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GENERALIZED FRACTIONAL INTEGRALS AND THEIR COMMUTATORS
OVER NON-HOMOGENEOUS METRIC MEASURE SPACES

Xing Fu, Dachun Yang* and Wen Yuan

Abstract. Let (X , d, μ) be a metric measure space satisfying both the upper
doubling and the geometrically doubling conditions. In this paper, the authors
establish some equivalent characterizations for the boundedness of fractional in-
tegrals over (X , d, μ). The authors also prove that multilinear commutators of
fractional integrals with RBMO(μ) functions are bounded on Orlicz spaces over
(X , d, μ), which include Lebesgue spaces as special cases. The weak type end-
point estimates for multilinear commutators of fractional integrals with functions
in the Orlicz-type space Oscexp Lr (μ), where r ∈ [1,∞), are also presented. Fi-
nally, all these results are applied to a specific example of fractional integrals over
non-homogeneous metric measure spaces.

1. INTRODUCTION

During the past ten to fifteen years, considerable attention has been paid to the study
of the classical theory of harmonic analysis on Euclidean spaces with non-doubling
measures only satisfying the polynomial growth condition (see, for example, [11, 10,
37, 38, 39, 40, 41, 42, 5, 29, 14, 15, 16, 17, 4, 44]). Recall that a Radon measure μ
on Rd is said to only satisfy the polynomial growth condition, if there exists a positive
constant C0 such that, for all x ∈ R

d and r ∈ (0,∞),

(1.1) μ(B(x, r)) ≤ C0r
κ,
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where κ is some fixed number in (0, d] and B(x, r) := {y ∈ Rd : |y − x| < r}. The
analysis associated with such non-doubling measures μ as in (1.1) has proved to play
a striking role in solving the long-standing open Painlevé’s problem and Vitushkin’s
conjecture by Tolsa [40, 41, 42].

Obviously, the non-doubling measure μ as in (1.1) may not satisfy the well-known
doubling condition, which is a key assumption in harmonic analysis on spaces of
homogeneous type in the sense of Coifman and Weiss [6, 7]. To unify both spaces of
homogeneous type and the metric spaces endowed with measures only satisfying the
polynomial growth condition, Hytönen [18] introduced a new class of metric measure
spaces satisfying both the so-called geometrically doubling and the upper doubling
conditions (see also, respectively, Definitions 1.1 and 1.3 below), which are called
non-homogeneous metric measure spaces. Recently, many classical results have been
proved still valid if the underlying spaces are replaced by the non-homogeneous metric
measure spaces (see, for example, [18, 22, 2, 19, 20, 21, 25, 8, 24]). It is now also
known that the theory of the singular integral operators on non-homogeneous metric
measure spaces arises naturally in the study of complex and harmonic analysis questions
in several complex variables (see [43, 20]). More progresses on the Hardy space H1

and the boundedness of operators on non-homogeneous metric measure spaces can be
found in the survey [45] and the monograph [46].

Let (X , d, μ) be a non-homogeneous metric measure space in the sense of Hytönen
[18]. In this paper, we establish some equivalent characterizations for the bounded-
ness of fractional integrals over (X , d, μ). We also prove that multilinear commutators
of fractional integrals with RBMO(μ) functions are bounded on Orlicz spaces over
(X , d, μ), which include Lebesgue spaces as special cases. The weak type endpoint es-
timates for multilinear commutators of fractional integrals with functions in the Orlicz-
type space OscexpLr(μ), where r ∈ [1,∞), are also presented. Finally, all these results
are applied to a specific example of fractional integrals over non-homogeneous metric
measure spaces. The results of this paper round out the picture on fractional integrals
and their commutators over non-homogeneous metric measure spaces.

Recall that the well-known Hardy-Littlewood-Sobolev theorem (see, for example,
[34, pp. 119-120, Theorem 1]) states that the classical fractional integral Iα, with α ∈
(0, d), is bounded from Lp(Rd) into Lq(Rd), for all p ∈ (1, d/α) and 1/q = 1/p−α/d,
and bounded from L1(Rd) to weak Ld/(d−α)(Rd). Chanillo [3] further showed that
the commutator [b, Iα], generated by b ∈ BMO(Rd) and Iα, which is defined by

[b, Iα](f)(x) := b(x)Iα(f)(x)− Iα(bf)(x), x ∈ R
d,

is bounded from Lp(Rd) into Lq(Rd) for all α ∈ (0, d), p ∈ (1, d/α) and 1/q =
1/p−α/d. These results, when the d-dimensional Lebesgue measure is replaced by the
non-doubling measure μ as in (1.1), were obtained by Garcı́a-Cuerva and Martell [11]
and by Chen and Sawyer [5], respectively. Moreover, also in this setting with the non-
doubling measure μ as in (1.1), some equivalent characterizations for the boundedness
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of fractional integrals were established in [17] and the boundedness for the multilinear
commutators of fractional integrals with RBMO(μ) or OscexpLr(μ) functions was
presented in [14]. Notice also that Nakai [27, 28] introduced a class of generalized
fractional integrals and obtained their boundedness on Orlicz spaces over R

d with the
d-dimensional Lebesgue measure and also over spaces of homogeneous type.

On the other hand, due to the request of applications, as a natural extension of
Lebesgue spaces, the Orlicz spaces were introduced by Birnbaum-Orlicz in [1] and
Orlicz in [30]. Since then, the theory of Orlicz spaces and its applications have been
well developed (see, for example, [32, 33, 26]).

To state the main results of this paper, we first recall some necessary notions.
The following notion of the geometrically doubling is well known in analysis on

metric spaces, which was originally introduced by Coifman and Weiss in [6, pp. 66-67]
and is also known as metrically doubling (see, for example, [13, p. 81]).

Definition 1.1. A metric space (X , d) is said to be geometrically doubling if there
exists some N0 ∈ N such that, for any ball B(x, r) ⊂ X , there exists a finite ball
covering {B(xi, r/2)}i of B(x, r) such that the cardinality of this covering is at most
N0.

Remark 1.2. Let (X , d) be a metric space. In [18], Hytönen showed that the
following statements are mutually equivalent:

(i) (X , d) is geometrically doubling.
(ii) For any ε ∈ (0, 1) and any ball B(x, r) ⊂ X , there exists a finite ball covering

{B(xi, εr)}i of B(x, r) such that the cardinality of this covering is at most
N0ε

−n, here and in what follows, N0 is as in Definition 1.1 and n := log2 N0.
(iii) For every ε ∈ (0, 1), any ball B(x, r) ⊂ X contains at most N0ε

−n centers of
disjoint balls {B(xi, εr)}i.

(iv) There exists M ∈ N such that any ball B(x, r) ⊂ X contains at most M centers
{xi}i of disjoint balls {B(xi, r/4)}M

i=1.

Recall that spaces of homogeneous type are geometrically doubling, which was
proved by Coifman and Weiss in [6, pp. 66-68].

The following notion of upper doubling metric measure spaces was originally in-
troduced by Hytönen [18] (see also [19, 25]).

Definition 1.3. A metric measure space (X , d, μ) is said to be upper doubling if μ

is a Borel measure on X and there exist a dominating function λ : X×(0,∞) → (0,∞)
and a positive constant Cλ, depending on λ, such that, for each x ∈ X , r → λ(x, r) is
non-decreasing and, for all x ∈ X and r ∈ (0,∞),

(1.2) μ(B(x, r)) ≤ λ(x, r) ≤ Cλλ(x, r/2).

A metric measure space (X , d, μ) is called a non-homogeneous metric measure space
if (X , d) is geometrically doubling and (X , d, μ) upper doubling.
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Remark 1.4.
(i) Obviously, a space of homogeneous type is a special case of upper doubling

spaces, where we take the dominating function λ(x, r) := μ(B(x, r)). On the
other hand, the Euclidean space Rd with any Radon measure μ as in (1.1) is also
an upper doubling space by taking the dominating function λ(x, r) := C0r

κ.
(ii) Let (X , d, μ) be upper doubling with λ being the dominating function on X ×

(0,∞) as in Definition 1.3. It was proved in [21] that there exists another
dominating function λ̃ such that λ̃ ≤ λ, C

λ̃
≤ Cλ and, for all x, y ∈ X with

d(x, y) ≤ r,

(1.3) λ̃(x, r) ≤ C
λ̃
λ̃(y, r).

(iii) It was shown in [35] that the upper doubling condition is equivalent to the weak
growth condition: there exist a dominating function λ : X × (0,∞) → (0,∞),
with r → λ(x, r) non-decreasing, positive constants Cλ , depending on λ, and ε
such that

(a) for all r ∈ (0,∞), t ∈ [0, r], x, y ∈ X and d(x, y) ∈ [0, r],

|λ(y, r + t) − λ(x, r)| ≤ Cλ

[
d(x, y) + t

r

]ε

λ(x, r);

(b) for all x ∈ X and r ∈ (0,∞),

μ(B(x, r)) ≤ λ(x, r).

Based on Remark 1.4(ii), from now on, we always assume that (X , d, μ) is a non-
homogeneous metric measure space with the dominating function λ satisfying (1.3).

We now recall the notion of the coefficient KB,S introduced by Hytönen [18],
which is analogous to the quantity KQ,R introduced by Tolsa [38, 39]. It is well
known that KB,S well characterizes the geometrical properties of balls B and S.

Definition 1.5. For any two balls B ⊂ S, define

KB,S := 1 +
∫

2S\B

1
λ(cB, d(x, cB))

dμ(x),

where cB is the center of the ball B.

Remark 1.6. The following discrete version, K̃B,S, of KB,S defined in Definition
1.5, was first introduced by Bui and Duong [2] in non-homogeneous metric measure
spaces, which is more close to the quantity KQ,R introduced by Tolsa [37] in the setting
of non-doubling measures. For any two balls B ⊂ S, let K̃B,S be defined by

K̃B,S := 1 +
NB,S∑
k=1

μ(6kB)
λ(cB, 6krB)

,
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where rB and rS respectively denote the radii of the balls B and S, and NB,S the
smallest integer satisfying 6NB,SrB ≥ rS . Obviously, KB,S � K̃B,S. As was pointed
out by Bui and Duong [2], in general, it is not true that KB,S ∼ K̃B,S.

Though the measure doubling condition is not assumed uniformly for all balls in
the non-homogeneous metric measure space (X , d, μ), it was shown in [18] that there
exist still many balls which have the following (η, β)-doubling property.

Definition 1.7. Let η, β ∈ (1,∞). A ball B ⊂ X is said to be (η, β)-doubling if
μ(ηB) ≤ βμ(B).

To be precise, it was proved in [18, Lemma 3.2] that, if a metric measure space
(X , d, μ) is upper doubling and η, β ∈ (1,∞) satisfying β > C

log2 η
λ =: ην, then, for

any ball B ⊂ X , there exists some j ∈ Z+ := N∪{0} such that ηjB is (η, β)-doubling.
Moreover, let (X , d) be geometrically doubling, β > ηn with n := log2 N0 and μ a
Borel measure on X which is finite on bounded sets. Hytönen [18, Lemma 3.3] also
showed that, for μ-almost every x ∈ X , there exist arbitrary small (η, β)-doubling balls
centered at x. Furthermore, the radii of these balls may be chosen to be the form η−jB
for j ∈ N and any preassigned number r ∈ (0,∞). Throughout this paper, for any
η ∈ (1,∞) and ball B, the smallest (η, βη)-doubling ball of the form ηjB with j ∈ N

is denoted by B̃η, where

(1.4) βη := max{η3n, η3ν} + 30n + 30ν = η3(max{n,ν}) + 30n + 30ν.

