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ASYMPTOTIC BEHAVIOR OF FOURTH-ORDER NEUTRAL DYNAMIC
EQUATIONS WITH NONCANONICAL OPERATORS

Tongxing Li*, Chenghui Zhang and Ethiraju Thandapani

Abstract. This paper is concerned with asymptotic behavior of a class of fourth-
order neutral delay dynamic equations with a noncanonical operator on an arbitrary
time scale. A new asymptotic criterion and an illustrative example are included.

1. INTRODUCTION

In this paper, we study asymptotic properties of a fourth-order neutral delay dynamic
equation

(1.1) Lz +q(t)z(5(t) =0, Lz:=(rz2")2(t)
on an arbitrary time scale T with sup T = oo, where

2(t) == 2(t) + p(t)z(7(1)).

Since our concern is asymptotic behavior of solutions, we assume the time scale interval
is the form [tg, oo)t := [to, 00)NT. Throughout, we assume r, ¢ € Cyq([to, o), (0, 0)),
p € Cra([to, o)1, R), 0 < p(t) < p1 <1, 7,6 € Crq([to, 00), T), 7(t) <t, 6(t) <t,
and limy_ o 7(¢) = limy—,o, 0(t) = co. The operator Lz (given in (1.1)) is said to be
in noncanonical form if

(1.2) /too % < 0.

By a solution of (1.1) we mean a function = € C.4[1, co)t, Ty € [to, o)1, Which
has the property rz2" ClL[Ty, oo)r and satisfies (1.1) on [T, oo)r. We consider
only those solutions z of (1.1) which satisfy sup{|z(t)| : ¢t € [T, 00)r} > 0 for all
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T € [T,,o0)r and assume that (1.1) possesses such solutions. A solution of (1.1) is
called oscillatory if it is neither eventually positive nor eventually negative; otherwise,
it is called nonoscillatory.

Fourth-order differential equations are quite often encountered in mathematical
models of various physical, biological, and chemical phenomena. Applications in-
clude, for instance, problems of elasticity, deformation of structures, or soil settlement;
see [8].

In mechanical and engineering problems, questions related to the existence of os-
cillatory and nonoscillatory solutions play an important role. As a result, there has
been much activity concerning oscillatory and asymptotic behavior of various classes
of differential and difference equations; see, e.g., [7, 8, 39, 41] and [6, 12, 34-36],
and the references cited therein. Following the development of the theory of dynamic
equations on time scales, oscillatory properties of various classes of equations on time
scales has become an important area of research due to the fact that such equations
arise in many real life problems [9, 10, 19]. We refer the reader to [1-5, 11, 13-18,
20-33, 37, 38, 40] and the references cited therein. Thereinto, monotone and oscillatory
behavior of solutions to a fourth-order dynamic equation

(a(z®*)) 2% (1) + q(1)2® (o (t)) = 0
with the property that
(t)

X
t s
/ / a V(T ATAs
to Jto

were established by Grace et al. [16]. Grace et al. [15] studied a fourth-order dynamic
equation

—0 as t— o0

22 () + a(t)27 (o (1)) = 0.
Grace et al. [17] considered a fourth-order dynamic equation
() + q(H)a (1) = 0.

Li et al. [25] investigated oscillation of unbounded solutions to a fourth-order delay

dynamic equation 5
(ra®")2(t) + q(t)a(r(1)) = 0

under the assumption that (1.2) holds, and obtained some comparison theorems. Zhang
et al. [40] studied a fourth-order dynamic equation

(rz®)2(t) + q(8) f(z(a () = 0

in the case where (1.2) holds. Later, Wu et al. [38] extended results of [40] to a
generalized fourth-order dynamic equation

(r(a(bz®)2)2)2(1) + q(t) f(a(o(t))) = 0
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under the assumptions that (1.2) holds and f°° At) = too % = oo. However, there
are few results dealing with asymptotic behavior of solutions to higher-order neutral
dynamic equations [13, 18, 20-22, 26, 37]. Graef et al. [18], Panigrahi and Rami
Reddy [26], and Thandapani et al. [37] studied a fourth-order neutral delay dynamic

equation K
[r<t> (2(t) + p(rON>] " +a(t)F(5(8)) =0

in the cases [ At < ooor [~
20-22] mvestlgateé

Ttt At = oo. In particular, the authors in [13,

a higher-order neutral dynamic equation

[2(t) + p(O)z(r(£)]" + a(t)a(3(t)) = 0.

