 1}.

Remark. Theorem 2 also holds if we replace the condition μi ∈ HL(Rn), L >
n( 1

min(1,p) − 1
2 ), i = 1, ..., m by |∂αμi| < Cα,i, |α| > L, L > n( 1

min(1,p) − 1
2 ),

i = 1, ..., m(By the similar argument to the proof of the above Theorem 2).

This paper consists of six sections. Section 1 is the introduction. In Section 2, we
introduce the definition of the modulation spaces and Triebel-type spaces N s

p,q and some
necessary lemmas. The proof of Theorem 1 and Theorem 2 can be found in Section
3 and Section 4 respectively. Finally, in Section 5, we study the well-posedness of
fractional heat equations and fractional Schrödinger equations.
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2. FUNCTION SPACES

In recent decades, the well-posedness of nonlinear evolution equations is developed
quickly and a large amount of work has devoted to the study of Besov and modulation
spaces. For the well-posedness results in Besov and Hs spaces, one can refer to
[17, 2, 3, 4, 18], etc.

Besov and Triebel spaces are two very important function spaces constructed in
the 1960s. In recent years, these spaces are widely applied in the field of PDE. Besov
and Triebel spaces are constructed by combining Littlewood-Paley decomposition with
�q(Lp) and Lp(�q) respectively. Naturally, ones try to study the spaces by combining
frequency-uniform decomposition with �q(Lp) and Lp(�q) respectively. Actually the
spaces constructed by combining frequency-uniform decomposition with �q(Lp) are
Modulation spaces. Many people have studied the well-posedness in these spaces (for
example, see [27, 26, 28, 29], and [31]). In this paper, besides modulation spaces, we
shall consider the spaces constructed by combining frequency-uniform decomposition
and Lp(�q). Firstly, we will recall the definition of frequency-uniform decomposition
and modulation spaces. In the 1930s, N. Wiener [25] first introduced the frequency-
uniform decomposition. So, some time we call it Wiener decomposition of R

n that
roughly denoted by

�k ∼ F−1χQk
F, k ∈ Z

n,

where χE is the characteristic function on E. Because Qk (Qk is the unit cube with the
center at k) is just a translation of Q0, we call this kind of operator frequency-uniform
decomposition operator. But in this definition χQk

is not smooth which was re-defined
by smooth truncation function later in [30, 27, 28], and [11].

Now we give an simple introduction. We first denote |ξ|∞ := maxi=1,...,n|ξi|,
Qk : {ξ ∈ R

n : |ξ − k|∞ � 1
2}. By construction, we may assume that σk(ξ) satisfies

the following conditions

(3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|σk(ξ)| ≥ c, ξ ∈ Qk;
suppσk ⊂ {ξ : |ξ − k|∞ ≤ 1};

Σk∈Znσk(ξ) ≡ , ∀ξ ∈ R
n;

|Dασk(ξ)| ≤ C|α|, ∀ξ ∈ R
n, α ∈ (N ∪ {0})n.

Denote
Υn = {{σk}k∈Zn : {σk}k∈Zn satisfies (1)}.

Then Υn is nonempty. Let {σk}k∈Zn ∈ Υn be a function sequence, denote

�k := F−1σkF, k ∈ Z
n,
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which is said to be the frequency-uniform decomposition operators. For any k ∈ Z
n,

we set |k| = |k1|+ . . .+ |kn|, 〈k〉 = 1 + |k|. For any s ∈ R, 0 < p, q ≤ ∞, we denote

M s
p,q(R

n) =

{
f ∈ S ′(Rn) : ‖f‖Ms

p,q
= (

∑
k∈Zn

〈k〉sq‖�kf‖q
Lp)1/q < ∞

}
.

M s
p,q := M s

p,q(R
n) is said to be a modulation space, which was first introduced by

Feichtinger [11] in the case 1 � p, q � ∞.
If we combine these decomposition with Lp(�q), we can introduce a new spaces

(denoted by N s
p,q) as follows. If 0 < p < ∞, 0 < q � ∞, for any s ∈ R, we denote

N s
p,q(R

n) :=

{
f ∈ S ′(Rn) : ‖f‖Ns

p,q
= ‖(

∑
k∈Zn

〈k〉sq|�kf |q)1/q‖p < ∞
}

.

If p = ∞, 0 < q � ∞, for any s ∈ R, we denote

N s
∞,q(R

n) := {f ∈ S ′(Rn) : ∃{fk(x)}∞k=0 ⊂ L∞(Rn) such that

f = Σ∞
k=0F

−1σkFfk in S ′(Rn) and ‖〈k〉sfk‖L∞(Rn,�q) < ∞},

‖f‖Ns∞,q(Rn) = inf‖〈k〉sfk‖L∞(Rn,�q),

where the infimum is taken over all admissible representations of f in the sense of above
definition ([21] discusses the semilinear estimates, dual estimates, Schwartz estimates
on N s

p,q and embedding between N s
p,q and F s

p,q. Also, it shows the well-posedness of
NLS equation in Lr(0, T ; N s

p,2)). Finally, we denote

Lr(R; N s
p,q) := {f(t, x) ∈ S ′ : (

∫
R

‖f‖r
Ns

p,q
dt)

1
r < ∞}.