In what follows, by a doubling ball we mean a (6, β6)-doubling ball and B̃6 is simply
denoted by B̃.

Now we recall the following notion of RBMO(μ) from [18].

Definition 1.8. Let ρ ∈ (1,∞). A function f ∈ L1
loc(μ) is said to be in the space

RBMO(μ) if there exist a positive constant C and, for any ball B ⊂ X , a number fB

such that

(1.5)
1

μ(ρB)

∫
B
|f(x) − fB| dμ(x) ≤ C

and, for any two balls B and B1 such that B ⊂ B1,

(1.6) |fB − fB1| ≤ CKB,B1.

The infimum of the positive constants C satisfying both (1.5) and (1.6) is defined to
be the RBMO(μ) norm of f and denoted by ‖f‖RBMO(μ).



514 Xing Fu, Dachun Yang and Wen Yuan

From [18, Lemma 4.6], it follows that the space RBMO(μ) is independent of the
choice of ρ ∈ (1,∞).

In this paper, we consider a variant of the generalized fractional integrals from [10,
Definition 4.1] (see also [17, (1.4)]).

Definition 1.9. Let α ∈ (0, 1). A function Kα ∈ L1
loc(X ×X \ {(x, x) : x ∈ X})

is called a generalized fractional integral kernel if there exists a positive constant CKα ,
depending on Kα, such that

(i) for all x, y ∈ X with x �= y,

(1.7) |Kα(x, y)| ≤ CKα

1
[λ(x, d(x, y))]1−α

;

(ii) there exist positive constants δ ∈ (0, 1] and cKα ∈ (0,∞) such that, for all
x, x̃, y ∈ X with d(x, y) ≥ cKαd(x, x̃),

(1.8)
|Kα(x, y)− Kα(x̃, y)|+ |Kα(y, x)− Kα(y, x̃)|

≤ CKα

[d(x, x̃)]δ

[d(x, y)]δ[λ(x, d(x, y))]1−α
.

Let L∞
b (μ) be the space of all L∞(μ) functions with bounded support. A linear

operator Tα is called a generalized fractional integral with kernel Kα satisfying (1.7)
and (1.8) if, for all f ∈ L∞

b (μ) and x �∈ supp f ,

(1.9) Tαf(x) :=
∫
X

Kα(x, y)f(y) dμ(y).

Remark 1.10.

(i) Without loss of generality, for the simplicity, we may assume in (1.8) that cKα ≡
2.

(ii) If a kernel Kα satisfies (1.7) and (1.8) with α = 0, then Kα is called a standard
kernel and the associated operator Tα as in (1.9) is called a Calderón-Zygmund
operator on non-homogeneous metric measure spaces (see [20, Subsetion 2.3]).

(iii) We give a specific example of the generalized fractional integrals, which is a
natural variant of the so-called “Bergman-type” operators from [43, Section 2.1]
(see also [20, Section 12] and [36, Section 2.2]). Let X := B2d be the open
unit ball in C

d. Suppose that the measure μ satisfies the upper power bound
μ(B(x, r)) ≤ rm with m ∈ (0, 2d] except the case when B(x, r) ⊂ B2d. How-
ever, in the exceptional case it holds true that r ≤ d̃(x) := d(x, C

d \B2d), where
d(x, y) := ||x| − |y|| + |1 − x̄ · y/|x||y|| for all x, y ∈ B2d ⊂ Cd, and hence
μ(B(x, r)) ≤ max{[d̃(x)]m, rm} =: λ(x, r). By similar arguments to those used
in the proofs of [36, Proposition 2.13] and [20, Section 2], we conclude that, if
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α ∈ (0, 1), then the kernel Km,α(x, y) := (1− x̄ · y)−m(1−α), x, y ∈ B2d ⊂ Cd,
satisfies the conditions (1.7) and (1.8). So, when α ∈ (0, 1), the fractional in-
tegral Tm,α, associated with Km,α, is an example of the generalized fractional
integrals as in Definition 1.9. Recall that, when α = 0, the operator Tm,0, associ-
ated with Km,0, is just the so-called “Bergman-type” operator (see [36, 43, 20]).

Now we recall the notion of the atomic Hardy space from [21].

Definition 1.11. Let ρ ∈ (1,∞) and p ∈ (1,∞]. A function b ∈ L1
loc(μ) is called

a (p, 1)λ-atomic block if
(i) there exists a ball B such that supp b ⊂ B;
(ii)

∫
X b(x) dμ(x) = 0;

(iii) for any j ∈ {1, 2}, there exist a function aj supported on ball Bj ⊂ B and a num-
ber λj ∈ C such that b = λ1a1 + λ2a2 and ‖aj‖Lp(μ) ≤ [μ(ρBj)]1/p−1K−1

Bj,B
.

Moreover, let |b|
H1,p

atb(μ)
:= |λ1|+ |λ2|.

A function f ∈ L1(μ) is said to belong to the atomic Hardy space H1,p
atb(μ)

if there exist (p, 1)λ-atomic blocks {bi}∞i=1 such that f =
∑∞

i=1 bi in L1(μ) and∑∞
i=1 |bi|H1,p

atb(μ) < ∞. The H
1,p
atb(μ) norm of f is defined by

‖f‖
H

1,p
atb(μ)

:= inf
{ ∞∑

i=1

|bi|H1,p
atb(μ)

}
,

where the infimum is taken over all the possible decompositions of f as above.

Remark 1.12.
(i) It was proved in [21] that, for each p ∈ (1,∞], the atomic Hardy space H1,p

atb(μ)
is independent of the choice of ρ and that, for all p ∈ (1,∞], the spaces H

1,p
atb(μ)

and H1,∞
atb (μ) coincide with equivalent norms. Thus, in what follows, we denote

H1,p
atb(μ) simply by H1(μ) and, unless explicitly pointed out, we always assume

that ρ = 2 in Definition 1.11.
(ii) It was proved in [25, Remark 1.3(ii)] that the atomic Hardy space introduced by

Bui and Duong [2] and the atomic Hardy space in Definition 1.11 coincide with
equivalent norms.

Then we state the first main theorem of this paper.

Theorem 1.13. Let α ∈ (0, 1) and Tα be as in (1.9) with kernel Kα satisfying
(1.7) and (1.8). Then the following statements are equivalent:

(I) Tα is bounded from Lp(μ) into Lq(μ) for all p ∈ (1, 1/α) and 1/q = 1/p−α;
(II) Tα is bounded from L1(μ) into L1/(1−α),∞(μ);
(III) There exists a positive constant C such that, for all f ∈ L1/α(μ) with Tαf being

finite almost everywhere, ‖Tαf‖RBMO(μ) ≤ C‖f‖L1/α(μ);
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(IV) Tα is bounded from H1(μ) into L1/(1−α)(μ);
(V) Tα is bounded from H1(μ) into L1/(1−α),∞(μ).

Remark 1.14. Theorem 1.13 covers [17, Theorem 1.1] by taking X := R
d, d being

the usual Euclidean metric and μ as in (1.1). The difference between Theorem 1.13
and [17, Theorem 1.1] exists in that no conclusion of Theorem 1.13 is known to be
true, while all conclusions of [17, Theorem 1.1] are true.

Let Φ be a convex Orlicz function on [0,∞), namely, a convex increasing function
satisfying Φ(0) = 0, Φ(t) > 0 for all t ∈ (0,∞) and Φ(t) → ∞ as t → ∞. Let

(1.10) aΦ := inf
t∈(0,∞)

tΦ′(t)
Φ(t)

and bΦ := sup
t∈(0,∞)

tΦ′(t)
Φ(t)

.

We refer to [26] for more properties of aΦ and bΦ.
The Orlicz space LΦ(μ) is defined to be the space of all measurable functions f

on (X , d, μ) such that
∫
X Φ(|f(x)|) dμ(x) < ∞; moreover, for any f ∈ LΦ(μ), its

Luxemburg norm in LΦ(μ) is defined by

‖f‖LΦ(μ) := inf
{

t ∈ (0,∞) :
∫
X

Φ(|f(x)|/t) dμ(x) ≤ 1
}

.

For any sequence 
b := (b1, . . . , bk) of functions, the multilinear commutator T
α,	b

of the generalized fractional integral Tα with 
b is defined by setting, for all suitable
functions f ,

(1.11) T
α,	b

f := [bk, · · · , [b1, Tα] · · · ]f,

where

(1.12) [b1, Tα]f := b1Tαf − Tα(b1f).

The second main result of this paper is the following boundedness of the multilinear
commutator Tα,	b on Orlicz spaces.

Theorem 1.15. Let α ∈ (0, 1), k ∈ N and bj ∈ RBMO(μ) for all j ∈ {1, . . . , k}.
Let Φ be a convex Orlicz function and Ψ defined, via its inverse, by setting, for all
t ∈ (0,∞), Ψ−1(t) := Φ−1(t)t−α, where Φ−1(t) := inf{s ∈ (0,∞) : Φ(s) > t}.
Suppose that Tα is as in (1.9), with kernel Kα satisfying (1.7) and (1.8), which is
bounded from Lp(μ) into Lq(μ) for all p ∈ (1, 1/α) and 1/q = 1/p−α. If 1 < aΦ ≤
bΦ < ∞ and 1 < aΨ ≤ bΨ < ∞, then the multilinear commutator T

α,	b
as in (1.11) is

bounded from LΦ(μ) to LΨ(μ), namely, there exists a positive constant C such that,
for all f ∈ LΦ(μ),

‖T
α,	b

f‖LΨ(μ) ≤ C

k∏
j=1

‖bj‖RBMO(μ)‖f‖LΦ(μ).
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Remark 1.16.
(i) Let all the notation be the same as in Theorem 1.15. By Theorem 1.13, we can,

in Theorem 1.15, replace the assumption that Tα is bounded from Lp(μ) into
Lq(μ) for all p ∈ (1, 1/α) and 1/q = 1/p − α by any one of the statements
(II)-(V) in Theorem 1.13.

(ii) In Theorem 1.15, if p ∈ (1, 1/α) and Φ(t) := tp for all t ∈ (0,∞), then
Ψ(t) = tq and 1/q = 1/p − α. In this case, aΦ = bΦ = p ∈ (1,∞), aΨ =
bΨ = q ∈ (1,∞), LΦ(μ) = Lp(μ) and LΨ(μ) = Lq(μ). Thus, Theorem 1.15,
even when X := Rd, d being the usual Euclidean metric and μ as in (1.1), also
contains [14, Theorem 1.1] as a special case. In the non-homogenous setting,
Theorem 1.15, even when k = 1, is also new.

(iii) If a convex function Φ : [0,∞) → [0,∞) satisfies that Φ(0) = 0, Φ(t) > 0 for
all t ∈ (0,∞) and Φ(t) → ∞ as t → ∞, then Φ is absolutely continuous on
any closed interval in [0,∞) and bijective from [0,∞) to itself. Therefore, Φ is
differentiable almost everywhere and Φ−1(s) := inf{t ∈ [0,∞) : Φ(t) > s} is
the usual inverse function.

The end point counterpart of Theorem 1.15 is also considered in this paper. To
this end, we first recall the following Orlicz type space OscexpLr(μ) of functions
(see, for example, Pérez and Trujillo-González [31] for Euclidean spaces and [14] for
non-doubling measures).

