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HOMOCLINIC SOLUTIONS FOR SUBQUADRATIC HAMILTONIAN
SYSTEMS WITHOUT COERCIVE CONDITIONS

Ziheng Zhang, Tian Xiang and Rong Yuan

Abstract. In this paper we investigate the existence and multiplicity of classical
homoclinic solutions for the following second order Hamiltonian systems

(HS) ü− L(t)u+ ∇W (t, u) = 0,

where L ∈ C(R,Rn2
) is a symmetric and positive definite matrix for all t ∈ R,

W ∈ C1(R × R
n,R) and ∇W (t, u) is the gradient of W at u. The novelty of

this paper is that, assuming that L is bounded in the sense that there are constants
0 < τ1 < τ2 such that τ1|u|2 ≤ (L(t)u, u) ≤ τ2|u|2 for all (t, u) ∈ R × R

n

and W (t, u) is of subquadratic growth at infinity, we are able to establish two
new criteria to guarantee the existence and multiplicity of classical homoclinic
solutions for (HS), respectively. Recent results in the literature are extended and
significantly improved.

1. INTRODUCTION

The purpose of this work is to deal with the existence and multiplicity of homoclinic
solutions for the following second order Hamiltonian systems

(HS) ü − L(t)u+ ∇W (t, u) = 0,

where L ∈ C(R,Rn2
) is a symmetric and positive definite matrix for all t ∈ R,

W ∈ C1(R × R
n) and ∇W (t, u) is the gradient of W at u. As usual, we say that

a solution u(t) of (HS) is classical homoclinic (to 0) if u ∈ C2(R,Rn) such that
u(t) → 0 and u̇(t) → 0 as t → ±∞. If u(t) �≡ 0, u(t) is called one nontrivial
homoclinic solution.
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It is well known that the existence of homoclinic solutions for Hamiltonian systems
and their importance in the study of the behavior of dynamical systems have been
recognized from Poincaré [14]. They may be “organizing centers” for the dynamics in
their neighborhood. From their existence one may, under certain conditions, infer the
existence of chaos nearby or the bifurcation behavior of periodic orbits. In the past
two decades, with the works of [13] and [16] variational methods and critical point
theory have been successfully applied for the search of the existence and multiplicity of
homoclinic solutions of (HS). Assuming that L(t) and W (t, u) are either independent
of t or periodic in t, many authors have studied the existence of homoclinic solutions
of (HS), see for instance [3, 4, 6, 16, 25] and the references therein and some more
general Hamiltonian systems are considered in the recent papers [8, 10, 21]. In this
case, the existence of homoclinic solutions can be obtained by passing to the limit of
periodic solutions of the approximating problems.

If L(t) and W (t, u) are neither autonomous nor periodic in t, the existence of
homoclinic solutions of (HS) is quite different from the periodic systems, because of
the lack of compactness of the Sobolev embedding, see for instance [1, 9, 13, 17]
and the references therein. It is worthy of pointing out that to obtain the existence
of homoclinic solutions of (HS), the following so-called global Ambrosetti-Rabinowitz
condition ((AR) condition) on W due to Ambrosetti-Rabinowitz (e.g., [2]) is assumed
in the works mentioned above. Explicitly, there is a constant θ > 2 such that, for every
t ∈ R and u ∈ R

n\ {0},

(AR) 0 < θW (t, u) ≤ (∇W (t, u), u),

which implies that W (t, u) is of superquadratic growth as |u| → +∞, where (·, ·) :
R

n × R
n → R denotes the standard inner product in R

n and subsequently | · | is the
induced norm. However, there are many potentials which are superquadratic as |u| →
+∞ but do not satisfy (AR) condition. Therefore, many authors have been focusing
their attention on obtaining the existence of homoclinic solutions under the conditions
weaker than (AR) condition, see for instance [5, 11, 12, 22, 23, 30] and the references
listed therein. In addition, to verify the (PS) condition for the corresponding functional
of (HS), the following coercive assumption on L is often supposed. Specifically,

(L) L ∈ C(R,Rn2
) is a symmetric and positive definite matrix for all t ∈ R and

there is a continuous function α : R → R such that α(t) > 0 for all t ∈ R and
(L(t)u, u) ≥ α(t)|u|2 and α(t) → +∞ as |t| → +∞,

which indicates that the smallest eigenvalue l(t) of L(t) is coercive, i.e.,

(1.1) l(t) → +∞ as |t| → +∞,

where l(t) := inf |u|=1(L(t)u, u). In [13], assuming (L) holds, Omana and Willem
introduced some compact embedding theorem, see its Lemma 1, which has been uti-
lizing from then on and plays an essential role in demonstrating that the corresponding
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functional verifies the (PS) condition. As is well-known, this coercive condition is a
little demanding. For instance, for a simple choice like L(t) = τIdn the condition
(1.1) is not satisfied, where τ > 0 and Idn is the n× n identity matrix.