Note that the results given in [13, 20-22] can be applied to equation (1.1) in the
case where r(t) = 1. To the best of our knowledge, there are no known asymptotic
criteria to cover equation (1.1) in the case where (1.2) holds. Therefore, the objective
of this paper is to derive an asymptotic criterion for this equation assuming that (1.2)
holds.

2. MaIN REesuULTS

In what follows, all functional inequalities are assumed to hold eventually, that is,
they are satisfied for all ¢ large enough. We begin with the following lemma.

Lemma 2.1. Assume that (1.2) holds and =z is an eventually positive solution of
(1.1). Then there are the following four possible cases eventually:

A3

(1) z>0, 22<0, 22°>0, 22°<0, (22 <0;
(2) 2>0, 22>0, 22°>0, 22°<0, (A2 <o0;
(3) z>0, A0, As0 22>, (rzAB)A < 0;
(4) >0, 22>0, 22°<0, 22">0 (rz2)
Proof. Let « be an eventually positive solution of (1.1) on [tg, c0)r. Then

there exists a ¢; € [tp,00)r such that z(t) > 0, z(7(t)) > 0, and x(5(¢)) > 0 for
t € [t1,00)7. Hence, z > 0 eventually. By virtue of (1.1), we have

(rz2")A(t) = —q(t)(6(t)) < 0

for t € [t;,00)r. Thus, rz2° is decreasing. Then 22, z2”, and 22" are of constant
sign eventually. Assume first that z2° < 0. Then z2° > 0. If not, then z < 0
eventually when using 22 < 0 and zA% < 0, which is a contradiction. Hence, there
are possible cases (1) and (2). Assume now that z2° > 0 and 22 > 0. Then z2 > 0.
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If 22° > 0 and 22” < 0, then 22 > 0 (since 22 < 0 and z2° < 0 imply that z < 0).
Hence, there are possible cases (3) and (4). The proof is complete. |

In [9, Section 1.6], the Taylor monomials {h,,(t, s)}7°, are defined recursively by

t
ho(t,$) = 1, hns(t,s) = / ho(r,s)AT, 1 s€T, n>0.
One has hy(t, s) =t — s for any time scale, but simple formulas in general do not hold

for n > 2.
Now we present the main results. We use the notation

* As
R(t ::/ —— and 7, (t) := max{0, 7 (¢)}.
®:=] 0 +(t) 1= max{0, 7(1)}
Theorem 2.2. Assume (1.2) and let

i sup /tt [boq(v) /g :) /u " R(s)AsAu
(21) / " R(s)As

R
4/ / R(s)AsAu
o(w) Ju

hold for all constants by > 0. Suppose further that

Av = 00

I t h2<5<8>7t0>
lim su $)R(o(s)) (1 —p(d(s))) —22 22
22) mp/to [Q< ) <1< ) (1= p(3(s))) ===

‘4r<s>R<a<s>>] A5 =0

If there exist two positive functions «, 8 € C,([to, oo)r, R) such that

CR NN
hfjigp/t: a(o(s))a(s) (1 = p(3(s))) /ts /t2aé§ riu>A Avai
/t1 @Au

1

o(s)
e A -

da(o(s)) /8 %Au

2.3)
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holds for all sufficiently large ¢, € [to, co)T and for ¢4 > t3 > to > t1, and

lim sup / [k25<a<s>>i |7 [T - pen) % ava

240 o0 . 0(32) r(u) v
ROR 5,
4kspB(o(s))

holds for some & € (0, 1), then every solution x of (1.1) is either oscillatory or satisfies
limy o z(t) = 0.

Proof. Suppose that (1.1) has a nonoscillatory solution . We may assume without
loss of generality that there exists a ¢; € [to, co) such that xz(t) > 0, z(7(¢)) > 0,
and z(6(t)) > 0 for all ¢ € [t;,00)r. From Lemma 2.1, we get that z satisfies four
possible cases. In the following, we consider each of four cases separately.

Assume (1). By virtue of z2° > 0 and z2” < 0, there exists a constant ¢y > 0
such that
(2.5) lim 22" (t) = ¢o > 0.

t—o0
Using the fact that 722" is decreasing, we have
r()2%(s) <r()z2 (1), s € [t,00)r.