In what follows, let L1
loc (μ) be the space of all locally μ-integrable functions on

X . For all balls B and f ∈ L1
loc (μ), mB(f) denotes the mean value of f on ball B,

namely,

(1.13) mB(f) :=
1

μ(B)

∫
B

f(y) dμ(y).

Definition 1.17. Let r ∈ [1,∞). A function f ∈ L1
loc (μ) is said to belong to the

space OscexpLr(μ) if there exists a positive constant C1 such that

(i) for all balls B,

‖f − m
B̃

(f)‖expLr, B,μ/μ(2B)

:= inf
{

λ ∈ (0,∞) :
1

μ(2B)

∫
B

exp
( |f(y)− m

B̃
(f)|

λ

)r

dμ(y) ≤ 2
}

≤ C1;

(ii) for all doubling balls Q ⊂ R, |mQ(f) − mR(f)| ≤ C1KQ,R.

The OscexpLr(μ) norm of f , ‖f‖Oscexp Lr (μ), is then defined to be the infimum of
all positive constants C1 satisfying (i) and (ii).

Remark 1.18. Obviously, for any r ∈ [1,∞), OscexpLr(μ) ⊂ RBMO(μ). More-
over, from [18, Corollary 6.3], it follows that Oscexp L1(μ) = RBMO(μ).
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We recall some notation from [15]. For i ∈ {1, . . . , k}, the family of all finite
subsets σ := {σ(1), . . . , σ(i)} of {1, . . . , k} with i different elements is denoted by Ck

i .
For any σ ∈ Ck

i , the complementary sequence σ′ is defined by σ′ := {1, . . . , k} \ σ.
For any σ := {σ(1), . . . , σ(i)} ∈ Ck

i and k-tuple r := (r1, . . . , rk), we write that
1/rσ := 1/rσ(1)+· · ·+1/rσ(i) and 1/rσ′ := 1/r−1/rσ, where 1/r := 1/r1+· · ·+1/rk.

Now we state the third main result of this paper.

Theorem 1.19. Let α ∈ (0, 1), k ∈ N, ri ∈ [1,∞) and bi ∈ OscexpLri (μ) for
i ∈ {1, . . . , k}. Let Tα and T

α,	b
be, respectively, as in (1.9) and (1.11) with kernel Kα

satisfying (1.7) and (1.8). Suppose that Tα is bounded from Lp(μ) into Lq(μ) for all
p ∈ (1, 1/α) and 1/q = 1/p − α. Then, there exists a positive constant C such that,
for all λ ∈ (0,∞) and f ∈ L∞

b (μ),

μ({x ∈ X : |T
α,	b

f(x)| > λ})

≤ C

⎡⎣Φ1/r

⎛⎝ k∏
j=1

‖bj‖Osc
exp L

rj (μ)

⎞⎠⎤⎦
⎡⎢⎣ k∑

j=0

∑
σ∈Ck

j

Φ1/rσ

(
‖Φ1/r

σ
′ (λ

−1|f |)‖L1(μ)

)⎤⎥⎦ ,

where Φs(t) := t logs(2 + t) for all t ∈ (0,∞) and s ∈ (0,∞).

Remark 1.20. Theorem 1.19 covers [17, Theorem 1.1] by taking X := Rd, d being
the usual Euclidean metric and μ as in (1.1).

The organization of this paper is as follows.
In Section 2, we show Theorem 1.13 by first establishing a new interpolation

theorem (see Theorem 2.7 below), which, when p0 = ∞, is just [23, Theorem 1.1] and
whose version on the linear operators over the non-doubling setting is just [17, Lemma
2.3]. Moreover, we prove Theorem 2.7 by borrowing some ideas from the proof of [23,
Theorem 1.1], which seals some gaps existing in the proof of [17, Lemma 2.3]. The
key tool for the proof of Theorem 2.7 is the Calderón-Zygmund decomposition in the
non-homogeneous setting obtained by Bui and Duong [2] (see also Lemma 2.6 below).
Again, using the Calderón-Zygmund decomposition (Lemma 2.6) and the interpolation
theorem (Theorem 2.7), together with the full applications of the geometrical properties
of KB,S and the underlying space (X , d, μ), we then complete the proof of Theorem
1.13.

Section 3 is devoted to proving Theorems 1.15 and 1.19. We first prove, in Theorem
3.9 below, that, if the generalized fractional integral Tα (α ∈ (0, 1)) is bounded from
Lp(μ) into Lq(μ) for some p ∈ (1, 1/α) and 1/q = 1/p−α, then so is its commutator
with any RBMO(μ) function, by borrowing some ideas of [5, Theorem 1]. The main
new ingredient appearing in our approach used for the proof of Theorem 3.9 is that we
introduce a quantity K̃

(α)
B,S, which is a fractional variant of K̃B,S and, in the setting

of non-doubling measures, was introduced by Chen and Sawyer in [5, Section 1]. As
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the case K̃B,S, K̃
(α)
B,S also well characterizes the geometrical properties of balls B and

S and, moreover, it preserves all the properties of K
(β)
Q,R in [5, Lemma 3]. To prove

Theorem 3.9, we also need to introduce the maximal operator M̃#,α, associated with
K̃

(α)
B,S, adapted from the maximal operator M#,(β) in [5, Section 2]. Then we complete

the proof of Theorem 1.15 by the interpolation theorem in [8] on Orlicz spaces and
borrowing some ideas from the proof of [15, Theorem 2]. To obtain the weak type
endpoint estimates of multilinear commutators in Theorem 1.19, we need to use the
generalized Hölder inequality over the non-homogeneous setting from [8, Lemma 4.1]
and the Calderón-Zygmund decomposition mentioned above.

In Section 4, under some weak reverse doubling condition of the dominating func-
tion λ (see Section 4 below), which is weaker than the assumption introduced by Bui
and Duong in [2, Subsection 7.3]: there exists m ∈ (0,∞) such that, for all x ∈ X
and a, r ∈ (0,∞), λ(x, ar) = amλ(x, r), we construct a non-trivial example of gener-
alized fractional integrals satisfying all the assumptions of this article. The key tool is
the weak growth condition (see Remark 1.4(iii)) introduced by Tan and Li [35], which
is equivalent to the upper doubling condition.

Finally, we make some conventions on notation. Throughout the whole paper, C

stands for a positive constant which is independent of the main parameters, but it
may vary from line to line. Moreover, we use Cρ,γ,... or C(ρ,γ,...) to denote a positive
constant depending on the parameters ρ, γ, . . .. For any ball B and f ∈ L1

loc (μ),
mB(f) denotes the mean value of f over B as in (1.13); the center and the radius
of B are denoted, respectively, by cB and rB. If f ≤ Cg, we then write f � g; if
f � g � f , we then write f ∼ g. For any subset E of X , we use χE to denote its
characteristic function.

2. PROOF OF THEOREM 1.13

In this section, we prove Theorem 1.13. We begin with recalling some useful
properties of KB,S in Definition 1.5 (see, for example, [18, Lemmas 5.1 and 5.2] and
[21, Lemma 2.2]).

Lemma 2.1.
(i) For all balls B ⊂ R ⊂ S, KB,R ≤ KB,S.

(ii) For any ρ ∈ [1,∞), there exists a positive constant C(ρ), depending on ρ, such
that, for all balls B ⊂ S with rS ≤ ρrB, KB,S ≤ C(ρ).

(iii) For any α ∈ (1,∞), there exists a positive constant C(α), depending on α, such
that, for all balls B, K

B,B̃α ≤ C(α).
(iv) There exists a positive constant c such that, for all balls B ⊂ R ⊂ S,

KB,S ≤ KB,R + cKR,S.

In particular, if B and R are concentric, then c = 1.
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(v) There exists a positive constant c̃ such that, for all balls B ⊂ R ⊂ S, KR,S ≤
c̃KB,S; moreover, if B and R are concentric, then KR,S ≤ KB,S.

Now we recall the following equivalent characterization of RBMO(μ) established
in [21, Proposition 2.10].

Lemma 2.2. Let ρ ∈ (1,∞) and f ∈ L1
loc (μ). The following statements are

equivalent:
(a) f ∈ RBMO(μ);
(b) there exists a positive constant C such that, for all balls B,

1
μ(ρB)

∫
B

∣∣f(x) − m
B̃
f
∣∣ dμ(x) ≤ C

and, for all doubling balls B ⊂ S,

(2.1) |mB(f)− mS(f)| ≤ CKB,S.

Moreover, let ‖f‖∗ be the infimum of all admissible constants C in (b). Then there ex-
ists a constant C̃ ∈ [1,∞) such that, for all f ∈ RBMO(μ), ‖f‖∗/C̃ ≤ ‖f‖RBMO(μ) ≤
C̃‖f‖∗.

We also need the following conclusion, which is just [8, Corollary 3.3].

Corollary 2.3. If f ∈ RBMO(μ), then there exists a positive constant C such
that, for any ball B, ρ ∈ (1,∞) and r ∈ [1,∞),

(2.2)
{

1
μ(ρB)

∫
B

∣∣f(x) − mB̃f
∣∣r dμ(x)

}1/r

≤ C‖f‖RBMO(μ).

Moreover, the infimum of the positive constants C satisfying both (2.2) and (2.1) is an
equivalent RBMO(μ) norm of f .

The following interpolation result is from [8, Theorem 2.2].

Lemma 2.4. Let α ∈ [0, 1), pi, qi ∈ (0,∞) satisfy 1/qi = 1/pi−α for i ∈ {1, 2},
p1 < p2 and T be a sublinear operator of weak type (pi, qi) for i ∈ {1, 2}. Then T is
bounded from LΦ(μ) to LΨ(μ), where Φ and Ψ are convex Orlicz functions satisfying
the following conditions: 1 < p1 < aΦ ≤ bΦ < p2 < ∞, 1 < q1 < aΨ ≤ bΨ < q2 <

∞ and, for all t ∈ (0,∞), Ψ−1(t) = Φ−1(t)t−α.

We also recall some results in [2, Subsection 4.1] and [18, Corollary 3.6].

Lemma 2.5. (i) Let p ∈ (1,∞), r ∈ (1, p) and ρ ∈ [5,∞). The following
maximal operators defined, respectively, by setting, for all f ∈ L1

loc (μ) and
x ∈ X ,
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Mr,ρf(x) := sup
Q�x

[
1

μ(ρQ)

∫
Q

|f(y)|r dμ(y)
]1

r

,

Nf(x) := sup
Q�x,Q doubling

1
μ(Q)

∫
Q
|f(y)| dμ(y)

and
M(ρ)f(x) := sup

Q�x

1
μ(ρQ)

∫
Q

|f(y)| dμ(y),

are bounded on Lp(μ) and also bounded from L1(μ) into L1,∞(μ).
(ii) For all f ∈ L1

loc (μ), it holds true that |f(x)| ≤ Nf(x) for μ-almost every
x ∈ X .

Before we prove Theorem 1.13, we establish a new interpolation theorem, which is
adapted from [23, Theorem 1.1]. To this end, we first recall the following Calderón-
Zygmund decomposition theorem obtained by Bui and Duong [2, Theorem 6.3]. Let
γ0 be a fixed positive constant satisfying that γ0 > max{C3 log2 6

λ , 63n}, where Cλ is
as in (1.2) and n as in Remark 1.2(ii).

