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ON THE DENSE UNBOUNDED DIVERGENCE
OF THE DISCRETE BEST APPROXIMATION

Alexandru I. Mitrea

Abstract. A classic theorem of Approximation Theory states the uniform conver-
gence of the best approximation polynomials, concerning the Banach space C of
all real-valued continuous functions defined on the interval [−1, 1] of R, in supre-
mum norm. By contrast, the main result of this paper highlights the phenomenon
of double condensation of singularities (meaning unbounded divergence on large
subsets of C and [−1, 1], in topological sense) for the discrete best approximation
on Chebyshev nodes.

1. INTRODUCTION

It is a classic theme in Approximation Theory that to find and to characterize the
best approximation polynomials of a continuous function in the Chebyshev sense [2, 3,
6, 12]. However, it is often very hard to provide these polynomials explicitly, therefore
the requirement to develop approximating methods in this field is of computational
interest. One answer in this meaning consists in approximation over finite sets [1, 2,
3, 5, 9, 10, 12]. The present paper joins to this approach, as follows. Let us consider a
node matrix M in the interval [−1, 1] of R so that for each integer n ≥ 1 the n-th row
Jn of M contains at least n points. Denote by C the Banach space of all continuous
functions f : [−1, 1] → R, endowed with the supremum norm ‖ · ‖.

Given an integer n ≥ 1, let Pn be the set of all algebraic polynomials of degree at
most n and let consider the operator Un = Un(M) which associates to each f in C the
unique polynomial Unf in Pn−1 for which the infimum of the set {max{|f(x)−P (x)| :
x ∈ Jn} : P ∈ Pn−1} is attained [1, 2, 5, 9, 12]. If Jn contains n points, then Unf

coincides with the Lagrange polynomial that interpolates f at the nodes of Jn. On
the other hand, the theorem of Ch. de la Vallée-Poussin [1, 2, 6, 12] shows that
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the basic case for studying the best approximation over finite sets is that when Jn

contains n+1 points; therefore, in what follows we will consider only this case, namely
Jn = {xk

n+1 : 1 ≤ k ≤ n + 1}, with −1 ≤ x1
n+1 < x2

n+1 < x3
n+1 < . . . < xn+1

n+1 ≤ 1.
In this framework, the main result of [5] states that each operator Un is a projection
of C onto Pn−1 and there exists a function g in C for which the sequence (Ung)n≥1

fails to converge uniformly on [−1, 1]. In fact, the set of all functions f in C such that
the sequence (Unf)n≥1 unboundedly diverges, i.e. lim sup

n→∞
‖Unf‖ = ∞, is superdense

in the Banach space (C, ‖ · ‖), [9]; we recall that a subset Y of a topological space X

is said to be superdense in X if it is residual (namely, its complement is of first Baire
category), uncountable and dense in X , [4]. These results contrast with the well known
theorem concerning the uniform convergence of the best approximation polynomials in
supremum norm, which states that each operator Ũn : C → Pn−1, n ≥ 1, defined
by ‖f − Ũnf‖ = inf{‖f − P‖ : P ∈ Pn−1}, f ∈ C, is continuous, preserves all
polynomials of Pn−1 and the sequence (Ũnf)n≥1 is uniformly convergent to f , for
each f in C [1, 2, 6, 12].

The aim of this paper is to highlight the phenomenon of double condensation
of singularities, meaning unbounded divergence on large subsets of C and [−1, 1]
in topological sense, with respect to the family of Chebyshev projection operators
Un = Un(T ), n ≥ 1, where the n-th row of the node matrix T contains the roots of
Chebyshev polynomials Tn+1, with Tn(x) = cos(n arccosx), n ≥ 1, −1 ≤ x ≤ 1. To
this purpose, the following principle of functional analysis, deriving from [4, Theorem
5.2], will be used.