3. PROOF OF THEOREM 1

Let ξ∗N =
∑N

j=1 ξj, N = 1, 2, ...,m. By [6], we observe that

FT (�j1f1, ..., �jmfm)(ξ)

=
∫

R(m−1)n

(
m−1∏
j=1

σkj (ξj)f̂j(ξj))σkm(ξ − ξ∗m−1)f̂m(ξ − ξ∗m−1)

·μ(ξ1, ξ2, ..., ξ− ξ∗m−1)dξ1...dξm,

and the support of FT (�j1f1, ..., �jmfm)(ξ) is contained in the ball

B(
m∑

j=1

kj, m
√

n) = {x ∈ R
n : |ξ −

m∑
j=1

kj| < m
√

n}.
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We will prove the Theorem 1 with several steps.

Step 1. 0 < p � ∞, q = ∞. Recall that the choice of σ satisfies
∑

k∈Zn σk = 1.

By seeing the proof of [6], we have

�kT (f1, ..., fm)(x)

=
∑

k1,k2,...,km∈Zn

∫
Rmn

(
m∏

j=1

σkj(ξj))f̂j(ξj)

·μ(ξ1, ξ2, ..., ξm)e2πi〈x,ξ∗m〉σk(ξ∗m)dξ1...dξm.

and that for r � p,

‖T (f1, f2, ..., fm)‖Ms
r,q(Rn)

� (
∑
k∈Zn

〈k〉sq‖�kT (f1, f2, ..., fm)‖q
Lp)

1
q .

Let
A = (

∑
k∈Zn

〈k〉sq‖�kT (f1, f2, ..., fm)‖q
Lp)

1
q .

Here, by Appendix Theorem E (for 0 < p � 1) and the Young’s inequality (for p � 1),
we have, in the case q = ∞,

A = supk∈Zn〈k〉s‖
∑

k1,...,km∈Zn

|k1+...+km−k|�(m+1)
√

n

�kT (�k1f1, �k2f2, ..., �kmfm)‖Lp

� supk∈Zn〈k〉s
(m+1)

√
n∑

t=0

‖
∑

k1,...,km∈Zn

km=k−k∗m−1±t

T (�k1f1, �k2f2, ..., �kmfm)‖Lp ,

where k∗
m−1 = k1 + k2 + ... + km−1. For

B = supk∈Zn〈k〉s‖
∑

k1,...,km∈Zn

km=k−k∗m−1±t

T (�k1f1, �k2f2, ..., �kmfm)‖Lp,

we write

B = supk∈Zna(k, k∗)b(k, k∗)‖
∑

k1,...,km∈Zn

km=k−k∗m−1±t

T (�k1f1, �k2f2, ..., �kmfm)‖Lp,

with

a(k, k∗) = 〈k − k∗
m−1 ± t〉s

m−1∏
j=1

〈kj〉s

b(k, k∗) =
〈k〉s

〈k − k∗
m−1 ± t〉s ∏m−1

j=1 〈kj〉s
.
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It is easy to check that b(k, k∗) � 1 uniformly on k and kj, j = 1, 2, ...,m. Thus the
proof can be classified into the following two cases.

Case 1. 1 � p � ∞, s > n;

Case 2. 0 < p < 1, s > n/p. In the case 1, by the Minkowski and Hölder’s
inequalities, we have

B � supk∈Zn

∑
k1,...,km∈Zn

km=k−k∗m−1±t

a(k, k∗)‖T (�k1f1, �k2f2, ..., �kmfm)‖Lp

� supk∈Zn

∑
k1,...,km∈Zn

km=k−k∗m−1±t

a(k, k∗)
m−1∏
j=1

‖�kjfj‖L
pj ‖�kmfm‖Lpm .

Let
�(k) = {(k1, k2) ∈ Z

2n : k1, k2 ∈ Z
n; k2 = k − k1 ± t},

Ψ0 = {(k1, k2) ∈ Z
2n : 〈k1〉 ∼ 〈k2〉},

Ψ1 = {(k1, k2) ∈ Z
2n : 〈k1〉 � 〈k2〉},

Ψ2 = {(k1, k2) ∈ Z
2n : 〈k1〉 � 〈k2〉}.

For any subset Θ ⊆ Z
n × Z

n, we define

Θ⊥
1 = {k1 ∈ Z

n : ∃k2 ∈ Z
n s.t. (k1, k2) ∈ Θ},

Θ⊥
2 = {k2 ∈ Z

n : ∃k1 ∈ Z
n s.t. (k1, k2) ∈ Θ}.