Lemma 2.6. Let p∈ [1, ∞), f ∈Lp(μ) and t∈ (0, ∞) (t >
γ

1/p
0 ‖f‖Lp(μ)

[μ(X )]1/p
when

μ(X ) < ∞). Then

(i) there exists a family of finite overlapping balls {6Bj}j such that {Bj}j is pair-
wise disjoint,

(2.3)
1

μ (62Bj)

∫
Bj

|f(x)|p dμ(x) >
tp

γ0
for all j,

1
μ(62ηBj)

∫
ηBj

|f(x)|p dμ(x) ≤ tp

γ0
for all j and all η ∈ (2, ∞),

and

|f(x)| ≤ t for μ-almost every x ∈ X \ (∪j6Bj);(2.4)

(ii) for each j, let Rj be a (3×62, C
log2(3×62)+1
λ )-doubling ball of the family {(3×

62)kBj}k∈N, and ωj := χ6Bj/(
∑

k χ6Bk
). Then there exists a family {ϕj}j of

functions such that, for each j, supp(ϕj) ⊂ Rj , ϕj has a constant sign on Rj,

(2.5)
∫
X

ϕj(x) dμ(x) =
∫

6Bj

f(x)ωj(x) dμ(x)

and

(2.6)
∑

j

|ϕj(x)| ≤ γt for μ-almost every x ∈ X ,
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where γ is a positive constant depending only on (X , μ) and there exists a
positive constant C, independent of f , t and j, such that, if p = 1, then

(2.7) ‖ϕj‖L∞(μ)μ(Rj) ≤ C

∫
X
|f(x)ωj(x)| dμ(x)

and, if p ∈ (1, ∞), then

(2.8)

{∫
Rj

|ϕj(x)|p dμ(x)

}1/p

[μ(Rj)]1/p′ ≤ C

tp−1

∫
X
|f(x)ωj(x)|p dμ(x);

(iii) when p ∈ (1,∞), if, for any j, choosing Rj to be the smallest
(3 × 62, C

log2(3×62)+1
λ )-doubling ball of the family {(3 × 62)kBj}k∈N, then

h :=
∑

j

(fωj − ϕj) ∈ H1(μ) and there exists a positive constant C, inde-

pendent of f and t, such that

(2.9) ‖h‖H1(μ) ≤
C

tp−1
‖f‖p

Lp(μ)
.

Recall that the sharp maximal operator M# in [2] is defined by setting, for all
f ∈ L1

loc (μ) and x ∈ X ,

M#f(x) := sup
B�x

1
μ(6B)

∫
B
|f(y)− m

B̃
f | dμ(y) + sup

(Q,R)∈Δx

|mQf − mRf |
KQ,R

,

where Δx := {(Q, R) : x ∈ Q ⊂ R and Q, R are doubling balls}.

Theorem 2.7. Let T be a bounded sublinear operator from Lp0(μ) into RBMO(μ)
and from H1(μ) into Lp′0,∞(μ), where p0 ∈ (1,∞] and 1/p0 + 1/p′0 = 1. Then T

extends to a bounded linear operator from Lp(μ) into Lq(μ), where p ∈ (1, p0) and
1/q = 1/p− 1/p0.

Proof. By the Marcinkiewicz interpolation theorem, it suffices to prove that

(2.10) μ({x ∈ X : |Tf(x)| > t}) � [t−1‖f‖Lp(μ)]
q

for all p ∈ (1, p0) and 1/q = 1/p− 1/p0. We consider the following two cases.

Case (i) μ(X ) = ∞. Let L∞
b,0(μ) := {f ∈ L∞

b (μ) :
∫
X f(x) dμ(x) = 0}. Then,

by a standard argument, we know that L∞
b,0(μ) is dense in Lp(μ) for all p ∈ (1, p0).

Let r ∈ (0, 1). Define Nr(g) := [N (|g|r)]1/r for all g ∈ Lr
loc (μ). By Lemma 2.5(ii)

and a standard density argument, to prove (2.10), it suffices to prove that, for any
f ∈ L∞

b,0(μ), p ∈ (1, p0) and 1/q = 1/p − 1/p0,

(2.11) sup
t∈(0,∞)

tqμ({x ∈ X : |Nr(Tf)(x)| > t}) � ‖f‖q
Lp(μ).
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To this end, for any given f ∈ L∞
b,0(μ), applying Lemma 2.6 to f with t replaced

by tq/p, and letting Rj be as in Lemma 2.6(iii), we see that f = g + h, where
g := fχX\∪j6Bj

+
∑

j ϕj and h :=
∑

j(ωjf − ϕj). By Minkowski’s inequality,
Hölder’s inequality and 1/q = 1/p− 1/p0, together with (2.4), (2.6) and (2.8) with t

replaced by tq/p, we conclude that

(2.12)

‖g‖Lp0(μ) ≤
∥∥∥fχX\∪j6Bj

∥∥∥
Lp0 (μ)

+

∥∥∥∥∥∥
∑

j

ϕj

∥∥∥∥∥∥
Lp0(μ)

� t
q( 1

p
− 1

p0
)‖f‖p/p0

Lp(μ)
+ t(q/p)/p′0

⎡⎣∑
j

‖ϕj‖L1(μ)

⎤⎦1/p0

� t‖f‖p/p0

Lp(μ) + t(q/p)/p′0

⎡⎣∑
j

‖ϕj‖Lp(μ)[μ(Rj)]1/p′

⎤⎦1/p0

� t‖f‖p/p0

Lp(μ)+t(q/p)/p′0t−q/(p′p0)

⎡⎣∑
j

∫
X
|ωj(x)f(x)|p dμ(x)

⎤⎦1/p0

� t‖f‖p/p0

Lp(μ)
.

For each r ∈ (0, 1), define M#
r g :=

{
M#(|g|r)}1/r. Then, from [23, Lemma 3.1],

together with the boundedness of T from Lp0(μ) into RBMO(μ) and (2.12), we deduce
that

‖M#
r Tg‖L∞(μ) � ‖Tg‖RBMO(μ) � ‖g‖Lp0(μ) � t‖f‖p/p0

Lp(μ).

Hence, if C̃0 is chosen to be a sufficiently large positive constant, we then see that

(2.13) μ
({

x ∈ X : M#
r (Tg)(x) > C̃0t‖f‖p/p0

Lp(μ)

})
= 0.

On the other hand, since both f and h belong to H1(μ), by (2.9) with t replaced by
tq/p, we conclude that g ∈ H1(μ) and

‖g‖H1(μ) ≤ ‖f‖H1(μ) + ‖h‖H1(μ) � ‖f‖H1(μ) +
1

t(p−1)q/p
‖f‖p

Lp(μ).

From this, together with the boundedness of T from H1(μ) into Lp′0,∞(μ) and [23,
Lemma 3.3], we deduce that, for any q satisfying 1/q = 1/p− 1/p0 and R ∈ (0,∞),

(2.14)

sup
t∈(0,R)

tqμ ({x ∈ X : Nr(Tg)(x) > t})

� sup
t∈(0,R)

tq−p′0 sup
τ∈[t,∞)

τp′0μ ({x ∈ X : |Tg(x)| > τ})

� Rq−p0‖Tg‖
Lp′0,∞(μ)

� Rq−p0‖g‖H1(μ) < ∞.
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From the fact that Nr ◦ T is quasi-linear, (2.14), [23, Lemma 3.2] and (2.13), we
deduce that there exists a positive constant C̃ such that, for all f ∈ L∞

b,0(μ),

(2.15)

sup
t∈(0,∞)

tqμ
({

x ∈ X : Nr(Tf)(x) > C̃C̃0t‖f‖p/p0

Lp(μ)

})
� sup

t∈(0,∞)
tqμ

({
x ∈ X : Nr(Tg)(x) > C̃0t‖f‖p/p0

Lp(μ)

})
+ sup

t∈(0,∞)
tqμ

({
x ∈ X : Nr(Th)(x) > C̃0t‖f‖p/p0

Lp(μ)

})
� sup

t∈(0,∞)
tqμ

({
x ∈ X : M#

r (Tg)(x) > C̃0t‖f‖p/p0

Lp(μ)

})
+ sup

t∈(0,∞)

tqμ
({

x ∈ X : Nr(Th)(x) > C̃0t‖f‖p/p0

Lp(μ)

})
∼ sup

t∈(0,∞)
tqμ

({
x ∈ X : Nr(Th)(x) > t‖f‖p/p0

Lp(μ)

})
.

By the boundedness of N from L1(μ) into L1,∞(μ) (see Lemma 2.5(i)), the layer
cake representation, the boundedness of T from H1(μ) into Lp′0,∞(μ) and (2.9) with
t replaced by tq/p, we conclude that

(2.16)

μ
({

x ∈ X : Nr(Th)(x) > t‖f‖p/p0

Lp(μ)

})
= μ

({
x ∈ X : N(|Th|r)(x) > tr‖f‖rp/p0

Lp(μ)

})
≤ μ

({
x ∈ X : N(|Th|rχ{y∈X : |Th(y)|>2−1/rt‖f‖p/p0

Lp(µ)}
)(x)>

tr

2
‖f‖rp/p0

Lp(μ)

})
� t−r‖f‖−rp/p0

Lp(μ)

∫
X
|Th(x)|rχ{

x∈X : |Th(x)|>2−1/rt‖f‖p/p0
Lp(µ)

}(x) dμ(x)

∼ t−r‖f‖−rp/p0

Lp(μ)

[∫ 2−1/r t‖f‖p/p0
Lp(µ)

0

sr−1

×μ
({

x ∈ X : |Th(x)| > 2−1/rt‖f‖p/p0
Lp(μ)

})
ds

+
∫ ∞

2−1/rt‖f‖p/p0
Lp(µ)

sr−1μ ({x ∈ X : |Th(x)| > s}) ds

]
� μ

({
x ∈ X : |Th(x)| > 2−1/rt‖f‖p/p0

Lp(μ)

})
+
[
t‖f‖p/p0

Lp(μ)

]−p′
0

sup
s∈(0,∞)

sp′
0μ ({x ∈ X : |Th(x)| > s})

� ‖h‖p′
0

H1(μ)

[
t‖f‖p/p0

Lp(μ)

]−p′
0 � t−q‖f‖p

Lp(μ)
,

which, together with (2.15), completes the proof of (2.11).

Case (ii) μ(X ) < ∞. In this case, assume that f ∈ L∞
b (μ). Notice that, if

t ∈ (0, t0], where tq0 := β6‖f‖q
Lp(μ)/μ(X ), then (2.10) holds true trivially. Thus, we
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only need to consider the case when t ∈ (t0,∞). Let Nr and Mr be as in Case (i).
For each t ∈ (t0,∞), applying Lemma 2.6 to f with t replaced by tq/p, we then see
that f = g +h with g and h as in Case (i), which, together with the boundedness of T

from Lp0(μ) into RBMO(μ) and [23, Lemma 3.1], shows that (2.13) still holds true
for M#

r (Tg).
We now claim that, for any r ∈ (0, 1),

(2.17) F :=
1

μ(X )

∫
X
|Tg(x)|r dμ(x) � tr‖f‖rp/p0

Lp(μ)
,

where the implicit positive constant only depends on μ(X ) and r. To see this, since
μ(X ) < ∞, we may regard X as a ball, then g0 := g − 1

μ(X )

∫
X g(x) dμ(x) ∈ H1(μ).

Precisely, by (2.12), we see that

(2.18) ‖g0‖H1(μ) � t‖f‖p/p0

Lp(μ).