Compared with the literature available for W (t, u) being superquadratic as |u| →
+∞, the study of the existence of homoclinic solutions for (HS) under the assumption
that W (t, u) is subquadratic at infinity is much more recent and the number of such
references is considerably smaller, see for instance [6, 19, 21, 27, 28], where some
other types of coercive conditions on L are utilized to obtain the corresponding compact
embedding theorems. Besides, the existence of homoclinic solutions for the case that
W (t, u) is asymptotically quadratic at infinity has also been investigated by many
researchers, see for instance [7, 24, 29, 30].

Inspired by the above papers, in the present paper we study the case when L(t) is
bounded in the sense that:

(H1) L ∈ C(R,Rn2
) is a symmetric and positive definite matrix for all t ∈ R and

there are constants 0 < τ1 < τ2 such that

τ1|u|2 ≤ (L(t)u, u) ≤ τ2|u|2 for all (t, u) ∈ R × R
n,

and W (t, u) is of subquadratic growth as |u| → +∞ and for convenience W (t, 0) = 0
for all t ∈ R. For the statement of our main results, the potential W (t, u) is supposed
to satisfy the following conditions:

(H2) there exist t0 ∈ R and ϑ ∈ (1, 2) such that

lim inf
(t,u)→(t0,0)

W (t, u)
|u|ϑ > 0;

(H3) |∇W (t, u)| ≤ b(t)|u|ϑ−1 for all t ∈ R and u ∈ Rn, where b : R → R+ is a
function such that b ∈ Lξ(R,R+) for some 1 ≤ ξ ≤ 2.

We are now ready to formulate our main results. The first one concerns the existence
of at least one nontrivial homoclinic solution to (HS).

Theorem 1.1. Under the assumptions of (H1)-(H3), (HS) has at least one nontrivial
homoclinic solution.

If, in addition, W has an even symmetry in u, i.e.,

(H4) W (t, u) = W (t,−u), ∀(t, u) ∈ R × Rn,

then we get the existence of infinitely many nontrivial homoclinic solutions.

Theorem 1.2. Under the assumptions of (H1)-(H4), (HS) possesses infinitely many
nontrivial homoclinic solutions.
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Remark 1.3. From (H3), it is easy to check that W (t, u) is subquadratic as |u| →
+∞. In fact, in view of W (t, 0) = 0 and (H3), we have

(1.2) |W (t, u)| =
∣∣∣
∫ 1

0

(∇W (t, su), u)ds
∣∣∣ ≤ b(t)

ϑ
|u|ϑ.

Remark 1.4. To our best knowledge, for the case that L is bounded from below
and unnecessary to satisfy the coercive condition such as (L) or some more demanding
coercive condition, only the recent papers [20, 26] dealt with this case. In [26], the
authors investigated the case that the potentialW (t, u) is superquadratic as |u| → +∞.
In [20], assuming that L and W satisfy the following conditions:

(L)′ L ∈ C(R,Rn2
) is positive definite symmetric matrix for all t ∈ R and there

exists a constant β > 0 such that

(L(t)u, u) ≥ β|u|2, ∀(t, u) ∈ R × R
n;

(W1) W ∈ C1(R × R
n,R) and there exist two constants 1 < γ1 < γ2 < 2 and two

functions a1, a2 ∈ L2/(2−γ1)(R,R+) such that

|W (t, u)| ≤ a1(t)|u|γ1, ∀(t, u) ∈ R × R
n, |u| ≤ 1

and
|W (t, u)| ≤ a2(t)|u|γ2, ∀(t, u) ∈ R × R

n, |u| ≥ 1;

(W2) there exist two functions b ∈ L2/(2−γ1)(R,R+) and ϕ ∈ C(R+,R+) such that

|∇W (t, u)| ≤ b(t)ϕ(|u|), ∀(t, u) ∈ R × R
n,

where ϕ(s) = O(sγ1−1) as s→ 0+;