Then we have (in the case m = 2)

B � supk∈Zn

∑
k1,k2∈Zn

k2=k−k∗
1
±t

a(k, k∗)‖�kjfj‖Lp1‖�k2f2‖Lp2

� supk∈Zn

∑
�(k)∩Ψ0

a(k, k∗)‖�k1f1‖Lp1‖�k2f2‖Lp2

+supk∈Zn

∑
�(k)∩Ψ1

a(k, k∗)‖�k1f1‖Lp1‖�k2f2‖Lp2

+supk∈Zn

∑
�(k)∩Ψ2

a(k, k∗)‖�k1f1‖Lp1‖�k2f2‖Lp2

= supk∈ZnI + supk∈ZnII + supk∈ZnIII.
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For any k2 ∈ (�(k) ∩ (Ψ0 ∪ Ψ1))⊥2 with any fixed k, s > n, we have

(I + II) �
∑

(k1,k2)∈�(k)∩(Ψ0∪Ψ1)

a(k, k∗)‖�k1f1‖Lp1‖�k2f2‖Lp2

� supk1∈(�(k)∩(Ψ0∪Ψ1))⊥1
〈k1〉s‖�k1f1‖Lp1∑

k1∈(�(k)∩(Ψ0∪Ψ1))
⊥
1

∑
k2=k−k1±t

‖�k2f2‖Lp2

� supk1∈Zn〈k1〉s‖�k1f1‖Lp1

∑
k2∈(�(k)∩(Ψ0∪Ψ1))⊥2

∑
k1=k−k2±t

‖�k2f2‖Lp2

� ‖f1‖Ms
p1,∞‖f2‖Mp2,1 � ‖f1‖Ms

p1,∞‖f2‖Ms
p2,∞ .

(M s1
p,q1

⊂ M s2
p,q2

, if q1 > q2, s1 − s2 > n/q2 − n/q1; [26])For any k2 ∈ (�(k)∩ Ψ2)⊥2
with any fixed k, s > n, we have

(III) �
∑

(k1,k2)∈�(k)∩Ψ2

a(k, k∗)‖�k1f1‖Lp1‖�k2f2‖Lp2

� supk2∈(�(k)∩Ψ2)⊥2
〈k2〉s‖�k2f2‖Lp2

∑
k2∈(�(k)∩Ψ2)⊥2

∑
k1=k−k2

‖�k1f1‖Lp1

� ‖f2‖Ms
p2,∞‖f1‖Mp1,1 � ‖f1‖Ms

p1,∞‖f2‖Ms
p2,∞

(M s1
p,q1

⊂ M s2
p,q2

, if q1 > q2, s1 − s2 > n/q2 − n/q1.)

By the similar discussion, for general m, we have

‖T (f1, f2, ..., fm)‖Ms
p,∞ �

m∏
j=1

‖fj‖Ms
pj,∞ .

Now we tune to estimate Case 2 for 0 < p < 1 and s > n
p .

B � supk∈Zn

( ∑
k1,...,km∈Zn

km=k−k∗
m−1

±t

a(k, k∗)p‖T (�k1f1, �k2f2, ..., �kmfm)‖p
Lp

) 1
p
.

Then we have (in the case m = 2)

B � supk∈Zn

( ∑
�k∩(Ψ0∪Ψ1∪Ψ2)

a(k, k∗)p‖T (�k1f1, �k2f2)‖p
Lp

) 1
p

For (k1, k2) ∈ �k ∩ Ψ0, we have
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( ∑
�k∩Ψ0

a(k, k∗)p‖T (�k1f1, �k2f2)‖p
Lp

) 1
p

�
( ∑

�k∩Ψ0

〈k1〉sp(‖�k1f1‖Lp1‖�k2f2‖Lp2 )p
) 1

p

�
(
supk1∈Zn〈k1〉sp‖�k1f1‖p

Lp1

∑
k2∈Zn

‖�k2f2‖p
Lp2

) 1
p

� ‖f1‖Ms
p1,∞‖f2‖Mp2,p � ‖f1‖Ms

p1,∞‖f2‖Ms
p2,∞ (s > n/p).

For any (k1, k2) ∈ �k ∩ (Ψ1 ∪ Ψ2) with every fixed k, imitating the process as in the
discussion above, we have, for s > n/p

2∑
i=1

( ∑
�k∩Ψi

a(k, k∗)p‖T (�k1f1, �k2f2

)
‖p

Lp)
1
p � ‖f1‖Ms

p1,∞‖f2‖Ms
p2,∞ .

Step 2. 1 � p � ∞, q � 1, s � 0. Similar to the estimate of Step 1, we have

A �
( ∑

k∈Zn

〈k〉sq
(m+1)

√
n∑

t=0

‖
∑

k1,...,km∈Zn

km=k−k∗m−1±t

T (�k1f1, �k2f2, ..., �kmfm)‖q
Lp

) 1
q

Now, for m = 2, we have

A �
( ∑

k∈Zn

∑
k1,k2∈Zn

k2=k−k1±t

〈k〉sq‖T (�k1f1, �k2f2)‖q
Lp

) 1
q

�
( ∑

k∈Zn

∑
k1,k2∈Zn

k2=k−k1±t

(〈k1〉〈k2〉)sq(‖�k1f1‖Lp1‖�k2f2‖Lp2 )q
) 1

q

� ‖f1‖Ms
p1,q

‖f2‖Ms
p2,q

.

In the above estimate, we use the Young inequality ‖ai ∗ bi‖�1 � ‖ai‖�1‖bi‖�1 . A
similar estimate for m � 3.