On the other hand, by Hölder’s inequality, the fact that T1 ∈ RBMO(μ) and the
locally integrability of RBMO(μ) functions, we conclude that∫

X
|T1(x)|r dμ(x) ≤

[∫
X
|T1(x)| dμ(x)

]r

[μ(X )]1−r < ∞.

From this and the layer cake representation, together with r ∈ (0, 1), Hölder’s inequal-
ity, (2.12), the boundedness of T from H1(μ) into Lp′0,∞(μ) and (2.18), we deduce
that ∫

X
|Tg(x)|r dμ(x)

≤
∫
X

{
|Tg0(x)|r +

∣∣∣∣ 1
μ(X )

∫
X

g(y) dμ(y)
∣∣∣∣r |T1(x)|r

}
dμ(x)

�
∫ ‖g0‖H1(μ)/μ(X )

0
tr−1μ({x∈X : |Tg0(x)|>t})dt+

∫ ∞

‖g0‖H1(μ)/μ(X )
· · ·+‖g‖r

Lp0(μ)

�
∫ ‖g0‖H1(μ)/μ(X )

0

tr−1 dt + ‖g0‖p′0
H1(μ)

∫ ∞

‖g0‖H1(μ)/μ(X )

tr−1−p′0 dt + tr‖f‖rp/p0

Lp(μ)

� ‖g0‖r
H1(μ) + tr‖f‖rp/p0

Lp(μ)
� tr‖f‖rp/p0

Lp(μ)
,

which implies (2.17).
Observe that

∫
X [|Tg(x)|r − F ] dμ(x) = 0 and, for any R ∈ (0,∞),

sup
t∈(0,R)

tqμ({x ∈ X : N (|Tg|r − F )(x) > t}) ≤ Rqμ(X ) < ∞.
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From this and (2.17), together with [23, Lemma 3.2], M#
r (F ) = 0, (2.13) and some

arguments similar to those used in the estimates for (2.15) and (2.16), we deduce that
there exists a positive constant c̃ such that

sup
t∈(t0,∞)

tqμ
({

x ∈ X : Nr(Tf)(x) > c̃C̃0t‖f‖p/p0

Lp(μ)

})
� sup

t∈(t0,∞)

tqμ
({

x ∈ X : N (|Tg|r − F )(x) > (C̃0t)r‖f‖rp/p0

Lp(μ)

})
+ sup

t∈(t0,∞)

tqμ
({

x ∈ X : Nr(Th)(x) > C̃0t‖f‖p/p0

Lp(μ)

})
� sup

t∈(0,∞)

tqμ
({

x ∈ X : M#
r (Tg)(x) > C̃0t‖f‖p/p0

Lp(μ)

})
+ sup

t∈(0,∞)

tqμ
({

x ∈ X : Nr(Th)(x) > C̃0t‖f‖p/p0

Lp(μ)

})
∼ sup

t∈(0,∞)

tqμ
({

x ∈ X : Nr(Th)(x) > t‖f‖p/p0

Lp(μ)

})
� t−q‖f‖p

Lp(μ)
,

where C̃0 is chosen to be a sufficiently large positive constant, which completes the
proof of Theorem 2.7.

Proof of Theorem 1.13. (I)⇒(II) Let f ∈ L1(μ). Without loss of generality, we
may assume that ‖f‖L1(μ) = 1. We denote 1/(1− α) by q0. Applying Lemma 2.6 to
f with p = 1 and t replaced by tq0 , and letting Rj be as in Lemma 2.6(iii), we see
that f = g + h, where g := fχX\(∪j6Bj) +

∑
j ϕj and h :=

∑
j(ωjf − ϕj). By (2.7)

and the assumption ‖f‖L1(μ) = 1, we easily see that

‖g‖L1(μ) � ‖f‖L1(μ) ∼ 1.(2.19)

From (2.4) and (2.6) with t replaced by tq0 , it follows that, for μ-almost every x ∈ X ,

(2.20) |g(x)| � tq0 .

Since Tα is bounded from Lp1(μ) into Lq1(μ) for any p1 ∈ (1, 1/α) and 1/q1 =
1/p1 − α, by (2.20) and (2.19), we conclude that

(2.21)
μ({x ∈ X : |Tαg(x)| > t}) � t−q1‖Tαg‖q1

Lq1(μ)
� t−q1‖g‖q1

Lp1(μ)

� t−q1(tq0)(p1−1)q1/p1 � t−q0 .

On the other hand, from (2.3) with p = 1 and t replaced by tq0 , and the fact that
{Bj}j is a sequence of pairwise disjoint balls, we deduce that

(2.22) μ(∪j62Bj) � t−q0

∫
X
|f(y)| dμ(y) � t−q0 .
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Therefore, to show (II), by f = g + h, (2.21) and (2.22), it suffices to prove that

(2.23) μ
({

x ∈ X \ (∪j62Bj) : |Tαh(x)| > t
})

� t−q0 .

To this end, denote the center of Bj by xj , and let N1 be the positive integer satisfying
Rj = (3 × 62)N1Bj . Let θ be a bounded function with ‖θ‖

Lq′
0(μ)

≤ 1 whose support
is contained in X \ (∪j62Bj). Then∫

X\(∪j62Bj)
|Tαh(x)θ(x)| dμ(x)

≤
∑

j

∫
X\6Rj

|Tαhj(x)θ(x)| dμ(x) +
∑

j

∫
6Rj\62Bj

· · ·

=: F1 + F2,

where hj := ωjf − ϕj . By (2.5), we see that
∫
X hj(x) dμ(x) = 0, which, together

with (1.8), Hölder’s inequality and (2.7), further implies that

F1 ≤
∑

j

∫
X\6Rj

∫
X
|θ(x)||Kα(x, y)− Kα(x, xj)||hj(y)| dμ(y) dμ(x)

�
∑

j

∫
X

[ ∞∑
i=1

∫
6i+1Bj\6iBj

rδ
Bj

(6irBj)δ[λ(xj, 6irBj)]1−α
|θ(x)| dμ(x)

]
|hj(y)| dμ(y)

�
∑

j

∫
X
|f(y)ωj(y)| dμ(y)

∞∑
i=1

6−iδ‖θ‖
Lq′

0 (μ)
� 1.

For F2, by hj := ωjf − ϕj , (1.7), Hölder’s inequality and an argument similar to that
used in the proof of [8, Lemma 3.5(iii)], together with the boundedness of Tα from
Lp2(μ) into Lq2(μ) with p2 ∈ (1, 1/α) and 1/q2 = 1/p2 − α, we have

F2 ≤
∑

j

∫
6Rj\62Bj

|θ(x)||Tα(ωjf)(x)| dμ(x) +
∑

j

∫
6Rj

|θ(x)||Tαϕj(x)| dμ(x)

�
∑

j

∫
6Rj\62Bj

|θ(x)|
[λ(xj, d(x, xj))]1−α

dμ(x)
∫
X
|f(y)ωj(y)| dμ(y)

+
∑

j

[∫
6Rj

|Tαϕj(x)|q0 dμ(x)

]1/q0

‖θ‖
Lq′0 (μ)

�
∑

j

∫
X
|f(y)ωj(y)| dμ(y)

[
N1+1∑
k=1

μ((3× 62)kBj)
λ(xj, (3× 62)krBj)

]1/q0

‖θ‖
Lq′0 (μ)

+
∑

j

[∫
6Rj

|Tαϕj(x)|q2 dμ(x)

]1/q2

[μ(6Rj)]
1/q0−1/q2 � 1,
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where we chose p2 and q2 such that p2 ∈ (1, 1/α) and 1/q2 = 1/p2−α. The estimates
for F1 and F2 give (2.23), and hence complete the proof of (I)⇒(II).

(II)⇒(III) Indeed, for any f ∈ L1/α(μ), to show Tαf ∈ RBMO(μ), by the
assumption that Tαf is finite almost everywhere, it suffices to show that, for any ball
Q and hQ := mQ(Tα(fχX\(6/5)Q)),

(2.24)
1

μ(6Q)

∫
Q
|Tαf(x)− hQ| dμ(x) � ‖f‖L1/α(μ)

and, for any two balls Q ⊂ R, where R is doubling,

(2.25) |hQ − hR| � KQ,R‖f‖L1/α(μ).

Now we first show (2.24). Write

1
μ(6Q)

∫
Q

|Tαf(x) − hQ| dμ(x)

≤ 1
μ(6Q)

∫
Q

|Tα(fχ(6/5)Q)(x)| dμ(x)

+
1

μ(6Q)

∫
Q
|Tα(fχX\(6/5)Q)(x)− hQ| dμ(x) =: H + I.

Notice that Kolmogorov’s inequality (see, for example, [12, p. 485, Lemma 2.8])
also holds true in the non-homogeneous setting. By Kolmogorov’s inequality, namely,
for 0 < p < q < ∞ and any function f ,

‖f‖Lq,∞(μ) ≤ sup
E

‖fχE‖Lp(μ)/‖χE‖Ls(μ) � ‖f‖Lq,∞(μ),

where 1/s = 1/p − 1/q and the supremum is taken over all measurable sets E with
0 < μ(E) < ∞, together with (II) of Theorem 1.13 and Hölder’s inequality, we know
that

H � 1
μ(6Q)

‖χQ‖L1/α(μ)‖Tα(fχ(6/5)Q)‖Lq0,∞(μ)

� [μ(Q)]α

μ(6Q)
‖fχ(6/5)Q‖L1(μ) � ‖f‖L1/α(μ).

To estimate I, we write∣∣Tα(fχX\(6/5)Q)(x)− Tα(fχX\(6/5)Q)(y)
∣∣

≤
∫

6Q\(6/5)Q
|Kα(x, z)− Kα(y, z)||f(z)| dμ(z)

=
∫
X\6Q

|Kα(x, z)− Kα(y, z)||f(z)| dμ(z)+
∫
X\(6/5)Q

· · · =: I1 + I2.
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Let cQ and rQ be the center and the radius of Q, respectively. To estimate I1, from
(1.7) and Hölder’s inequality, together with (1.2) and (1.3), it follows that

I1 �
∫

6Q\(6/5)Q

(
1

[λ(x, d(x, z))]1−α
+

1
[λ(y, d(y, z))]1−α

)
|f(z)| dμ(z)

� 1
[λ(cQ, rQ)]1−α

∫
6Q

|f(z)| dμ(z) � ‖f‖L1/α(μ).

To estimate I2, by (1.8), (1.2), Hölder’s inequality and (1.3), we see that, for any
x, y ∈ Q,

I2 �
∞∑
i=1

∫
2i(6Q)\2i−1(6Q)

[d(x, y)]δ

[d(z, y)]δ[λ(y, d(z, y))]1−α
|f(z)| dμ(z)

�
∞∑
i=1

∫
2i(6Q)\2i−1(6Q)

rδ
Q

[2i−1(6rQ)]δ[λ(y, 2i−16rQ)]1−α
|f(z)| dμ(z)

�
∞∑
i=1

2−(i−1)δ

[
μ(2i(6Q))

λ(cQ, 2i(6rQ))

]1−α

‖f‖L1/α(μ) � ‖f‖L1/α(μ).