(W3) there exist an open set Ω ⊂ R and two constants γ3 ∈ (1, 2) and η > 0 such that

W (t, u) ≥ η|u|γ3, ∀(t, u) ∈ Ω × R
n, |u| ≤ 1

and (H4) is verified, then the authors showed that (HS) possesses infinitely many
homoclinic solutions in the sense that u(t) → 0 as |t| → +∞. In other words,
they did not show that the homoclinic solutions verify that u̇(t) → 0 as |t| → +∞
(classical sense). Moreover, in (W2), the function b is assumed to belong to the space
L2/(2−γ1)(R,R+) with 2/(2−γ1) > 2 since 1 < γ1 < 2, whereas in our Theorem 1.2,
we need only the assumption that b ∈ Lξ(R,R+) for some 1 ≤ ξ ≤ 2. Furthermore, it is
straightforward to see that our condition (H2) is weaker than (W3). It turns out also that
(H2) is an essential condition to apply the genus properties for finding infinitely many
homoclinic solutions of (HS). Comparing the results in [20] with our Theorems 1.1 and
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1.2, we see that, if ∇W is uniformly sublinear (c.f. (H3) vs (W2)), then the integrability
of b can vary, which can indeed be allowed to be either in L2/(2−ϑ)(R,R+) or in
Lξ(R,R+) for some ξ ∈ [1, 2], also we offer a sufficient condition (the second part of
(H1)) to ensure that the obtained solutions are classical homoclinic ones. Furthermore,
as Example 1.6 below shows there are cases which can be well covered by Theorem
1.2 but not by the results in [26]. Therefore, the results in [20] are extended and
complemented.

Remark 1.5. In our present paper, we weaken (L) and (L)′ to (H1). Therefore,
one difficulty of this paper is to show that the (PS) condition is satisfied under the
hypotheses of Theorem 1.1. Moreover, as we point out that the authors in [20] only
investigated homoclinic solutions of (HS) in the sense that u(t) → 0 as t → ±∞.
Therefore, in order to obtain the existence of homoclinic solutions of (HS) in the clas-
sical sense, another difficulty for us is to verify that, under the conditions of Theorem
1.1, u̇(t) → 0 as t→ ±∞ as well, which is one part of Lemma 3.1 below.

Example 1.6. Now, we present an interesting example to illustrate our main results.
We first construct a nonnegative continuous function b on R such that b ∈ L1(R,R+)
but b �∈ Lp(R,R+) for any p > 1; moreover, this function does not have a limit as
|t| → ∞. Hence, it is of interest for its own sake. Geometrically, this function consists
of a series of “moving” trapezoids whose heights grow exponentially and widths shrink
to zero as the trapezoids get far way from the origin; meantime, it maintains a finite
area and an infinite “higher area”. Mathematically, for any n ∈ Z

◦ := Z − {0}, set
δn = e−|n|/n2. Now, let b : R → R+ be the nonnegative continuous function defined
as follows: b(t) = e|n| on [n−δn/2, n+δn/2], b(t) = 0 outside ∪n∈Z◦ [n−δn, n+δn],
and b is linear on the remaining intervals. Then b ∈ L1(R,R+) because

∫
R

b(t)dt =
∑
n∈Z◦

3δn
2

· e|n| =
3
2

∑
n∈Z◦

1
n2

= 3
∞∑

n=1

1
n2

<∞.

On the other hand, for any p > 1, we have b �∈ Lp(R,R+), since
∫

R

bp(t)dt ≥
∑
n∈Z◦

δn · ep|n| =
∑
n∈Z◦

e(p−1)|n|

n2
= 2

∞∑
n=1

e(p−1)n

n2
= ∞.

We next let
L(t) = (2 + sin t)Idn, W (t, u) =

2
3
b(t)|u|3/2,

where Idn is the n× n identity matrix. Then we have

|∇W (t, u)| = |b(t)|u|−1/2u| ≤ b(t)|u|1/2,

and it is easy to check that (H1)-(H4) are satisfied with τ1 = 1, τ2 = 2, ξ = 1 and t0 can
be any nonzero integer. By Theorem 1.2, (HS) has infinitely many classical homoclinic
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solutions. However, since 2/(2 − γ1) > 2 for any γ1 ∈ (1, 2), the above discussion
shows that b �∈ L2/(2−γ1)(R,R+). This means that (W2) can not be satisfied, and so
the result in [20] can not be applied.