Theorem 1.1. Suppose that X is a nonzero Banach space, Y is a normed space
and T is a nonvoid separable complete metric space without isolated points. Let
{An : n ≥ 1} be a family of mappings of X × T into Y satisfying the following
conditions:

1◦ For each n ≥ 1 and t ∈ T, At
n : X → Y , At

n(x) = An(x, t), ∀ x ∈ X , is a
linear and continuous operator.

2◦ For each n ≥ 1 and x ∈ X , Ax
n : T → Y , Ax

n(t) = An(x, t), ∀ t ∈ T, is a
continuous operator.

3◦ There exists a dense set T0 in T so that for each t ∈ T0 the relation sup{‖At
n‖ :

n ≥ 1} = ∞ is fulfilled.

Then, there exists a superdense set D in X such that for each x ∈ D the set
{t ∈ T : sup{‖An(x, t)‖ : n ≥ 1} = ∞} is superdense in T.

As concerns recent works in this field, we cite [10] and [7, 8, 13], referring to
the discrete best approximation over equidistant nodes and the more general topic
of simultaneous best approximation, respectively. Otherwise, a future task for us is
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to investigate the problem of the simultaneous best approximation, in the framework
described in this work.

The paper is organized as follows. In the next section, we present some needed
notions and results concerning the discrete best approximation over arbitrary nodes. The
third section contains two lemmas regarding the Chebyshev node matrix T , which are
essential to prove the unboundedness of the set of norms {‖Un(T )‖ : n ≥ 1} in the last
section. The main result, which emphasizes the phenomenon of double condensation
of singularities for Chebyshev projection operators Un(T ), n ≥ 1, is established in the
fourth section.

2. PRELIMINARIES NOTIONS AND RESULTS

We start with some notations to be used in this paper, [1, 2, 3, 6, 14]. The notation
[a] stands for the largest integer n with n ≤ a, a ∈ R. Also, we denote by Mk , k ≥ 1,
some generic positive constants which are independent of any positive integer n and
we write an ∼ bn if the sequences of real numbers (an) and (bn) satisfy the conditions
bn 
= 0 and 0 < M1 ≤ |an/bn| ≤ M2, ∀ n ≥ 1.

Further, let n ≥ 1 be given and put ωn+1(x) =
n+1∏
k=1

(x− xk
n+1). Denote by Ln+1f

the Lagrange polynomial which interpolates a function f ∈ C at the nodes of Jn,
namely

(Ln+1f)(x) =
n+1∑
k=1

f(xk
n+1)l

k
n+1(x), −1 ≤ x ≤ 1,

with lkn+1(x) = ωn+1(x) ((x− xk
n+1)ω

′
n+1(x

k
n+1))

−1, 1 ≤ k ≤ n + 1.
We associate to the n-th row Jn of M the corresponding Lebesgue function

λn+1(x) =
n+1∑
k=1

|lkn+1(x)|, −1 ≤ x ≤ 1.

The coefficient of the leading term of Ln+1f will be denoted by an(f). If f, g ∈ C
and an(g) 
= 0, we set

(2.1) qn(f ; g) = an(f)(an(g))−1.

Now, let σn+1 be a function in C satisfying the conditions σn+1(xk
n+1) = (−1)k,

1 ≤ k ≤ n + 1 (for instance, σn+1 can be chosen as the unique polynomial of Pn

satisfying the equalities σn+1(xk
n+1) = (−1)k, 1 ≤ k ≤ n + 1). By means of Theorem

of Ch. de la Vallée-Poussin, [1, 2, 6, 12], the operator Un can be written as:

(2.2) Unf = Ln+1f − qn(f ; σn+1) · Ln+1σn+1, f ∈ C,

see also [5, 9].
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In order to point out the phenomenon of double condensation of singularities for the
discrete Chebyshev best approximation, the following family of continuous functions
{f t

n+1} will play an essential role. For each given point t ∈ [−1, 1], define f t
n+1 ∈ C

by

(2.3) f t
n+1(x) =

⎧⎨⎩
sgnlkn+1(t), if x = xk

n+1, 1 ≤ k ≤ n + 1
1, if x ∈ {−1, 1} \ Jn

linear, otherwise.