Therefore, I � ‖f‖L1/α(μ).
Combining the estimates for H and I, we obtain (2.24).
Now we show (2.25) for the chosen {hQ}Q. Denote NQ,R+1 simply by N2. Write

|hQ − hR|
= |mQ(Tα(fχX\(6/5)Q))− mR(Tα(fχX\(6/5)R))|
≤ |mQ(Tα(fχ6Q\(6/5)Q))|+ |mQ(Tα(fχ6N2Q\6Q))|

+|mQ(Tα(fχX\6N2Q))− mR(Tα(fχX\6N2Q))|+ |mR(Tα(fχ6N2Q\(6/5)R))|
=: J1 + J2 + J3 + J4.

An argument similar to that used in the estimate for H shows that J4 � ‖f‖L1/α(μ).
Also, an argument similar to that used in the estimate for I gives us that J3 �
‖f‖L1/α(μ).

Next we estimate J2. For any x ∈ Q, by Hölder’s inequality, the fact that 6N2Q ⊂
72R and (ii) and (iv) of Lemma 2.1, we have∣∣∣Tα(fχ6N2Q\6Q)(x)

∣∣∣ ≤
[∫

6N2Q\6Q

1
λ(x, d(x, z))

dμ(z)

]1−α

‖f‖L1/α(μ)

� KQ,36R‖f‖L1/α(μ) � KQ,R‖f‖L1/α(μ).

This implies that J2 � KQ,R‖f‖L1/α(μ). Similarly, we have

J1 � KQ,6Q‖f‖L1/α(μ) � KQ,R‖f‖L1/α(μ).
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Combining the estimates for J1, J2, J3 and J4, we obtain (2.25) and hence complete
the proof of (II)⇒(III).

(III)⇒(IV) We first show that, for any ball B, bounded function a supported on B

and q0 := 1/(1− α),

(2.26)
∫

B
|Tαa(x)|q0 dμ(x) � [μ(2B)]q0‖a‖q0

L∞(μ).

To prove this, we borrow some ideas from the proof of [25, Lemma 3.1] by con-
sidering the following two cases for rB.

Case (i) rB ≤ diam(supp μ)/40, where diam(suppμ) denotes the diameter of the
set supp μ. By Corollary 2.3 and (III) of Theorem 1.13, we have

(2.27)
∫

B
|Tαa(x) − mB̃(Tαa)|q0 dμ(x) � μ(2B)‖a‖q0

L1/α(μ)
� [μ(2B)]q0‖a‖q0

L∞(μ).

Thus, by (2.27), to prove (2.26), it suffices to show that

(2.28) |m
B̃
(Tαa)| � [μ(2B)]α‖a‖L∞(μ).

We first claim that there exists j0 ∈ N such that

(2.29) μ(6j0B \ 2B) > 0.

Indeed, if, for all j ∈ N, μ(6jB \ 2B) = 0, then we see that μ(X \ 2B) = 0,
which implies that supp μ ⊂ 2B, the closure of 2B. This contradicts to that rB ≤
diam(supp μ)/40 and thus (2.29) holds true. Now assume that S is the smallest ball
of the form 6jB such that μ(S \ 2B) > 0. We then know that μ(6−1S \ 2B) = 0 and
μ(S \ 2B) > 0. Thus, μ(S \ (6−1S ∪ 2B)) > 0. By this and [18, Lemma 3.3], we
choose x0 ∈ S \ (6−1S ∪ 2B) such that the ball centered at x0 with the radius 6−krS

for some k ≥ 2 is doubling. Let B0 be the biggest ball of this form. Then we see that
B0 ⊂ 2S and dist(B0, B) � rB. We now claim that

(2.30) KB,2S � 1.

Indeed, if S = 6B, then by Lemma 2.1(ii), we have (2.30). If S ⊃ 62B, then
(1/12)S ⊃ 3B. Notice that, in this case, μ(6−1S\2B) = 0 implies that K2B,(1/12)S =
1. By this, together with (iv) and (ii) of Lemma 2.1, we further have

KB,2S � KB,2B + K2B,(1/12)S + K(1/12)S,2S � KB,2B + K(1/12)S,2S � 1.

Thus, (2.30) also holds true in this case, which shows (2.30). Moreover, assume that
rB0 = 6−k0rS , where k0 ≥ 2, and there exists N ∈ N such that 6̃B0 = 6N+1B0.
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By the definition of B0, we see that N − k0 + 1 ≥ −1, hence r
6(6̃B0)

≥ rS and

2S ⊂ 24(6̃B0). Therefore, by (i) through (iv) of Lemma 2.1, we see that

(2.31) KB0,2S ≤ K
B0,24(6̃B0)

� K
B0,6̃B0

+ K
6̃B0,24(6̃B0)

� 1.

By (2.1), (2.31), (2.30), Lemma 2.1(iii) and Theorem 1.13(III), we know that

(2.32)

|mB0(Tαa)− m
B̃
(Tαa)|

≤ |mB0(Tαa) − m2S(Tαa)|+ |m2S(Tαa) − mB(Tαa)|
+|mB(Tαa) − mB̃(Tαa)|

� (KB0,2S + KB,2S + K
B,B̃

)‖Tαa‖RBMO(μ)

� ‖a‖L1/α(μ) � [μ(2B)]α‖a‖L∞(μ),

Moreover, by (1.7), dist(B0, B) � rB, (1.2) and (1.3), we conclude that, for all y ∈ B0,

(2.33) |Tαa(y)| � μ(B)
[λ(cB, rB)]1−α

‖a‖L∞(μ) � [μ(2B)]α‖a‖L∞(μ).

The estimate (2.28) follows from (2.32) and (2.33), which completes the proof of (2.26)
in this case.

Case (ii) rB > diam(supp μ)/40. In this case, without loss of generality, we may
assume that rB ≤ 8diam(supp μ). Then, by Remark 1.2(ii), we see that B ∩ supp μ

is covered by finite number balls {Bj}J
j=1 with radius rB/800, where J ∈ N is

independent of rB. For any j ∈ {1, . . . , J}, we define aj :=
χBj∑J

k=1 χBk

a. Since (2.26)
is true if we replace B by 2Bj which contains the support of aj , by (1.7), (2.26), (1.3),
(1.2) and the fact that, if B ∩ Bj �= ∅, then 4Bj ⊂ 2B, we have∫

B
|Tαa(x)|q0 dμ(x)

�
J∑

j=1

∫
B\2Bj

|Tαa(x)|q0 dμ(x) +
J∑

j=1

∫
2Bj

· · ·

�
J∑

j=1

∫
B\2Bj

[∫
Bj

|aj(y)|
[λ(x, d(x, y))]1−α

dμ(y)

]q0

dμ(x) +
J∑

j=1

‖aj‖q0

L∞(μ)[μ(4Bj)]q0
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�
J∑

j=1

‖aj‖q0

L∞(μ)

{∫
B\2Bj

[∫
Bj

1
[λ(y, d(x, y))]1−α

dμ(y)

]q0

dμ(x) + [μ(4Bj)]q0

}

�
J∑

j=1

‖aj‖q0

L∞(μ)

{[
μ(Bj)

(λ(cBj, rBj))1−α

]q0

μ(B) + [μ(4Bj)]q0

}

�
J∑

j=1

‖aj‖q0

L∞(μ)
{[μ(2B)]αq0μ(B) + [μ(4Bj)]q0} � ‖a‖q0

L∞(μ)
[μ(2B)]q0.

Thus, (2.26) also holds true in this case.
Now we turn to prove (IV). By a standard argument (see [21, Theorem 4.1] for the

details), it suffices to show that, for any (∞, 1)λ-atomic block b,

(2.34) ‖Tαb‖Lq0(μ) � |b|
H1,∞

atb (μ)
.

Assume that supp b ⊂ R and b =
∑2

j=1 λjaj , where, for j ∈ {1, 2}, aj is a function
supported in Bj ⊂ R such that ‖aj‖L∞(μ) ≤ [μ(4Bj)]−1K−1

Bj ,R and |λ1| + |λ2| ∼
|b|H1,∞

atb (μ). Write∫
X
|Tαb(x)|q0 dμ(x) =

∫
2R

|Tαb(x)|q0 dμ(x) +
∫
X\2R

· · · =: L1 + L2.

For L1, we see that

L1 �
2∑

j=1

|λj|q0

∫
2Bj

|Tαaj(x)|q0 dμ(x) +
2∑

j=1

|λj|q0

∫
2R\2Bj

· · · =: L1,1 + L1,2.

From (2.26), ‖aj‖L∞(μ) � [μ(4Bj)]−1K−1
Bj,R

for j ∈ {1, 2}, and Definition 1.11(iii),
it follows that

L1,1 �
2∑

j=1

|λj|q0‖aj‖q0

L∞(μ)
[μ(4Bj)]q0 �

2∑
j=1

|λj|q0 � |b|q0

H1,∞
atb (μ)

.

For L1,2, by (1.7), Minkowski’s inequality, (1.2), (1.3), (ii) and (iv) of Lemma 2.1, the
fact that ‖aj‖L∞(μ) � [μ(4Bj)]−1K−1

Bj ,R and Definition 1.11(iii), we see that

L1,2 �
2∑

j=1

|λj|q0

∫
2R\2Bj

{∫
Bj

|aj(y)|
[λ(x, d(x, y))]1−α

dμ(y)

}q0

dμ(x)

�
2∑

j=1

|λj|q0

⎧⎨⎩
∫

Bj

|aj(y)|
[∫

2R\2Bj

1
λ(x, d(x, y))

dμ(x)

]1/q0

dμ(y)

⎫⎬⎭
q0
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�
2∑

j=1

|λj|q0[μ(Bj)]q0‖aj‖q0

L∞(μ)

∫
2R\2Bj

1
λ(cBj , d(x, cBj))

dμ(x)

�
2∑

j=1

|λj|q0[μ(Bj)]q0‖aj‖q0

L∞(μ)
KBj,R �

2∑
j=1

|λj|q0 � |b|q0

H1,∞
atb (μ)

.

Therefore, L1 � |b|q0

H1,∞
atb (μ)

.

On the other hand, from the fact that
∫
X b(y) dμ(y) = 0, (1.8) and Definition

1.11(iii), we deduce that

L2 ≤
∫
X\2R

[∫
R

|Kα(x, y)− Kα(x, cR)||b(y)| dμ(y)
]q0

dμ(x)

�
[∫

R
|b(y)| dμ(y)

]q0 ∞∑
i=1

∫
2i+1R\2iR

rδq0
R

λ(cR, d(x, cR))[d(x, cR)]δq0
dμ(x)

� (|λ1| + |λ2|)q0

∞∑
i=1

2−iδq0 � |b|q0

H1,∞
atb (μ)

,

which, together with the estimate for L1, implies (2.34) and hence completes the proof
of (III)⇒(IV).

(IV)⇒(V) is obvious, the details being omitted.
(V)⇒(I) We first claim that, for any ball B and f ∈ L1(μ) with bounded support

in (6/5)B,

(2.35)
1

μ(6B)

∫
B
|Tαf(y)| dμ(y) � ‖f‖L1/α(μ).