Dividing the latter inequality by r(s) and integrating the resulting inequality from ¢ to
[, we obtain

220 < A0 + ()22 (1) / " As
¢ 7(s)
Passing to the limit as [ — oo and using (2.5), we deduce that
(2.6) A1) > —r(t)22 (O R(1).
From 22 < 0 and 2% > 0, there exists a constant ¢; < 0 such that
(2.7 tliglo Z2(t) =¢; <0.

Integrating (2.6) from ¢ to oo and using (2.7), we have
28 —A) > / T (5)2 () R(s)As > —r(1)22° (1) / ~ R(s)As.
t t
Integrating (2.8) from ¢ to oo, we get
[0.9] B A3 [0.9] A A
z(t) > /t r(u)z (u)/u R(s)AsAu
. w2 [ Rs)asaa.
2.9) > r(t): (t)/t /u R(s)AsAu
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It follows from z > 0 and z2 < 0 that there exists a constant ag > 0 such that
limy . 2(t) = agp. Next, we consider two cases. If ap > 0, then for any ¢ > 0, we
have ag + ¢ > z(t) > ag — € eventually. Choose 0 < & < ag(1 —p1)/(1+p1). Itis
not difficult to verify that

z(t) = 2(t) — p(t)z(7(t)) > (a0 — €) — p1(ao +¢) = bo(ao + &) > boz(2),

where by := (ag — e — p1(ap +¢€))/(ao + €) > 0. Hence, (1.1) implies that

(2.10) (rz2)A(1) + boq(t)2(5(¢)) < 0.
Now set

(22
(2.11) w(t) = (1) , t€E[t1,00)T

Then w(t) < 0 for ¢ € [t1, 00)T and we have

(rz2)2() _ r(0)z2 (0)25(1)

Ao(t)  2(t)z(o(1)

< —boq(t) j((i((i

w? (t) =

~ | —
N~—
I
o~
I
|~
Q
—~
o~
~—
N~—

(2.12) < —bog(t) —
due to (2.10), 22 < 0, and §(¢) < t. Using (2.8), (2.11), (2.12), and 2> < 0, we have

w™(t) < —boq(t) — M /OO R(s)As

- 2(t)
(2.13) — boq(t) — w2(1) / " R(s)As.
t
In view of (2.9), we conclude that
(2.14) w(t)/t /u R(s)AsAu > —1.

From (2.13), we obtain

wA(t)/ / R(s)AsAu < —byq(t) / R(s)AsAu
o(t)Ju o(t)

(s)

(2.15) 2 /0 : /  R(s)AsAu /t " R(s)As,
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Integrating (2.15) from ¢, to ¢, one arrives at

w(t / / $)AsAu — w(ty) /t / 9AsAu
/t1 bog(v / / s)AsAulv + /t 1 w(v) /U R(s)AsAv
/ / / 5)AsAu / " R(s)AsAv < 0.

/ / $)AsAu / " R(s)As

B::/UOOR(s)As, Y = —w(v).

We set

and

Using the inequality

2

B
2.1 A2 — By > ——
(2.16) Yy vz o

/U:O /OOR AsAu/UOOR(s)As—i—w(v) /UOOR(s)As
/ R(s
/ / AsAu

Using (2.14), we have
/ b / / 9ASA [ R(s)As A
q SAU — = 70 v
t ’ fa(v) [.° R(s)AsAu
<14 w(t) / / s)AsAu,
t1

which contradicts condition (2.1). If ap = 0, then lim;_,, z(t) = 0 clearly.
Assume (2). We define

A >0,

we obtain

r(t)z2" (1)
ZA2 (t) Y

Then o(t) < 0 for ¢ € [t1,00)r and

(2.17) o(t) = t € [t1, 00)r.

1009
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(2.18) = —q(t)—

Recalling that z > 0, 22 > 0, 22” > 0, and 22 < 0, from [14, Lemma 4], we have

(2.19) (1) > d@z%)

for ¢ € [tq,00)T and for every d € (1/2,1). On the other hand, we obtain
t
(2.20) Al = D) + / 2 5) 85 > (8- 10)2¥ (1) > A (1)
t1
for ¢ € [ta, 00)7 sufficiently large. It follows from (2.19) and (2.20) that

(2.21) (1) > @zﬂ"’ (0.