Step 3. 0 < p < 1, p � q, s � 0. By imitating the process as in Step 2 and
Appendix Theorem E, we have

A �
( ∑

k∈Zn

〈k〉sq
(m+1)

√
n∑

t=0

‖
∑

k1,...,km∈Zn

km=k−k∗
m−1

±t

T (�k1f1, �k2f2, ..., �kmfm)‖q
Lp

) 1
q
.
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Moreover, (we prove m = 2 for simplicity) by Young’s inequality again, we have( ∑
k∈Zn

〈k〉sq‖
∑

k1,k2∈Zn

k2=k−k1±t

T (�k1f1, �k2f2)‖q
Lp

) 1
q

�
( ∑

k∈Zn

∑
k1,k2∈Zn

k2=k−k1±t

〈k〉sq‖T (�k1f1, �k2f2)‖q
Lp

) 1
q

�
( ∑

k∈Zn

∑
k1,k2∈Zn

k2=k−k1±t

(〈k1〉〈k2〉)sq(‖�k1f1‖Lp1‖�k2f2‖Lp2 )q
) 1

q

� ‖f1‖Ms
p1,q

‖f2‖Ms
p2,q

.

This finishes the proof of this step.

Step 4. For 0 < p < 1, by Step 1 and Step 3, we have

‖T (f1, f2, ..., fm)‖M
s1
p,∞ � C0

m∏
j=1

‖fi‖M
s1
pi,∞ , s1 >

n

p
;

and

‖T (f1, f2, ..., fm)‖M
s2
p,p

� C1

m∏
j=1

‖fi‖M
s2
pi,p

, s2 � 0.

Then by the complex interpolation theorem (Appendix Theorem A), we can obtain that
for 0 < p < 1, p � q � ∞ and s > n( 1

p − 1
q ),

‖T (f1, f2, ..., fm)‖Ms
p,q

� C2

m∏
j=1

‖fi‖Ms
pi,q

.

For 1 � p � ∞, by Step 1 and Step 2, we have

‖T (f1, f2, ..., fm)‖M
s1
p,∞ � C0

m∏
j=1

‖fi‖M
s1
pi,∞ , s1 > n;

and

‖T (f1, f2, ..., fm)‖M
s2
p,1

� C1

m∏
j=1

‖fi‖M
s2
pi,1

, s2 � 0.

Then by the complex interpolation theorem (Appendix Theorem A), we can obtain that
for 1 � p � ∞, 1 � q � ∞ and s > n(1 − 1

q ),

‖T (f1, f2, ..., fm)‖Ms
p,q

� C2

m∏
j=1

‖fi‖Ms
pi,q

.
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Through the above discussion and the embedding relationship of Modulation space
([30]), we can obtain that for s > σ(p, q),

‖T (f1, f2, ..., fm)‖Ms
r,q(Rn) �

m∏
j=1

‖fj‖Ms
rj,q(Rn), (for r � p; rj � pj).

4. PROOF OF THEOREM 2

Proof. By the above observation and the Appendix Theorem F, we have

‖T (f1, f2, ..., fm)‖Ns
p,q(Rn)

� ‖(
∑
k∈Zn

〈k〉sq(
∑

k1,...,km∈Zn

|k1+...+km−k|�(m+1)
√

n

|T (�k1f1, �k2f2, ..., �kmfm)|)q)
1
q ‖Lp

�
(m+1)

√
n∑

t=0

‖(
∑
k∈Zn

〈k〉sq(
∑

k1,...,km∈Zn

km=k−k∗m−1±t

|μ∨
1 ∗ (�k1f1)|...|μ∨

m ∗ (�kmfm)|)q)
1
q ‖Lp .

Again, we will only estimate the case m = 2, for simplicity. Let A′ = ‖(∑k∈Zn〈k〉sq
(
∑

k1,...,km∈Zn

km=k−k∗
m−1

±t

|μ∨
1 ∗ (�k1f1)|...|μ∨

m ∗ (�kmfm)|)q)
1
q ‖Lp . We have

A′ � ‖(
∑
k∈Zn

〈k〉sq(
∑

�k∩Ψ0

|μ∨
1 ∗ (�k1f1)||μ∨

2 ∗ (�k2f2)|)q)
1
q ‖Lp

+‖(
∑
k∈Zn

〈k〉sq(
∑

�k∩Ψ1

|μ∨
1 ∗ (�k1f1)||μ∨

2 ∗ (�k2f2)|)q)
1
q ‖Lp

+‖(
∑
k∈Zn

〈k〉sq(
∑

�k∩Ψ2

|μ∨
1 ∗ (�k1f1)||μ∨

2 ∗ (�k2f2)|)q)
1
q ‖Lp

= I + II + III

Next, we will sketch the proof in the following three cases.

Step 1. 1 � p < ∞, q = 1, s � 0. By Hölder’s inequality, Young’s inequality
(‖ai ∗ bi‖�1 � ‖ai‖�1‖bi‖�1) and Appendix Theorem F, we have

A′ � ‖
∑
k∈Zn

∑
k1,k2∈Zn

k2=k−k1±t

〈k〉s|μ∨
1 ∗ (�k1f1)||μ∨

2 ∗ (�k2f2)|‖Lp

� ‖
∑

k1∈Zn

〈k1〉s|μ∨
1 ∗ (�k1f1)|‖Lp1‖

∑
k2∈Zn

〈k2〉s|μ∨
2 ∗ (�k2f2)|‖Lp2

� ‖
∑

k1∈Zn

〈k1〉s|�k1f1|‖Lp1‖
∑

k2∈Zn

〈k2〉s|�k2f2|‖Lp2

= ‖f1‖Ns
p1,1

‖f2‖Ns
p2,1

� ‖f1‖Ns
p,1
‖f2‖Ns

p,1
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(see Appendix Theorem B, 1/p = 1/p1 + 1/p2.)