The remaining part of this paper is structured as follows. Some preliminary results
are presented in Section 2. In Section 3, we are devoted to accomplishing the proofs
of Theorems 1.1 and 1.2.

2. PRELIMINARY RESULTS

In order to prove our main results, we firstly describe some properties of the space
E on which the variational framework associated with (HS) is defined. Letting

E =
{
u ∈ H1(R,Rn) :

∫
R

[
|u̇(t)|2 + (L(t)u(t), u(t))

]
dt < +∞

}
,

then E is a Hilbert space with the inner product

(u, v)E =
∫

R

(u̇(t), v̇(t)) + (L(t)u(t), v(t))dt

and the corresponding norm ‖u‖2 = (u, u)E. Note that

E ⊂ H1(R,Rn) ⊂ Lp(R,Rn)

for all p ∈ [2,+∞] with the embedding being continuous. That is, for any [2,+∞],
there is Cp > 0 such that

(2.1) ‖u‖p ≤ Cp‖u‖, ∀u ∈ E.

Here, Lp(R,Rn) (2 ≤ p < +∞) and H1(R,Rn) denote the Banach space of functions
on R with values into Rn under the norms

‖u‖p :=
(∫

R

|u(t)|pdt
)1/p

and ‖u‖H1 :=
(
‖u‖2

2 + ‖u̇‖2
2

)1/2
,

respectively. L∞(R,Rn) is the Banach space of essentially bounded functions from R

into Rn equipped with the norm

‖u‖∞ := ess sup {|u(t)| : t ∈ R} .
To deal with the existence of homoclinic solutions of (HS), we appeal to the fol-

lowing well-known result, see for example [15].

Definition 2.1. I ∈ C1(B,R) is said to satisfy the (PS) condition if any sequence
{uj}j∈N

⊂ B, for which {I(uj)}j∈N
is bounded and I ′(uj) → 0 as j → +∞,

possesses a convergent subsequence in B.
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Lemma 2.2. Let E be a real Banach space and I ∈ C1(E,R) satisfying the (PS)
condition. If I is bounded from below, then c = infE I(u) is a critical value of I .

To obtain the existence of infinitely many homoclinic solutions of (HS) under the
assumptions of Theorem 1.2, we shall employ the “genus” properties in critical point
theory, see [15, 18].

Let B be Banach space, I ∈ C1(B,R) and c ∈ R. We set

Σ = {A ⊂ B − {0} : A is closed in B and symmetric with respect to 0},
Kc = {u ∈ B : I(u) = c, I ′(u) = 0}, Ic = {u ∈ B : I(u) ≤ c}.

Definition 2.3. For A ∈ Σ, we say the genus of A is j (denoted by γ(A) = j) if
there is an odd map ψ ∈ C(A,Rj\{0}) and j is the smallest integer with this property.

Lemma 2.4. Let I be an even C1 functional on B and satisfy the (PS)-condition.
For any j ∈ N, set

Σj = {A ∈ Σ : γ(A) ≥ j}, cj = inf
A∈Σj

sup
u∈A

I(u).

(i) If Σj �= ∅ and cj ∈ R, then cj is a critical value of I;
(ii) if there exists r ∈ N such that

cj = cj+1 = · · · = cj+r = c ∈ R,

and c �= I(0), then γ(Kc) ≥ r + 1.

Remark 2.5. From Remark 7.3 in [15], we know that if Kc ∈ Σ and γ(Kc) > 1,
then Kc contains infinitely many distinct points, i.e., I has infinitely many distinct
critical points in B.

3. PROOFS OF THE MAIN RESULTS

Now we are going to establish the corresponding variational framework to obtain
the existence and multiplicity of homoclinic solutions of (HS). To this end, define the
functional I : B = E → R by

(3.1)
I(u) =

∫
R

[1
2
|u̇(t)|2 +

1
2
(L(t)u(t), u(t))−W (t, u(t))

]
dt

=
1
2
‖u‖2 −

∫
R

W (t, u(t))dt.