Assume first that rB ≤ diam(supp μ)/40. We consider the same construction in the
proof of (III)⇒(IV). Let B, B0 and S be the same as there. We know that B, B0 ⊂ 2S,
B0 is doubling, KB,2S � 1, KB0,2S � 1 and dist(B0, B) � rB. Let g = f +CB0χB0 ,
where CB0 is a constant such that

∫
X g(x) dμ(x) = 0. Then g is an (∞, 1)λ-atomic

block supported in R. It is easy to show that

(2.36) ‖g‖H1(μ) � [μ(6B)]1/q0‖f‖L1/α(μ),

where q0 := 1/(1 − α). For y ∈ B, by (1.7), the fact that dist(B0, B) � rB, (1.3),∫
X g(x) dμ(x) = 0, Hölder’s inequality and (1.2), we have

(2.37)

|Tα(CB0χB0)(y)|

� |CB0 |
∫

B0

1
[λ(y, d(x, y))]1−α

dμ(x) � |CB0|μ(B0)
[λ(cB, rB)]1−α

� ‖f‖L1(μ)
1

[λ(cB, rB)]1−α
�
[
μ((6/5)B)
λ(cB, rB)

]1−α

‖f‖L1/α(μ) �‖f‖L1/α(μ).
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Denote ‖g‖H1(μ)[μ(B)]−1/q0 simply by E . Then by (V) of Theorem 1.13 and (2.36),
we conclude that

(2.38)

∫
B
|Tαg(y)| dμ(y) =

∫ E

0
μ({y ∈ B : |Tαg(y)| > t}) dt +

∫ ∞

E
· · ·

� Eμ(B) +
∫ ∞

E
‖g‖q0

H1(μ)
t−q0 dt � μ(6B)‖f‖L1/α(μ).

The estimates (2.37) and (2.38) imply (2.35) in this case.
If rB > diam(suppμ)/40, by an argument similar to that used in the proof of

(2.26) in the case of rB > diam(supp μ)/40, we can prove that (2.35) also holds true
in this case.

Now we turn to prove (I). By Theorem 2.7, we only need to prove that Tα is
bounded from L1/α(μ) into RBMO(μ). Repeating the proofs of (2.24) and (2.25)
step by step, only needing to replace the (L1(μ), L1/(1−α),∞(μ))-boundedness of Tα

by (2.35) when estimating H, we then know that Tα is bounded from L1/α(μ) into
RBMO(μ), which completes the proof that (V) implies (I) and hence the proof of
Theorem 1.13.

3. PROOFS OF THEOREMS 1.15 AND 1.19

In order to prove Theorem 1.15, we need a technical lemma which is a variant over
non-homogeneous metric measure spaces of [5, Lemma 2].

Lemma 3.1. Let α ∈ (0, 1), p ∈ (1, 1/α), ρ ∈ [5,∞), r ∈ (p, 1/α) and 1/q =
1/r − α. Then there exists a positive constant C such that, for all f ∈ Lr(μ),

‖M (α)
p,ρ f‖Lq(μ) ≤ C‖f‖Lr(μ),

where

M (α)
p,ρ f(x) := sup

Q�x

{
1

[μ(ρQ)]1−αp

∫
Q
|f(y)|p dμ(y)

}1/p

and the supremum is taken over all balls Q � x.

Proof. We first prove that

(3.1) μ
({

x ∈ X : M (α)
p,ρ f(x) > t

})
�
[‖f‖Lp(μ)/t

]p/(1−αp)
.

Let E := {x ∈ X : M
(α)
p,ρ f(x) > t}.

For any x ∈ E , there exists a ball Qx containing x such that

(3.2)
1

[μ(ρQx)]1−αp

∫
Qx

|f(y)|p dμ(y) > tp.
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By [13, Theorem 1.2] and [18, Lemma 2.5], there exist countable disjoint subsets
{Qj}j of {Qx : x ∈ E} such that E ⊂ ∪jρQj . Let q := p/(1 − αp). Then p/q ≤ 1.
Hence, by (3.2) and p/q = 1 − αp, we see that

[μ(E)]p/q ≤ [μ (∪jρQj)]p/q≤
∑

j

[μ(ρQj)]p/q≤
∑

j

1
tp

∫
Qj

|f(y)|p dμ(y)≤
‖f‖p

Lp(μ)

tp
.

Hence μ(E) � t−q‖f‖q
Lp(μ)

, namely, (3.1) holds true.

Notice that, if p < s < 1/α, by using Hölder’s inequality, we have M
(α)
p,ρ f ≤

M
(α)
s,ρ f. Hence, by the proceeding arguments, we see that μ(E) ≤ [ 1t ‖f‖Ls(μ)]s/(1−αs),

which, together with (3.1) and the Marcinkiewicz interpolation theorem, further implies
the desired result and hence completes the proof of Lemma 3.1.

Remark 3.2. Let α ∈ (0, 1). By Lemma 3.1, the maximal operators M
(α)
r,ρ (r ∈

(0,∞)) and M
(α)
(ρ)

:= M
(α)
1,ρ are bounded from Lp(μ) to Lq(μ) for p ∈ (r, 1/α) and

1/q = 1/p− α.

Now we introduce the fractional coefficient K̃
(α)
B,S adapted from [5].

Definition 3.3. For any two balls B := B(c
B
, r

B
) ⊂ S, K̃

(α)
B,S is defined by

K̃
(α)
B,S := 1 +

NB,S∑
k=1

[
μ(6kB)

λ(cB , 6krB)

]1−α

,

where α ∈ [0, 1) and NB,S is defined as in Remark 1.6.

Now we give out some simple properties of K̃
(α)
B,S, which are completely analogous

to [5, Lemma 3]. We omit the details; see [8, Lemma 3.5] for the proofs of the case
that α = 0.

Lemma 3.4. Let α ∈ [0, 1).
(i) For all balls B ⊂ R ⊂ S, K̃

(α)
B,R ≤ 2K̃

(α)
B,S.

(ii) For any ρ ∈ [1,∞), there exists a positive constant C(ρ), depending only on ρ,
such that, for all balls B ⊂ S with rS ≤ ρrB, K̃

(α)
B,S ≤ C(ρ).

(iii) There exists a positive constant C(α), depending on α, such that, for all balls
B, K̃

(α)

B,B̃
≤ C(α).

(iv) There exists a positive constant c, depending on Cλ and α, such that, for all
balls B ⊂ R ⊂ S, K̃

(α)
B,S ≤ K̃

(α)
B,R + cK̃

(α)
R,S.

(v) There exists a positive constant c̃, depending on Cλ and α, such that, for all
balls B ⊂ R ⊂ S, K̃

(α)
R,S ≤ c̃K̃

(α)
B,S.
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Now we introduce the sharp maximal operator M̃#, α associated with K̃
(α)
B,S.

Definition 3.5. Let α ∈ [0, 1). For all f ∈ L1
loc (μ) and x ∈ X , the sharp maximal

function M̃#, αf of f is defined by

M̃#, αf(x) := sup
B�x

1
μ(6B)

∫
B
|f(y)− mB̃f | dμ(y) + sup

(Q,R)∈Δx

|mQf − mRf |
K̃

(α)
Q,R

,

where Δx := {(Q, R) : x ∈ Q ⊂ R and Q, R are doubling balls}.

Similar to [2, Theorem 4.2], we have the following lemma.

Lemma 3.6. Let f ∈ L1
loc (μ) satisfy that

∫
X f(x) dμ(x) = 0 when ‖μ‖ := μ(X ) <

∞. Assume that, for some p ∈ (1,∞), inf{1, Nf} ∈ Lp(μ). Then there exists a
positive constant C, independent of f , such that ‖Nf‖Lp(μ) ≤ C‖M̃#,αf‖Lp(μ).

The following two lemmas are completely analogous to [5, Lemmas 5 and 6], the
details being omitted.

Lemma 3.7. For any α ∈ [0, 1), there exists some positive constant Pα (big
enough), depending only on Cλ in (1.2) and α, such that, if m ∈ N, B1 ⊂ · · · ⊂ Bm are
concentric balls with K̃

(α)
Bi,Bi+1

> Pα for i ∈ {1, . . . , m−1}, then there exists a positive

constant C, depending only on Cλ and α, such that
∑m−1

i=1 K̃
(α)
Bi,Bi+1

≤ CK̃
(α)
B1,Bm

.

Lemma 3.8. For any α ∈ [0, 1), there exists some positive constant P̃α (large
enough), depending on Cλ, β6 as in (1.2) with η = 6 and α, such that, if x ∈ X is
some fixed point and {fB}B�x is a collection of numbers such that |fB−fS | ≤ K̃

(α)
B,SCx

for all doubling balls B ⊂ S with x ∈ B satisfying K̃
(α)
B,S ≤ P̃α, then there exists a

positive constant C, depending on Cλ , β6, α and P̃α, such that |fB−fS | ≤ C4K̃
(α)
B,SCx

for all doubling balls B ⊂ S with x ∈ B, where Cx is a positive constant, depending
on x, and C4 a positive constant depending only on Cλ , β6 and α.

The following theorem is adapted from [5, Theorem 1].

Theorem 3.9. Let b ∈ RBMO(μ) and Tα for α ∈ (0, 1) be as in (1.9) with
kernel Kα satisfying (1.7) and (1.8), which is bounded from Lp(μ) into Lq(μ) for
all p ∈ (1, 1/α) and 1/q = 1/p − α. Then the commutator [b, Tα] satisfies that
there exists a positive constant C such that, for all f ∈ Lp(μ), ‖[b, Tα]f‖Lq(μ) ≤
C‖b‖RBMO(μ)‖f‖Lp(μ).

Proof. The case that μ(X ) < ∞ can be proved by a way similar to the proof of
[8, Theorem 3.10]. Thus, without loss of generality, we may assume that μ(X ) = ∞.
Let p ∈ (1, 1/α). We first claim that, for all r ∈ (1,∞), f ∈ Lp(μ) and x ∈ X ,
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(3.3)
M̃#, α([b, Tα]f)(x)

� ‖b‖RBMO(μ)

{
M

(α)
r,5 f(x) + Mr,6(Tαf)(x) + Tα(|f |)(x)

}
.

Once (3.3) is proved, taking 1 < r < p < 1/α, by Lemma 2.5(ii), Lemma 3.6, an
argument similar to that used in the proof of [8, Theorem 3.10], and Remark 3.2, we
conclude that

‖[b, Tα]f‖Lq(μ) ≤ ‖N ([b, Tα]f)‖Lq(μ) � ‖M̃#, α([b, Tα]f)‖Lq(μ)

� ‖b‖RBMO(μ)

{
‖M (α)

r,5 f‖Lq(μ) + ‖Mr,6(Tαf)‖Lq(μ) + ‖Tαf‖Lq(μ)

}
� ‖b‖RBMO(μ)‖f‖Lp(μ),

which is just the desired conclusion.
To show (3.3), by Definition 1.9, there exists a family of numbers, {bQ}Q, such

that, for any ball Q, ∫
Q
|b(y)− bQ| dμ(y) � μ(6Q)‖b‖RBMO(μ)

and, for all balls Q, R with Q ⊂ R, |bQ − bR| � KQ,R‖b‖RBMO(μ). For any ball Q,
let

hQ := mQ(Tα([b− bQ]fχX\(6/5)Q)).

Next we show that, for all x and Q with Q � x,

(3.4)

1
μ(6Q)

∫
Q
|[b, Tα]f(y)− hQ| dμ(y)

� ‖b‖RBMO(μ)

{
M

(α)
p,5 f(x) + Mp,6(Tαf)(x)

}
and, for all balls Q, R with Q ⊂ R and Q � x,

(3.5) |hQ − hR| � ‖b‖RBMO(μ)
{
M

(α)
p,5 f(x) + Tα(|f |)(x)

}
KQ,RK̃

(α)
Q,R.