Step 2. 0 < p < ∞, q = ∞. Case 1, 1 � p < ∞, s > n. By Appendix Theorem
F, with the same notation as in the Proof of Theorem 1, we have

I � ‖supk∈Zn〈k〉s
∑

�k∩Ψ0

|μ∨
1 ∗ (�k1f1)||μ∨

2 ∗ (�k2f2)|‖Lp

� ‖supk1∈Zn〈k1〉s|μ∨
1 ∗ (�k1f1)|‖Lp1‖

∑
k2∈Zn

|μ∨
2 ∗ (�k2f2)|‖Lp2

� ‖supk1∈Zn〈k1〉s|�k1f1|‖Lp1‖
∑

k2∈Zn

|�k2f2|‖Lp2

= ‖f1‖Ns
p1,∞‖f2‖Np2,1 � ‖f1‖Ns

p,∞‖f2‖Ns
p,∞ .

Here we use Appendix Theorem H and Young’s inequality in the above estimate.

Case 2, 0 < p < 1, s > n. By Appendix Theorem B,F,G, we have

I � |supk∈Zn〈k〉s
∑

�k∩Ψ0

|μ∨
1 ∗ (�k1f1)||μ∨

2 ∗ (�k2f2)|‖Lp

� ‖supk∈Zn

∑
�k∩Ψ0

〈k1〉s|μ∨
1 ∗ (�k1f1)||μ∨

2 ∗ (�k2f2)|‖Lp

� ‖supk1∈Zn〈k1〉s|μ∨
1 ∗ (�k1f1)|‖Lp‖

∑
k2∈Zn

|μ∨
2 ∗ (�k2f2)|‖L∞

� ‖supk1∈Zn〈k1〉s|�k1f1|‖Lp‖
∑

k2∈Zn

(|σ∨
k2
| ∗ |μ∨

2 ∗ (�k2f2)|)‖L∞

� ‖supk1∈Zn〈k1〉s|�k1f1|‖Lp‖
∑

k2∈Zn

(|μ∨
2 ∗ (�k2f2)|)‖L1

� ‖f1‖Ns
p,∞‖f2‖N1,1 � ‖f1‖Ns

p,∞‖f2‖Ns
p,∞ ,

where, we use the relations ‖f‖N1,1 = ‖f‖M1,1 � ‖f‖Mp,1 � ‖f‖Ms
p,∞ � ‖f‖Ns

p,∞ ,
for s > n. By the similar discussion, we can dominate the term II and III, i.e.,

2∑
i=1

‖supk∈Zn〈k〉s
∑

�k∩Ψi

|μ∨
1 ∗ (�k1f1)||μ∨

2 ∗ (�k2f2)|‖Lp

� ‖f1‖Ns
p,∞‖f2‖Ns

p,∞ (for s > n).

Step 3. 0 < p � 1, p = q, s � 0. By Appendix Theorem D,C,B and Young’s
inequality, we have
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A′ � ‖(
∑
k∈Zn

∑
k1,k2∈Zn

k2=k−k1±t

〈k〉sp(|μ∨
1 ∗ (�k1f1)||μ∨

2 ∗ (�k2f2)|)p)
1
p ‖Lp

� (
∑
k∈Zn

∑
k1,k2∈Zn

k2=k−k1±t

(〈k1〉〈k2〉)sp‖�k1f1‖p
Lp‖�k2f2‖p

L∞)
1
p

� (
∑

k1∈Zn

〈k1〉sp‖�k1f1‖p
Lp)

1
p (

∑
k2∈Zn

〈k2〉sp‖�k2f2‖p
L∞)

1
p

� ‖f1‖Ms
p,p
‖f2‖Ms

p,p
= ‖f1‖Ns

p,p
‖f2‖Ns

p,p

Step 4. Let ( 1
p , 1

q ) ∈ D1. It is easy to see that ( 1
p , 1

q ) is a point at the line
segment connecting ( 1

p , 0) and ( 1
p , 1). At the point ( 1

p , 0), in step 2, we have shown
that ‖T (f1, f2)‖Ns

p,∞ � ‖f1‖Ns
p,∞‖f2‖Ns

p,∞ if s > n. For ( 1
p , 1), in step 1, we have

shown that ‖T (f1, f2)‖Ns
p,1

� ‖f1‖Ns
p,1
‖f2‖Ns

p,1
if s � 0. Using the complex interpo-

lation (Appendix Theorem A), we can obtain that for ( 1
p , 1

q ) ∈ D1, ‖T (f1, f2)‖Ns
p,q

�
‖f1‖Ns

p,q
‖f2‖Ns

p,q
if s > n(1 − 1

q ).
If ( 1

p , 1
q ) ∈ D2, then it belongs to the segment by connecting ( 1

p0
, 1) and ( 1

p̄ , 1
p̄),

where 1
p0

< 1
p − 1

q + 1 and p̄ = 1 − (1−q)pp0

q(p0−p)
. In Step 1, we see that for s � 0,

‖T (f1, f2)‖Ns
p0,1

� ‖f1‖Ns
p0,1

‖f2‖Ns
p0,1

. In Step 3, we see that ‖T (f1, f2)‖Ns
p̄,p̄

�
‖f1‖Ns

p̄,p̄
‖f2‖Ns

p̄,p̄
. The complex interpolation between them gives that for ( 1

p , 1
q ) ∈ D2

and s � 0, ‖T (f1, f2)‖Ns
p,q

� ‖f1‖Ns
p,q
‖f2‖Ns

p,q
.