The purpose of this section is to prove Theorems 1.1 and 1.2. To this aim, we
present some lemmas which will be used in the subsequent discussion.
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Lemma 3.1. Under the conditions of (H1)-(H3), I ∈ C1(E,R), i.e., I is a contin-
uously Fréchet-differentiable functional defined on E . Moreover, we have

(3.2) I ′(u)v =
∫

R

[
(u̇(t), v̇(t)) + (L(t)u(t), v(t))− (∇W (t, u(t)), v(t))

]
dt

for all u, v ∈ E , which gives

I ′(u)u = ‖u‖2 −
∫

R

(∇W (t, u(t)), u(t))dt.

In addition, any critical point of I on E is a classical solution of (HS) with u(±∞) =
0 = u̇(±∞).

Proof. We firstly show that I : E → R. By the Hölder inequality, (1.2) and the
embedding (2.1), we have

(3.3)
0 ≤

∫
R

|W (t, u(t))|dt ≤ 1
ϑ

∫
R

|b(t)||u(t)|ϑdt

≤ 1
ϑ
‖b‖ξ‖u‖ϑ

ϑξ∗ ≤ Cϑ
ϑξ∗

ϑ
‖b‖ξ‖u‖ϑ,

where ξ∗ is the conjugate exponent of ξ, i.e., 1 = 1
ξ + 1

ξ∗ . Combining this with (3.1),
we see that I : E → R.

Next we prove that I ∈ C1(E,R). To this end, we rewrite I as follows:

A(u) =
1
2
‖u‖2, B(u) =

∫
R

W (t, u(t))dt.

It is easy to check that A ∈ C1(E,R), and we have

A′(u)v =
∫

R

[(u̇(t), v̇(t)) + (L(t)u(t), v(t))]dt.

Therefore, it is sufficient to show that this is the case for B. In the process we shall
see that B ∈ C1(E,R) and

(3.4) B′(u)v =
∫

R

(∇W (t, u(t)), v(t))dt,

which is defined for all u, v ∈ E . For any given u ∈ E , let us define J(u) : E → R

as follows

(3.5) J(u)v =
∫

R

(∇W (t, u(t)), v(t))dt, ∀v ∈ E.
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It is obvious that J(u) is linear. Now we show that J(u) is bounded. Indeed, for any
given u ∈ E , in view of (2.1) and the Hölder inequality, we obtain that

(3.6)
|J(u)v| =

∣∣∣
∫

R

(∇W (t, u(t)), v(t))dt
∣∣∣ ≤

∫
R

b(t)|u(t)|ϑ−1|v(t)|dt

≤ ‖u‖ϑ−1
∞ ‖b‖ξ‖v‖ξ∗ ≤ Cϑ−1

∞ Cξ∗‖u‖ϑ−1‖b‖ξ‖v‖.
Moreover, for u, v ∈ E , using the Mean Value Theorem, we have

∫
R

W (t, u(t) + v(t))dt−
∫

R

W (t, u(t))dt =
∫

R

(∇W (t, u(t) + h(t)v(t)), v(t))dt

for some h(t) ∈ (0, 1). On the other hand, b ∈ Lξ(R,R+) implies that, for any ε > 0,
there exists T > 0 such that

(3.7)
(∫

|t|>T

bξ(t)dt
)1/ξ

< ε.

Therefore, on account of (2.1), the Sobolev compact theorem (E|[−T,T ] is compactly
embedded in L∞([−T, T ],Rn)) and the Hölder inequality, we have

1
‖v‖

[∫
R

(∇W (t, u(t) + h(t)v(t)), v(t))dt−
∫

R

(∇W (t, u(t)), v(t))dt
]