With the notations

(2.4) An = [x1
n+1, x

n+1
n+1] \ Jn; τk

n+1 = (ω′
n+1(x

k
n+1))

−1, 1 ≤ k ≤ n + 1,

let us introduce the function δn+1 : An → [0, 1] as follows: if s ∈ {1, 2, 3, . . . , n} and
t ∈ (xs

n+1, x
s+1
n+1), we set

(2.5) δn+1(t) =

(
s∑

k=1

|τk
n+1|

)(
n+1∑
k=1

|τk
n+1|

)−1

.

The following statement holds.

Lemma 2.1. Given n ≥ 1, the equality

(2.6) |qn(f t
n+1, σn+1)| = |1− 2δn+1(t)|

is satisfied for each t ∈ An.

Proof. Let s ∈ {1, 2, 3, . . . , n} and t ∈ (xs
n+1, x

s+1
n+1).

The relations sgnlkn+1(t) = (−1)s−k for k ∈ {1, 2, . . . , s}, sgnlkn+1(t) = (−1)k−s−1

for k ∈ {s + 1, s + 2, . . . , n + 1}, [2, 3], and sgnτk
n+1 = (−1)n+1−k for k ∈

{1, 2, . . . , n + 1}, combined with

(2.7) an(f t
n+1) =

n+1∑
k=1

τk
n+1sgnlkn+1(t)

and

(2.8) an(σn+1) = (−1)n+1
n+1∑
k=1

|τk
n+1|

yield, after usual computations:

(2.9) an(f t
n+1) + (−1)san(σn+1) = 2 · (−1)n+s+1

s∑
k=1

|τk
n+1|.

Dividing (2.9) by an(σn+1) and taking into account the relations (2.1) and (2.5),
the equality (2.6) follows, which completes the proof.
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3. ESTIMATES INVOLVING CHEBYSHEV NODE MATRIX

Firstly, we point out an estimate concerning the Lebesgue functions associated to
the Chebyshev matrix T .

Lemma 3.1. Given an arbitrary x ∈ (−1, 1), let θ ∈ (0, π) so that cos θ = x and

η =
1
2

min(θ, π − θ). Then, the inequality

λn(x) ≥ M3(sinη) logn

holds for a proper sequence of positive integers.

Proof. The estimate λn(x) − 1 ∼ (cosnθ) log n follows from [11, Th. 2]. On
the other hand, similarly to [14, p. 330], the inequality | cosnθ| ≥ sinη is satisfied if(

r +
1
2

)
π − η < 2ηn ≤

(
r +

1
2

)
π + η, r ≥ 1.

Finally, we get:

(3.1) λnr(x) ≥ M3(sinη) lognr, if nr = 1 +
[
2r + 1

4η
π − 1

2

]
, r ≥ 1,

which completes the proof.
Further, let us consider the odd rows J2n−1 of T , i.e.

J2n−1 =
{

cos
2k − 1

4n
π : 1 ≤ k ≤ 2n

}
, n ≥ 1.

According to the convention xk
2n < xk+1

2n , 1 ≤ k ≤ 2n − 1, it is easily seen that

(3.2) x2n+1−k
2n = −xk

2n = cos
2k − 1

4n
π, 1 ≤ k ≤ n

and

(3.3) J2n−1 = {±tk2n : 1 ≤ k ≤ n}; tk2n = xn+k
2n = sin

2k − 1
4n

π; 1 ≤ k ≤ n.