If ( 1
p , 1

q ) ∈ D3, then one can make a line segment connecting ( 1
p , 1

p) and ( 1
p , 0).

For ( 1
p , 1

p), we see that once s � 0, ‖T (f1, f2)‖Ns
p,p

� ‖f1‖Ns
p,p
‖f2‖Ns

p,p
. For ( 1

p , 0),
we see that once s � n, ‖T (f1, f2)‖Ns

p,∞ � ‖f1‖Ns
p,∞‖f2‖Ns

p,∞ . Then we use complex
interpolation to obtain that ‖T (f1, f2)‖Ns

p,q
� ‖f1‖Ns

p,q
‖f2‖Ns

p,q
if s > np( 1

p − 1
q ).

By the above discussion, we can obtain that for

s >

⎧⎪⎨⎪⎩
n(1 − 1

q ), ( 1
p , 1

q ) ∈ D1;
0, ( 1

p , 1
q ) ∈ D2;

np( 1
p − 1

q ), ( 1
p , 1

q ) ∈ D3,

‖T (f1, f2, ..., fm)‖Ns
p,q(Rn) �

m∏
j=1

‖fj‖Ns
p,q(Rn).

5. APPLICATIONS ON CAUCHY PROBLEMS

In this section we study the well-posedness of the following fractional Heat equation

ut + |Δ|−αu = f(u); u(0, x) = u0(x), α ∈ (0,∞). (∗)
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This problem has an equivalent form of the integral equation

u(t) = �(t)u0 − i

∫ t

0
�(t − τ)f(u(τ))dτ,

where �(t) = F−1e−t|ξ|2α
F . The Cauchy Problem (*) has been extensively studied in

recent years (see [16, 23, 32, 8], etc.). For the semigroup estimate, [8] established the
following result.

Theorem B. (Theorem 3.1 in [8]). Suppose 1 � p � ∞ and s ∈ R. Then

‖e−t(−Δ)α
u0‖Ms

p,q
� C‖u0‖Ms

p,q
,

where the constant C is independent of t (This result is also true, if we replace M s
p,q by

N s
p,q, i.e., suppose 1 � p � ∞ and s ∈ R, we have ‖e−t(−Δ)α

u0‖Ns
p,q

� C‖u0‖Ns
p,q

.).

As an application of Theorem 1, we now assume that f(u) is a more general
nonlinear function

f(u)(x, t) = T (u(t, ·), u(t, ·), ..., u(t, ·))(x)

=
∫

Rnm

m∏
j=1

û(t, ξj)e2πi〈ξj ,x〉μ(ξ1, ..., ξm)dξ1...dξm,

where û(t, ξj) is the Fourier transform of u(t, x) on the x-variable. We have the
following theorem.

Theorem 3. Suppose that the multiplier μ(ξ1, ..., ξm) ensures

‖T (f1, f2, ..., fm)‖Lp(Rn) �
m∏

j=1

‖fj‖Lpj (Rn)

for
pj � p and j = 1, 2, 3, ...,m.

Assume also p, q � 1, r � m. Then there exists T ∗ such that for any u0 ∈ M s
p,q(R

n)
and s > n(1 − 1

q ), the initial value problem (*) has a unique solution

u ∈ Lr(0, T ∗; M s
p,q).

Moreover, if T ∗ < ∞, then

‖u‖Lr(0,T ∗;Ms
p,q) = ∞.

Proof. By the estimates that for p � 1 and s > n(1 ∨ 1
q − 1

q ),

‖f(u)‖Ms
p,q

� ‖u‖m
Ms

p,q
; ‖�(t)u0‖Ms

p,q
� C‖u0‖Ms

p,q
,
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we have

‖
∫ t

0

�(t − τ)f(u(τ))dτ‖Lr(0,T ;Ms
p,q)

� T 1−m−1
r ‖u‖m

Lr(0,T ;Ms
p,q)

.

Then by the similar argument as [6] and the fixed-point theorem, we can obtain the
following results (Let Tμf = μ∨ ∗ f ).

Theorem 4. Let μi ∈ HL(Rn), L > n( 1
min(1,p) − 1

2 ), i = 1, ..., m and

T (f1, f2, ..., fm)(x) = Tμ1f1...Tμmfm.

Assume also 1 � p < ∞, q � 1, r � m. Then there exists T ∗ such that for
any u0 ∈ N s

p,q(R
n) and s > n(1 − 1

q ), the initial value problem (*) with f(u) =
T (u(t, .), u(t, .), ..., u(t, .))(x) has a unique solution

u ∈ Lr(0, T ∗; N s
p,q).

Moreover, if T ∗ < ∞, then

‖u‖Lr(0,T ∗;Ns
p,q) = ∞.