=
1

‖v‖
∫

R

(∇W (t, u(t) + h(t)v(t))−∇W (t, u(t)), v(t))dt

=
1

‖v‖
∫
|t|≤T

(∇W (t, u(t) + h(t)v(t))−∇W (t, u(t)), v(t))dt

+
1

‖v‖
∫
|t|>T

(∇W (t, u(t) + h(t)v(t))−∇W (t, u(t)), v(t))dt

≤ 1
‖v‖

(∫
|t|≤T

|∇W (t, u(t) + h(t)v(t))−∇W (t, u(t))|2dt
)1/2(∫

|t|≤T

|v(t)|2dt
)1/2

+
1

‖v‖
∫
|t|>T

b(t)(2|u(t)|ϑ−1 + |v(t)|ϑ−1)|v(t)|dt

≤ 1
‖v‖C2‖v‖

(∫
|t|≤T

|∇W (t, u(t) + h(t)v(t))−∇W (t, u(t))|2dt
)1/2

+
1

‖v‖
(∫

|t|>T
bξ(t)dt

)1/ξ(
2Cϑ−1

∞ ‖u‖ϑ−1 +Cϑ−1
∞ ‖v‖ϑ−1

)(∫
|t|>T

|v(t)|ξ∗dt
)1/ξ∗

≤C2

(∫
|t|≤T

|∇W (t, u(t) + h(t)v(t))−∇W (t, u(t))|2dt
)1/2

+ εCϑ−1
∞ Cξ∗

(
2‖u‖ϑ−1 + ‖v‖ϑ−1

)
→ 0 as v → 0,
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which, together with (3.6), implies that (3.4) holds. It remains to prove that B′ is
continuous. Suppose that u→ u0 in E , then, by (2.1) and (3.7), it deduces that

sup
‖v‖=1

|B′(u)v −B′(u0)v|

= sup
‖v‖=1

|
∫

R

(∇W (t, u(t))−∇W (t, u0(t)), v(t))dt|

≤ sup
‖v‖=1

∫
|t|≤T

∣∣∣(∇W (t, u(t))−∇W (t, u0(t)), v(t))
∣∣∣dt

+ sup
‖v‖=1

∫
|t|>T

b(t)(|u(t)|ϑ−1 + |u0(t)|ϑ−1)|v(t)|dt

≤ sup
‖v‖=1

(∫
|t|≤T

|∇W (t, u(t))−∇W (t, u0(t))|2dt
)1/2(∫

|t|≤T
|v(t)|2dt

)1/2

+ sup
‖v‖=1

(‖u‖ϑ−1
∞ + ‖u0‖ϑ−1

∞ )
(∫

|t|>T
bξ(t)dt

)1/ξ(∫
|t|>T

|v(t)|ξ∗dt
)1/ξ∗

≤C2

(∫
|t|≤T

|∇W (t, u(t))−∇W (t, u0(t))|2dt
)1/2

+Cξ∗(‖u‖ϑ−1
∞ + ‖u0‖ϑ−1

∞ )
(∫

|t|>T
bξ(t)dt

)1/ξ

≤ εC2 + εCξ∗(‖u‖ϑ−1
∞ + ‖u0‖ϑ−1

∞ ),

which yields that B′(u)v−B′(u0)v → 0 as u→ u0 uniformly with respect to v, which
implies that B′ is continuous. Therefore, we have shown that I ∈ C1(E,R).

Lastly, we check that critical points of I are classical solutions of (HS) satisfying
u(t) → 0 and u̇(t) → 0 as |t| → +∞. It is well known that E ⊂ C0(R,Rn) (the
space of continuous functions u on R such that u(t) → 0 as |t| → +∞). Now, if
u ∈ E is a critical point of I , we deduce from (3.2) that L(t)u−∇W (t, u) is the weak
derivative of u̇. Recall that L ∈ C(R,Rn2

) and that W ∈ C1(R × Rn,R), we thus
have u is indeed in C2(R,Rn). Hence, u is a classical solution of (HS) with u(t) → 0
as |t| → +∞. In what follows, we show that u̇(t) → 0 as |t| → +∞ as well. To do
this, due to the fact that (see Fact 2.8 in [8])

|u(t)| ≤
√

2
(∫ t+1/2

t−1/2
(|u(s)|2 + |u̇(s)|2)ds

)1/2
,

we observe that

|u̇(t)|2 ≤ 2
∫ t+1/2

t−1/2

(|u(s)|2 + |u̇(s)|2)ds+ 2
∫ t+1/2

t−1/2

|ü(s)|2ds.

On the other hand, since



Homoclinic Solutions for Hamiltonian Systems 1099

∫ t+1/2

t−1/2
(|u(s)|2 + |u̇(s)|2)ds→ 0,

as t→ ±∞, it suffices to prove that

(3.8)
∫ t+1/2

t−1/2
|ü(s)|2ds→ 0

as t→ ±∞. In fact, in view of (HS), we obtain that
∫ t+1/2

t−1/2

|ü(s)|2ds =
∫ t+1/2

t−1/2

(
|∇W (s, u(s))|2 + |L(s)u(s)|2

)
ds

− 2
∫ t+1/2

t−1/2
(L(s)u(s),∇W (s, u(s)))ds

≤ 2
∫ t+1/2

t−1/2

(
|∇W (s, u(s))|2 + |L(s)u(s)|2

)
ds.