Now, noticing that ω2n(x) = 21−2nT2n(x), we derive from (2.4) and (3.2):

(3.4) τn+k
2n = (ω′

2n(tk2n))−1 = (−1)n+k · 22n

4n
cos

2k − 1
4n

π, 1 ≤ k ≤ n

and

(3.5) τk
2n + τ2n+1−k

2n = 0, 1 ≤ k ≤ 2n.
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The trigonometric identity
m∑

k=1

cos(2k − 1)α =
sin(2mα)
2 sinα

, m ≥ 1, α ∈ R \ (πZ),

combined with (3.4), provides for n ≥ 1 and j ∈ {1, 2, 3, . . . , n}:

(3.6)
n+j∑

k=n+1

|τk
2n| =

j∑
k=1

|τn+k
2n | =

22n

8n sin
π

4n

· sin jπ

2n
.

On the other hand, the relations (2.4), (2.5), (3.2) and (3.5) yield:

(3.7) δ2n(t) + δ2n(−t) = 1, for all t ∈ A2n−1.

We are in a position to prove the following statement.

Lemma 3.2. For each t ∈ (−1, 1) \ T there exists an integer m = m(t) ≥ 2
satisfying the following relations:

(i) t ∈ A2mn−1, ∀ n ≥ 2;

(ii) |1 − 2δ2mn(t)| ≤ cos
π

8m
, ∀ n ≥ 2.

Proof. First step. Let t ∈ [0, 1) \ T . The relations lim
n→∞ t12n = 0 and lim

n→∞ tn2n = 1
imply the existence of some positive integers m ≥ 2 and p, depending on t, such that:

(3.8) 1 ≤ p ≤ m − 1 and tp2m < t < tp+1
2m .

Further, let m ≥ 2 be an arbitrary integer and define the integers i and j by

(3.9) i =
[
pn − n

2
+

1
2

]
and j =

[
pn +

n

2
+

1
2

]
+ 1.

The inequalities
2i− 1
4mn

π ≤ 2p− 1
4m

π and
2p + 1

4m
π ≤ 2j − 1

4mn
π, which follow

from (3.9), combined with (3.3), give ti2mn ≤ tp2m < tp+1
2m ≤ tj2mn. Consequently, in

accordance with (3.8) and (3.9), there exists a positive integer ν = ν(m, n) so that:

(3.10) t ∈ (tν2mn, tν+1
2mn) = (xmn+ν

2mn , xmn+ν+1
2mn ), 1 ≤ i ≤ ν ≤ j − 1 ≤ mn − 1.

The relation (3.10) proves the assertion (i) of this lemma for t ∈ [0, 1) \ T .
Next, we derive from (2.5), (3.5), (3.6) and (3.10):

(3.11) δ2mn(t) =
1
2

(
1 + sin

νπ

2mn

)
, n ≥ 2.
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A combination of the relations (3.8), (3.9), (3.10) and (3.11) yields:

1
2
≤ δ2mn(t) ≤ 1

2

(
1 + sin

j − 1
2mn

π

)
≤ 1

2

(
1 + sin

2np + n + 1
4mn

π

)
≤ 1

2

(
1 + sin

2mn − n + 1
4mn

π

)
= cos2

( π

8m
− π

8mn

)
,

so we conclude:

(3.12) ∀ t ∈ [0, 1) \ T , ∃ m = m(t) ≥ 2 :
1
2
≤ δ2mn(t) ≤ cos2

π

16m
, ∀ n ≥ 2.

The inequalities (3.12) lead to:

|1 − 2δ2mn(t)| = 2δ2mn(t) − 1 ≤ cos
π

8m
, ∀ n ≥ 2,

which proves the second assertion of Lemma 3.2 for t ∈ [0, 1) \ T .

Second step. Let us assume t ∈ (−1, 0)\ T . Applying the first step of this lemma
for −t ∈ (0, 1) \ T , it results that there exists an integer m = m(t) ≥ 2 satisfying the
relations

(3.13) −t ∈ A2mn−1, ∀ n ≥ 2

and

(3.14) |1− 2δ2mn(−t)| ≤ cos
π

8m
, ∀ n ≥ 2.

Taking into account the symmetry of A2mn−1 with respect to the origin, the relation
(3.13) implies t ∈ A2mn−1, ∀ n ≥ 2. On the other hand, the relations (3.14) and (3.7)
gives:

1 − 2δ2mn(−t) = 2δ2mn(t) − 1 and |1− 2δ2mn(t)| ≤ cos
π

8m
, ∀ n ≥ 2.