From z2 > 0 and 7(t) < t, we have
(2.22) 2(t) > (1 - p(£))=(2).
In view of (2.21) and (2.22), we get

Hence, by (2.17) and (2.18), we obtain

A1) < o) (1 pio(ey 2O t)  rOEEDA)
I e Ul T

= —q(t) (1~ plo(py) 20 P (g»

is decreasing, we have (2.6) using the proof of case (1). Then

. 3
Since rz2

(2.24) () R(t) > —1.
Multiplying (2.23) by R(co(t)) yields

ha(4(t), to)
5~ Ra(t)

R(a(8))p™(t) < —a(t)R(o (1)) (1 - p(4(t)))
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Integrating the latter inequality from ¢- to ¢, we have

ROe(0) = Rita)oltz) + [ alo)Rlo() (1 —p(5(s)) 22

to

+ [ [ 4 o 2 as <o

r(s) r(s)
Now set
= RSS», = %, and y:= —p(s)
Then, using inequality (2.16), we have
G NN C) 1
() TR 2 TR ORE)

Thus, we obtain

/t [q<S>R<U<3>) (1 —p(a(s))) W

1
_W] As <1+ R(t2)p(ts)

due to (2.24), which contradicts condition (2.2).
Assume (3). Recalling that z2” > 0, 2% > 0, and (rz2")2 < 0, we have

A2 A3 1
AN > . (t)r(t)/tl s

Thus, we obtain (see [40, (2.24)])

A
ZA2
(2.25) —— | <o
1
/ —As
t1 7’(3)
Hence, there exists a to € [¢1, 0o)T such that
51
tzA2(s)/ ——Au
Ay A t1 r(u)
22(t) = 2%(t2) + 51 As
to / — Au
(2.26) ¢, T(u)

v

A2 t
t 1
Ol / L Auas,
/ 1 Ag Jt I r(u)
t1 7’(3)
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which implies that

/ / AuAs
t2 t1

Thus, there exists a ¢3 € [ta, co)T such that

//—AuAv
2(t3) / to t1 As
2.27) ;3 / /t1 —AuAv
> — SZ (*) ///—AuAvAs.
// 1 ts Jto Jt; r(u)
to Jt

——AuA
o uAs

It follows from (2.26) and (2.27) that

——AuAvAs
/t /t /t A2
(t) > =2 L z
——As
/t1 r(s)

On the other hand, we have (2.22). Then, (2.25) and (2.28) yield

(2.28) (t).

z(6(t)) z(0(¢))
oty > 10D Sy
_ 2(8(1) 247 (5(1))
029 = OO ) 2 o )
. o(t) ps pv 1
/ / / @AuAvAs
> (1-p(d(1))) Ha—t22
0 LAs
no T(s)
We now set
r ZAs
(2.30) O(t) = alt) (Z <t§t> t € [t1,00)0
Then ¢ (t) > 0 for t € [¢;,00)T and
()22 (t rz8 s
vA) = ()" oy +a<a<t>><ZA2> ()
_a®(t) (rz2")2 ()22 (1) r(t)
= 0+ ole ) et el ()
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020) (5(1) () (22)2()
< L5000 — alo ) s —alo(0) o
Then, we have
030 < D00 ~ a2
= a() TR (1))
o EER 2
TR 00
From (2.25) and (2.30), we obtain
o~ 2(5(1)
w30 < =0 - ato)) S
t1
2.31) , A
_ﬂwwkga>ué<> |

Now we set
1
s alow) Ar@Asjam -
a(t) a?(t)r(t) /U(t) LAS
)
Using the inequality )
By—AyQSf—A, A>0
we get
t1 o) 1
ﬁ@w@_<<»ﬂQ@>s V20 wwﬁ@VA O
a(t) /U(t) 1 Sa2(t)r(t) ~  da(o(t)) /t LAS
r(s) 1 7(s)
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Integrating the latter inequality from ¢4 (¢4 € [t3, 00)T) to ¢ yields

(s) V1 -
/t: a(o(s))a(s) (1 —p(s(s))) /ts /t2 /t1 Tiu)A AvAn

o(s) A
(s) /tl @ u
o(s 1
r(s)(aR(9))” /t1 @Au As < (ta)
4o(o(s)) L u S
[, v

which contradicts condition (2.3).
Assume (4). From z > 0, z2 > 0, and z2” < 0, we see that