Proof. Let D = {u ∈ Lr([0, T ); Ns
p,q) : ‖u‖Lr([0,T );Ns

p,q)
< δ} be equipped the metric

with the distance d(u, υ) = ‖u − υ‖Lr(0,T ;Ns
p,q)

. Consider the map

� : u(t) → �(t)u0 − i

∫ t

0
�(t − τ)f(u(τ))dτ.

By the similar discussion as Theorem 3, we can obtain that the map � : (D, d) → (D, d)
is a strict contraction map. By Banach’s fixed-point theorem, there exists T ∗ and a
unique solution u ∈ D satisfies the conditions in the theorem.

APPENDIX

Theorem A. Let T be a continuous multi-linear operator from A1
0×A2

0× ...×Am
0

to B0 and From A1
1 × A2

1 × ...× Am
1 to B1, satisfying

‖T (f (1), f (2), ..., f (m))‖B0 � C0

m∏
j=1

‖f j‖
A

(j)
0

;

‖T (f (1), f (2), ..., f (m))‖B1 � C1

m∏
j=1

‖f j‖
A

(j)
1

; for f j ∈ A
(j)
0 ∩ A

(j)
1 .

Then T is continuous from (A(1)
0 , A

(1)
1 )θ × (A(2)

0 , A
(2)
1 )θ × ... × (A(m)

0 , A
(m)
1 )θ to

(B0, B1)θ with norm at most C1−θ
0 Cθ

1 , provided 0 � θ � 1.
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Proof. One can refer to [15] (For the complex interpolation of modulation spaces
(Triebel-type space N s

p,q), one can refer to [15] ([21])).

Theorem B. Assume 1 � p2 � p1 < ∞, 1 � q � ∞, then we have

‖u‖Ns
p1,q

� ‖u‖Ns
p2,q

.

Theorem C. (Generalized Bernstein inequality). Let Ω ⊂ Rn be a compact set,
0 < r � ∞. Let us denote σr = n(1/(r ∧ 1) − 1/2) and assume that s > σr. Then
there exists a constant C > 0 such that

‖F−1ϕFf‖Lr � C‖ϕ‖Hs‖f‖Lr

holds for all f ∈ Lr
Ω := {f ∈ Lp : suppf̂ ⊂ Ω} and ϕ ∈ Hs. Moreover, if r � 1,

then the above estimate holds for all f ∈ Lr.

Proof. One can refer to [15].

Theorem D. Assume 0 < p � q � ∞, Let Ω ⊂ R
n be compact set, diamΩ < 2R.

Then there exists C(p, q, R) > 0, such that

‖f‖Lq � C‖f‖Lp , ∀f ∈ Lp
Ω.

Where Lp
Ω = {f ∈ Lp : suppf̂ ⊂ Ω}.

Proof. One can refer to [29], [30].

Theorem E. (Convolution in Lp with p < 1). Let 0 < p � 1. Lp
B(x0,R)

=

{f ∈ Lp(Rn) : suppf̂ ⊂ B(x0, R)}, B(x0, R) = {x : |x − x0| � R}. Suppose that
f, g ∈ Lp

B(x0,R)
, then there exists a constants C > 0 which is independent of x0 and

R > 0 such that
‖f ∗ g‖Lp � CRn(1/p−1)‖f‖Lp‖g‖Lp

Proof. One can refer to [24].

Theorem F. Assume 0 < p < ∞, 0 < q � ∞, and Ω = {Ωk}∞k=0 is a sequence
with compact support in R

n, let dk > 0 is the diameter of Ωk. If s > n( 1
min(1,p,q) − 1

2 ),
then there exists a constant C such that

‖F−1MkFfk‖Lp(�q) � Csupi‖Mi(di·)‖Hs‖fk‖Lp(�q)

where {fk}∞k=0 ∈ Lp
Ω(�q), {Mk(x)}∞k=0 ⊂ Hs.

Proof. One can refer to [24].(Lp
Ω(�q) = {f |f = {fk}∞k=0 ⊂ S ′, suppFfk ⊂

Ωk if k = 0, 1, 2... and ‖fk‖Lp(�q) < ∞})
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Theorem G. Let 0 < p, q � ∞ and (X, μ), (Y, υ) be two measure space. Let T
be a positive linear operator mapping Lp(X) into Lq(Y ) [respectively, into Lq,∞(Y)]
with norm A. Let B be a Banach space. Then T has a B-valued extension �T that maps
Lp(X, B) into Lq(Y, B) [respectively, into Lq,∞(Y, B)] with the same norm.

Proof. One can refer to [14] (An operator T acting on measurable functions is
called positive if it satisfies f � 0 ⇒ T (f) � 0).

Theorem H. Assume s1, s2 ∈ R, 0 < p < ∞, 0 < q1, q2 � ∞, then, for q2 < q1,
s1 − s2 > n/q2 − n/q1, we have

N s1
p,q1

⊂ N s2
p,q2

.

Proof. One can refer to [21] for the proof of the above theorems.
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1. A. Benyi, K. Gröchenig, K. A. Okoudjou and L. G. Rogers, Unimodular Fourier multi-
pliers for modulation spaces, Journal of Functional Analysis, 246 (2007), 366-384.