Therefore, the assertions (i) and (ii) of Lemma 3.2 fulfil also for t ∈ (−1, 0) \ T ,
which completes the proof.

4. DOUBLE CONDENSATION OF SINGULARITIES FOR CHEBYSHEV PROJECTION OPERATORS

The main result of this paper is stated as follows.

Theorem 4.1. Let Un = Un(T ), n ≥ 1, be the Chebyshev projection operators.
Then, there exists a superdense set D in C so that for each f in D, the set of unbounded
divergence of the family {Unf : n ≥ 1}, i.e.

{t ∈ [−1, 1] : sup{|(Unf)(t)| : n ≥ 1} = ∞}

is superdense in the interval [−1, 1] of R.
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Proof. We use Theorem 1.1, with X = C, T = [−1, 1], Y = R and An :
C× [−1, 1] → R, An(f ; x) = (Unf)(x), ∀ f ∈ C and x ∈ [−1, 1]. By means of (2.2),
a more explicit expression of An(f ; x) can be obtained, that is:

(4.1) An(f ; x) =
n+1∑
k=1

dk
n+1(f)lkn+1(x); f ∈ C, x ∈ [−1, 1], n ≥ 1,

where dk
n+1(f) = f(xk

n+1) + (−1)k+1qn(f ; σn+1), 1 ≤ k ≤ n + 1.
The hypotheses 1◦ and 2◦ of Theorem 1.1 are obviously fulfilled. As to the third

hypothesis of Theorem 1.1, let T0 = (−1, 1) \ T ; it is clear that T0 is dense in the
interval [−1, 1], because T is a countable set. Further, let t0 ∈ T0 be arbitrarily given;
the function f t0

n+1, defined by (2.3), satisfies the inequality:

(4.2) ‖At0
n ‖ ≥ |At0

n (f t0
n+1|, ∀ n ≥ 1.

In order to estimate |At0
n (f t0

n+1)|, we derive from (4.1) and (2.3):

(4.3) At0
n (f t0

n+1) =
n+1∑
k=1

αk
n+1(f

t0
n+1)|lkn+1(t0)|,

with αk
n+1(f

t0
n+1) = 1 + (−1)k+1qn(f t0

n+1; σn+1)sgnlkn+1(t0).
According to (2.1), (2.7) and (2.8) we obtain |qn(f t0

n+1; σn+1)| ≤ 1, which together
with (4.3) and (2.6) yields:

αk
n+1(f

t0
n+1) ≥ 1 − |qn(f t0

n+1; σn+1)| ≥ 0

and

(4.4) |At0
n (f t0

n+1)| = At0
n (f t0

n+1) ≥ (1 − |1 − 2δn+1(t0)|)λn+1(t0), ∀ n ≥ 1.

Now, it follows from Lemma 3.2 and (4.4) that there exists an integer m0 =
m(t0) ≥ 2 with t0 ∈ A2m0n−1, ∀ n ≥ 2 and

(4.5) |At0
2m0n−1(f

t0
2m0n)| ≥ 2

(
sin2 π

16m0

)
λ2m0n(t0), ∀ n ≥ 2.

Finally, denoting by θ0 = arccos t0 and η0 =
1
2

min(θ0, π − θ0), a combination of
the relations (4.2), (4.5) and (3.1) yields:

sup{‖At0
n ‖ : n ≥ 1} ≥ sup{|At0

n (f t0
n+1)| : n ≥ 1}

≥ sup{|At0
2m0nr−1(f2m0nr)| : r ≥ 1}

≥ M4(sin η0)
(

sin2 π

16m0

)
sup{lnnr : r ≥ 1} = ∞.
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Therefore, the hypothesis 3◦ of Theorem 1.1 is also satisfied, which completes the
proof of this theorem.
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