2(t) > (t = 11)25(),

and so

Hence, we have

z(t) t
(232 o) = o
and (see [27, Lemma 1])
(2.33) Zf((tt)» > k@

for every k € (0,1) and for ¢ € [t, co)r sufficiently large. Note that (2.22) holds.
Hence, by (1.1) and (2.33), we have

r(v)zﬁs(v) — r(t)ZAS (t) + kz(t) /tv q(s) (1 —p(8(s))) @As <0.
Letting v — oo in this inequality, we get
_ZAS(t) + k% /too q(s) (1 —p(d(s))) @As <0.
Thus,
_ZA2<U) 1 A7 (t) + kz(t) /tv % /OO q(s) (1 —p(d(s))) @ASA’U, <0.

Letting v — oo in this inequality, we have
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@230) (1) 4 ka(t) /t h % / " a(s) (1= p(6(s)) @Asm <.
Now define

22 (t)
(2.35) 9(t> = ﬂ(t) Z(t) , t¢& [tl, OO)']T

Then 6(t) > 0 for t € [t1, 00)T and we have

22 (1) A (0)2(t) — (2)°(1)

9A<t> = 6A<t> Z(t) +ﬂ<g<t>> (t)Z(U(t )
8 220 Blol) =)
= 5w MO TPy T R e’

due to (2.35). Thus, by (2.32) and (2.34), we obtain

02(0) < - #(o0) s [ " [Taa ~p(6(5)) X2 Asau

o(t) r(u s
B0, Al t
B O ORI

Hence,

P 0) < - 20(e0) = [ oy T o) (1 - p(6()) X2 Asau

o(t) r(u s
o(H)(BL(1)
Aktp(o(t)) -

Integrating the latter inequality from ¢, to ¢ implies that

[ ooz [ g [ a0 -seen Wava

o(s) r(u)
o))
i) ) &0 <)

holds for every k € (0, 1), which contradicts condition (2.4). The proof is complete. m

3. ExampPLE AND DiscussION

The following example illustrates applications of theoretical results in the previous
section.
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Example 3.1. Consider a fourth-order neutral delay dynamic equation

1A\ t
4 pa— — —_ =
(3.1) <t <x(t) t52 <2)) ) + Atz <2) 0,
where t € T := 22 := {2¥ : k € Z} U {0} and A > 0 is a constant. Let v = 1 and
r(t) = t*. Then

8 o0 32 oo [ 64
e = — A A - .
R(t) = o, / R(s)As = o0y, and / / R(s)Ashu = o
Using [9, Example 1.104], we have
(t — to)(t — 2to)

h2<t7 tO) - 3 )
and so
t L—to) (£ —2t 2
ra(0(0,10) = (.10) = =B = 20) 5 £

for all sufficiently large ¢. It is easy to verify that all assumptions of Theorem 2.2 are
satisfied, if a(t) = B(t) = 1. Hence, every solution z of (3.1) is either oscillatory or
satisfies lim; .o z(t) = 0.

Remark 3.2. Most oscillation results reported in the literature (see, e.g., [1, 13, 20-
22]) for the neutral dynamic equation (1.1) and its particular cases have been obtained
under the case where ftzo % = oo which significantly simplifies the analysis of the
behavior of z := x + p(z o 7) for a nonoscillatory solution x of (1.1). In this paper,
using Riccati transformation technique, we obtain a new asymptotic criterion for the
fourth-order neutral delay dynamic equation (1.1) with noncanonical operators (i.e.,

(1.2) is satisfied).

Remark 3.3. We stress that the study of asymptotic behavior of equation (1.1) in
the case (1.2) brings additional difficulties. In particular, in order to deal with the case
where 2 < 0 (which is simply eliminated if [ % = oo holds when using a proof
similar to that of [1, Lemma 2.2]), the arbitrariness in the choice of b, is required.
As a matter of fact, it is well known (see, e.g., [13, 22]) that if x is an eventually
positive solution of (1.1), then (2.22) is satisfied. One of the principal difficulties one

encounters lies in the fact that (2.22) does not hold when (1.2) is satisfied.

Remark 3.4. Since the signs of 22, 22°, and z2° have four possible cases, our
criterion for asymptotic behavior of (1.1), as in [40, Theorem 2.1], includes four as-
sumptions. It would be of interest to find another method to study (1.1) in order to
simplify these conditions.
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