In addition, we note that ∇W (s, u(s)) is continuous and that ∇W (t, 0) = 0 for all
t ∈ R (see (H3)), u(t) → 0 as |t| → +∞ and L(t) is bounded, therefore (3.8) follows
directly.

Lemma 3.2. If (H1) and (H3) hold, then I satisfies (PS)-condition.

Proof. Assume that {uj}j∈N
⊂ E is a sequence such that {I(uj)}j∈N

is bounded and
I ′(uj) → 0 as j → +∞. Then there exists a constant C > 0 such that

(3.9) |I(uj)| ≤ C,

for every j ∈ N. We firstly prove that {uj}j∈N
is bounded in E . From (3.1), (3.3) and

(3.9), it is easy to deduce that

(3.10)
‖uj‖2 = 2I(uj) + 2

∫
R

W (t, uj(t))dt

≤ 2C +
2
ϑ
Cϑ

ϑξ∗‖b‖ξ‖u‖ϑ.

Since 1 < ϑ < 2, the inequality (3.10) shows that {uj}j∈N
is bounded in E . Then

the sequence {uj}j∈N
has a subsequence, again denoted by {uj}j∈N

, and there exists
u ∈ E such that

uj ⇀ u weakly in E,

which yields that

(3.11) (I ′(uj) − I ′(u))(uj − u) → 0 as j → +∞,
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and there exists a constant M > 0 such that

(3.12) ‖uj‖∞ ≤ C∞‖uj‖ ≤M and ‖u‖∞ ≤ C∞‖u‖ ≤M.

On account of the continuity of ∇W (t, u) and uj → u in L∞
loc(R,R

n), it follows
that there exists k0 ∈ N such that

(3.13)
∫
|t|≤T

(∇W (t, uj(t))−∇W (t, u(t)), uj(t) − u(t))dt < ε for k ≥ k0.

On the other hand, joining (H3), (2.1), (3.7) and (3.12), we obtain that

(3.14)

∫
|t|>T

(∇W (t, uj(t))−∇W (t, u(t)), uj(t) − u(t))dt

≤
∫
|t|>T

|∇W (t, uj(t)) −∇W (t, u(t)||uj(t) − u(t)|dt

≤
∫
|t|>T

b(t)(|uj(t)|ϑ−1 + |u(t)|ϑ−1)(|uj(t)| + |u(t)|)dt

≤ 2
∫
|t|>T

b(t)(|uj(t)|ϑ + |u(t)|ϑ)dt

≤ 2
(∫

|t|>T
bξ(t)dt

)1/ξ
(‖uj‖ϑ

ϑξ∗ + ‖u‖ϑ
ϑξ∗)

≤ 2
(∫

|t|>T

bξ(t)dt
)1/ξ

Cϑ
ϑξ∗(‖uj‖ϑ + ‖u‖ϑ)

≤ 4εCϑ
ϑξ∗

( M

C∞

)ϑ
.

Since ε > 0 is arbitrary, combining (3.13) with (3.14), we get

(3.15)
∫

R

(∇W (t, uj(t))−∇W (t, u(t)), uj(t) − u(t))dt→ 0

as j → +∞. Consequently, in view of (3.11), (3.15) and the following equality

(I ′(uj) − I ′(u), uj − u) =‖uj − u‖2

−
∫

R

(∇W (t, uj(t)) −∇W (t, u(t)), uj(t) − u(t))dt,

it is easy to conclude that ‖uj − u‖ → 0 as j → +∞.

Now we are in the position to complete the proof of Theorems 1.1 and 1.2. The
attention will be given mainly to the proof of Theorem 1.2.
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Proof of Theorem 1.1. It is clear that I(0) = 0, and by Lemma 3.2 we have known
that I is a C1 functional on E satisfying the (PS)-condition. On the other hand, in
view of (3.1) and (3.3), we obtain that

(3.16) I(u) ≥ 1
2
‖u‖2 − Cϑ

ϑξ∗

ϑ
‖b‖ξ‖u‖ϑ,

which implies that I is bounded below on E . Hence by Lemma 2.2, c = infE I(u) is
a critical value of I , namely, there is a critical point u∗ ∈ E such that I(u∗) = c and
I ′(u∗) = 0. Moreover, this critical value c is a negative real number as the following
argument will show, and so u∗ is a nontrivial classical homoclinic solution by Lemma
3.1.