2. T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger
equation in Hs, Nonlinear Anal. TMA, 14 (1990), 807-836.

3. T. Cazenave, Semilinear Schrödinger Equations, American Mathematical Society, 2004.

4. T. Cazenave and F. B. Weissler, Some Remarks on the Nonlinear Schrödinger Equation
in the Critical Case, Nonlinear semigroups, partial differential equations and attractors,
(Washington D.C., 1987), Lecture Notes in Mathematics, 1394, Springer, Berlin, 1989,
pp. 18-29.

5. J. Chen and X. M. Wu, Boundedness of Fractional Integral Operators on α-modulation
Spaces, preprint.

6. J. Chen, D. Fan and Y. Fan, Multilinear estimates on modulation spaces and applications,
To appear in Applied Math. A Journal of Chinese Universities.

7. J. Chen and D. Fan, Some bilinear eatimates, J. Korean Math. J., 46 (2009), 609-622.

8. J. Chen, Y. Ding, Q. Deng and D. Fan, Estimates on fractional power dissipative equa-
tions in function spaces, Nonlinear Analysis: Theory, Methods and Applications, 75
(2012), 2959-2974.

9. D. Fan and S. Sato, Transference on certain multilinear multiplier operators, J. Austral.
Math. Soc., 70 (2001), 37-55.

10. Y. Fan and G. L. Gao, Some estimates of rough bilinear fractional integral, J. Function
Spaces and Applications, Vol. 2012, ID 406540.

11. H. G. Feichtinger, Modulation spaces on locally Abelian groups, Technical Report,
University of Vienna, 1983, Updated version appeared in Proceedings of “International
Conference on Wavelets and Applications,” 2002, pp. 99-140, Chennai, India, 2003.



1148 Shaolei Ru

12. J. Gilbert and A. Nahmod, Boundedness of bilinear operators with nonsmooth symbols,
Math Research Letters, 7 (2000), 767-778.

13. L. Grafakos, On multilinear fractional Integrals, Studia Math., 102 (1992), 49-56.

14. L. Grafakos, Classical and Modern Fourier Analysis, Pearson/Prentice Hall, 2004.

15. J. S. Han and B. X. Wang, α-Modulation Spaces (I)(II), arXiv: 1108.0460v3 [math.FA]
16 Feb 2012.

16. M. Hiber and J. Prüss, Heat kernels and maximal Lp-Lq estimates for parabolic evolution
equations, Comm. Partial Differential Equations, 22 (1997), 1647-1669.

17. T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincare Phys. Theor., 46
(1987), 113-129.

18. T. Kato, Nonlinear Schrödinger equations, Schrödinger operators (Sonderborg, 1988),
pp. 218-163, Lecture Notes in physics, 345, Springer, Berlin, 1989.

19. C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math.
Research Letter, 6 (1999), 1-15.

20. M. Lacey and C. Thiele, Lp estimate on the bilinear Hilbert transform, Ann. of Math.,
146 (1997), 693-724.

21. S. L. Ru and J. C. Chen, The Well-posedness of Nonlinear Schrödinger Equations in
Triebel-type Spaces, submitted.

22. C. Thiele, Multilinear singular integrals, Proceedings of the 6th International Conference
on Harmonic Analysis and Partial Differential Equations, (EI Escrial, 2000), Publ. Math.
2002, Vol. Extra, 229-274.

23. E. Terraneo, Non-uniquness for a critical nonlinear heat equation, Communications in
Partial Differential Equations, 27 (2002), 185-218.

24. H. Triebel, Function Space Theory, Birkhauser-Verlag, 1983.

25. N. Wiener, Tauberian theorems, Ann. of Math., 33 (1932), 1-100.

26. B. X. Wang and H. Hudzik, The global Cauchy problem for the NLS and NLKG with
small rough date, J. Differential Equations, 231 (2007), 36-73.

27. B. X. Wang, L. F. Zhao and B. L. Guo, Isometric decompositin operators, function spaces
Eλ

p,q and their applications to nonlinear evolution equations, J. Funct. Anal., 233 (2006),
1-39.

28. B. X. Wang and C. Y. Huang, Frequency-uniform decomposition method for the gener-
alized BO, KdV and NLS equations, J. Differential Equations, 239 (2007), 213-250.

29. B. X. Wang, L. J. Han and C. Y. Huang, Global well-posedness and scattering for the
derivative nonlinear Schrödinger equation with small rough date, Ann. I. H. Poincare,
AN, 26 (2009), to appear.

30. B. X. Wang, C. C. Hao and Z. H. Huo, Introduction of nonlinear evolution equation (in
Chinese), to appear.



Multilinear Estimates on Frequency-uniform Decomposition Spaces and Applications 1149

31. B. X. Wang, The Cauchy problem for the nonlinear Schrödinger equation, nonlinear
Klein-Gordon equation and their coupled equations, Doctoral Thesis, Inst. Appl. Phys.
and Comput. Math, Dec, 1993, pp. 1-224.

32. Z. Zhai, Strichartz type estimates for fractional heat equations, J. Math. Anal. Appl.,
356 (2009), 642-658.

Shaolei Ru
Department of mathematics
Zhejiang University
310027 Hangzhou
P. R. China
E-mail: rushaolei@gmail.com