Proof of Theorem 1.2. Now, we additionally have from (H4) that I is even and
I(0) = 0. In order to apply Lemma 2.4, we prove that

(3.17) for any j ∈ N there exists ε > 0 such that γ(I−ε) ≥ j.

By (H2), there exist an open set D ⊂ R with t0 ∈ D, σ > 0 and η > 0 such that
(3.18) W (t, u) ≥ η|u|ϑ, ∀(t, u) ∈ D × R

n, |u| ≤ σ.

For any j ∈ N, we take j disjoint open sets Di such that
⋃j

i=1 Di ⊂ D. For i =
1, 2, . . . , j, let ui ∈ (W 1,2

0 (Di) ∩E)\{0} with ‖ui‖ = 1, and

Ej = span{u1, u2, . . . , uj}, Sj = {u ∈ Ej : ‖u‖ = 1}.
Then, for any u ∈ Ej , there exist λi ∈ R, i = 1, 2, . . . , j such that

(3.19) u(t) =
j∑

i=1

λiui(t) for t ∈ R.

From which it follows that

(3.20) ‖u‖ϑ =
(∫

R

|u(t)|ϑ
)1/ϑ

=
( j∑

i=1

|λi|ϑ
∫

Di

|ui(t)|ϑdt
)1/ϑ

and

(3.21)

‖u‖2 =
∫

R

[|u̇(t)|2 + (L(t)u(t), u(t))]dt

=
j∑

i=1

λ2
i

∫
Di

[|u̇i(t)|2 + (L(t)ui(t), ui(t))]dt

=
j∑

i=1

λ2
i

∫
R

[|u̇i(t)|2 + (L(t)ui(t), ui(t))]dt

=
j∑

i=1

λ2
i ‖ui‖2 =

j∑
i=1

λ2
i .
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Since all norms of a finite dimensional norm space are equivalent, there is a constant
d = d(j) > 0 such that

(3.22) d‖u‖ ≤ ‖u‖ϑ, ∀u ∈ Ej.

Note that W (t, 0) = 0, and so according to (3.18)-(3.22), we have

(3.23)

I(su) =
s2

2
‖u‖2 −

∫
R

W (t, su(t))dt

=
s2

2
‖u‖2 −

j∑
i=1

∫
Di

W (t, sλiui(t))dt

≤ s2

2
‖u‖2 − ηsϑ

j∑
i=1

|λi|ϑ
∫

Di

|ui(t)|ϑdt

=
s2

2
‖u‖2 − ηsϑ‖u‖ϑ

ϑ

≤ s2

2
‖u‖2 − η(ds)ϑ‖u‖ϑ

=
s2

2
− η(ds)ϑ

for all u ∈ Sj and sufficient small s > 0. In this case (3.18) is applicable, since u
is continuous on D and so |sλiui(t)| ≤ σ, ∀t ∈ D, i = 1, 2, · · · , j can be true for
sufficiently small s. Therefore, it follows from (3.23) that there exist ε > 0 and δ > 0
such that

(3.24) I(δu) < −ε for u ∈ Sj.

Let

Sδ
j = {δu : u ∈ Sj}, Ω = {(λ1, λ2, . . . , λj) ∈ R

j :
j∑

i=1

λ2
i < δ2}.

Then it follows from (3.24) that

I(u) < −ε, ∀u ∈ Sδ
j ,

which, together with the fact that I is an even C1 functional on E , yields that

Sδ
j ⊂ I−ε ∈ Σ,

where I−ε and Σ have been previously introduced in Section 2. On the other hand, it
follows from (3.19) and (3.21) that there exists an odd homeomorphismψ ∈ C(Sδ

j , ∂Ω).
By some properties of the genus (see 3◦ of Propositions 7.5 and 7.7 in [15]), we infer

(3.25) γ(I−ε) ≥ γ(Sδ
j ) = j,
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so (3.17) follows. Set
cj = inf

A∈Σj

sup
u∈A

I(u),

where Σj is defined in Lemma 2.4. It follows from (3.25) and the fact that I is
bounded from below on E (see (3.16)), we have −∞ < cj ≤ −ε < 0, which implies
that, for any j ∈ N, cj is a real negative number. By lemma 2.4 and Remark 2.5, I has
infinitely many nontrivial critical points, and consequently, (HS) possesses infinitely
many classical homoclinic solutions.
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