To prove (3.4), for a fixed ball Q and x with x ∈ Q, we write [b, Tα]f as

(3.6) [b, Tα]f = [b − bQ]Tαf − Tα([b − bQ]f1) − Tα([b − bQ]f2),

where f1 := fχ(6/5)Q and f2 := f − f1.
Let us first estimate the term [b−bQ]Tαf . By Hölder’s inequality and [18, Corollary

6.3], we see that

(3.7)

1
μ(6Q)

∫
Q
|[b(y)− bQ]Tαf(y)| dμ(y)

≤
[

1
μ(6Q)

∫
Q
|b(y)− bQ|p′ dμ(y)

]1/p′ [ 1
μ(6Q)

∫
Q
|Tαf(y)|p dμ(y)

]1/p

� ‖b‖RBMO(μ)Mp,6(Tαf)(x),



538 Xing Fu, Dachun Yang and Wen Yuan

which is desired.
To estimate Tα([b − bQ]f1), take s :=

√
p and 1/r := 1/s − α. From Hölder’s

inequality, the (Ls(μ), Lr(μ))-boundedness of Tα and [18, Corollary 6.3], it follows
that

(3.8)

1
μ(6Q)

∫
Q

|Tα([b − bQ]f1)(y)| dμ(y)

≤ [μ(Q)]1−1/r

μ(6Q)
‖Tα([b − bQ]f1)‖Lr(μ) � [μ(Q)]1−1/r

μ(6Q)
‖(b − bQ)f1‖Ls(μ)

� 1
[μ(6Q)]1/r

{∫
(6/5)Q

|b(y)− bQ|ss′ dμ(y)

} 1
ss′

[∫
(6/5)Q

|f(y)|p dμ(y)

]1
p

� ‖b‖RBMO(μ)M
(α)
p,5 f(x),

which is desired.
By (3.6), (3.7) and (3.8), to obtain (3.4), we still need to estimate the difference

|Tα([b− bQ]f2) − hQ| by writing that, for all y1, y2 ∈ Q,

|Tα([b − bQ]f2)(y1) − Tα([b − bQ]f2)(y2)|

�
∫

6Q\(6/5)Q
|Kα(y1, z)− Kα(y2, z)||b(z)− bQ||f(z)| dμ(z) dμ(z)+

∫
X\6Q

· · ·

=: I1 + I2.

Let cQ and rQ be the center and the radius of Q, respectively. To estimate I1, from
(1.7) and Hölder’s inequality, together with (1.2) and (1.3), it follows that

I1 �
∫

6Q\(6/5)Q

(
1

[λ(y1, d(y1, z))]1−α
+

1
[λ(y2, d(y2, z))]1−α

)
|f(z)||b(z)−bQ| dμ(z)

�
[

1
μ(30Q)

∫
6Q

|b(z)− bQ|p′ dμ(z)
]1/p′ { 1

[μ(30Q)]1−αp

∫
6Q

|f(z)|p dμ(z)
}1/p

� ‖b‖RBMO(μ)M
α
p,5f(x),

which is desired.
For any y1, y2 ∈ Q, by (1.8), (1.3), (1.2), Hölder’s inequality and [18, Corollary

6.3], we know that

I2 �
∫
X\6Q

[d(y1, y2)]δ

[d(y1, z)]δ[λ(y1, d(y1, z))]1−α
|b(z)− bQ||f(z)| dμ(z)

�
∞∑

k=1

∫
2k(6Q)\2k−1(6Q)

(2rQ)δ

[2k−1×6rQ]δ
1

[λ(cQ, 2k−1×6rQ)]1−α
|b(z)−bQ||f(z)| dμ(z)
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�
∞∑

k=1

2−kδ 1
[μ(2k × 30Q)]1−α

[∫
2k(6Q)

|b(z)− b2k(6Q)||f(z)| dμ(z)

+k‖b‖RBMO(μ)

∫
2k(6Q)

|f(z)| dμ(z)

]

�
∞∑

k=1

2−kδ

⎛⎝[
1

μ(2k × 30Q)

∫
2k(6Q)

|b(z)− b2k(6Q)|p
′
dμ(z)

] 1
p′

×
{

1
[μ(2k × 30Q)]1−αp

∫
2k(6Q)

|f(z)|p dμ(z)

}1/p

+k‖b‖RBMO(μ)

{
1

[μ(2k × 30Q)]1−αp

∫
2k(6Q)

|f(z)|p dμ(z)

}1/p
⎞⎠

�
∞∑

k=1

(k + 1)2−kδ‖b‖RBMO(μ)M
(α)
p,5 f(x) � ‖b‖RBMO(μ)M

(α)
p,5 f(x),

where we used the fact that

|bQ − b2k(6/5)Q| � KQ,2k(6Q)‖b‖RBMO(μ) � k‖b‖RBMO(μ).

Combining the estimates for I1 and I2, we see that, for all y ∈ Q,

|Tα([b − bQ]f2)(y)− hQ| � ‖b‖RBMO(μ)M
(α)
p,5 f(x).

Thus,
1

μ(6Q)

∫
Q

|Tα([b − bQ]f2)(y)− hQ| dμ(y) � ‖b‖RBMO(μ)M
(α)
p,5 f(x),

which, together with (3.6), (3.7) and (3.8), implies (3.4).
Now we show the regularity condition (3.5) for the numbers {hQ}Q. Consider two

balls Q ⊂ R with x ∈ Q and let N := NQ,R + 1. Write |hQ − hR| as

|mQ(Tα([b − bQ]fχX\(6/5)Q)) − mR(Tα([b − bQ]fχX\(6/5)R))|
≤ |mQ(Tα([b − bQ]fχ6Q\(6/5)Q))|+ |mQ(Tα([bQ − bR]fχX\6Q))|

+|mQ(Tα([b − bR]fχ6NQ\6Q))|+ |mQ(Tα([b − bR]fχX\6NQ))

−mR(Tα([b − bR]fχX\6NQ))|+ |mR(Tα([b − bR]fχ6NQ\(6/5)R))|
=: U1 + U2 + U3 + U4 + U5.

Following the proof of [5, Theorem 1], it is easy to see that

U1 + U4 + U5 � ‖b‖RBMO(μ)M
(α)
p,5 f(x)
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and U2 � KQ,R‖b‖RBMO(μ)[Tα(|f |)(x) + M
(α)
p,5 f(x)].

Now we turn to the estimate for U3. For y ∈ Q, by (1.7) and Hölder’s inequality,
we conclude that

|Tα([b − bR]fχ6NQ\6Q)(y)|

�
N−1∑
k=1

1
[λ(xQ, 6krQ)]1−α

∫
6k+1Q\6kQ

|b(y)− bR||f(y)| dμ(y)

�
N−1∑
k=1

1
[λ(xQ, 6krQ)]1−α

[∫
6k+1Q

|b(y)−bR|p′ dμ(y)
]1/p′[∫

6k+1Q
|f(y)|p dμ(y)

]1/p

.

Notice that, by Minkowski’s inequality and Lemma 2.1(i), we see that[∫
6k+1Q

|b(y)− bR|p′ dμ(y)
]1/p′

≤
[∫

6k+1Q

|b(y)− b6k+1Q|p
′
dμ(y)

]1/p′

+
[
μ(6k+1Q)

]1/p′ |b6k+1Q − bR|

� KQ,R‖b‖RBMO(μ)

[
μ(5 × 6k+1Q)

]1/p′
.

Thus, by (1.7), (1.3) and (1.2), we conclude that

|Tα([b − bR]fχ6N Q\6Q)(y)|

� KQ,R‖b‖RBMO(μ)

N−1∑
k=1

[μ(5 × 6k+1Q)]1−1/p

[λ(xQ, 6krQ)]1−α

[∫
6k+1Q

|f(y)|p dμ(y)
]1/p

� KQ,R‖b‖RBMO(μ)

NQ,R∑
k=1

[
μ(6k+2Q)

λ(xQ, 6krQ)

]1−α

×
{

1
[μ(5× 6k+1Q)]1−αp

∫
6k+1Q

|f(y)|p dμ(y)
}1/p

� KQ,RK̃
(α)
Q,R‖b‖RBMO(μ)M

(α)
p,5 f(x).

Taking the mean over Q, we obtain U3 � KQ,RK̃
(α)
Q,R‖b‖RBMO(μ)M

(α)
p,5 f(x), which,

together with the estimates U1, U2, U4 and U5, further implies (3.5).
By (3.4), if Q is a doubling ball and x ∈ Q, we have

(3.9) |mQ([b, Tα]f)− hQ| � ‖b‖RBMO(μ)

[
M

(α)
p,5 f(x) + Mp,6(Tαf)(x)

]
.

Since, for any ball Q with x ∈ Q, K
Q,Q̃

≤ C and K̃
(α)

Q,Q̃
≤ C, by (3.4), (3.5) and

(3.9), we see that
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(3.10)

1
μ(6Q)

∫
Q
|[b, Tα]f(y)− m

Q̃
([b, Tα]f)| dμ(y)

≤ 1
μ(6Q)

∫
Q
|[b, Tα]f(y)−hQ| dμ(y) + |hQ−h

Q̃
|+|h

Q̃
−m

Q̃
([b, Tα]f)|

� ‖b‖RBMO(μ)

{
M

(α)
p,5 f(x) + Mp,6(Tαf)(x) + Tα(|f |)(x)

}
.

On the other hand, for all doubling balls Q ⊂ R with x ∈ Q such that K̃
(α)
Q,R ≤ P̃α,

where P̃α is the constant as in Lemma 3.8, by (3.5), we have

|hQ − hR| � KQ,R‖b‖RBMO(μ)

[
M

(α)
p,5 f(x) + Tα(|f |)(x)

]
P̃α.

Hence, by Lemma 3.8, we know that, for all doubling balls Q ⊂ R with x ∈ Q,

|hQ − hR| � K̃
(α)
Q,R‖b‖RBMO(μ)

[
M

(α)
p,5 f(x) + Tα(|f |)(x)

]
and, using (3.9), we further obtain

|mQ([b, Tα]f) − mR([b, Tα]f)|

� K̃
(α)
Q,R‖b‖RBMO(μ)

{
M

(α)
p,5 f(x) + Mp,6(Tαf)(x) + Tα(|f |)(x)

}
,

which, together with (3.10), induces (3.3) and hence completes the proof of Theorem
3.9.

To prove Theorem 1.15, we need to recall some notation from [14]. Let Ck
i be

as in Section 1. For any sequence 
b := (b1, . . . , bk) of functions and all i-tuples
σ := {σ(1), . . . , σ(i)} ∈ Ck

i , let 
bσ := (bσ(1), . . . , bσ(i)) and

‖
bσ‖RBMO(μ) :=
i∏

j=1

‖bσ(j)‖RBMO(μ).

For any σ ∈ Ck
i and z ∈ X , let

[
mB̃(
b) −
b(z)

]
σ

:=
i∏

j=1

[
mB̃(bσ(j))− bσ(j)(z)

]
and T

α,	bσ
:= [bσ(i), [bσ(i−1), · · · , [bσ(1), Tα] · · · ]]. In particular, when σ := {1, . . . , k},

T
α,	bσ

coincides with T
α,	b

as in (1.11).
Now we are ready to prove Theorem 1.15.
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Proof of Theorem 1.15. By Lemma 2.4, it suffices to prove that T
α,	b

is bounded
from Lp(μ) into Lq(μ) for all p ∈ (1, 1/α) and 1/q = 1/p − α. We show this by
induction on k.

By Theorem 3.9, the conclusion is valid for k = 1. Now assume that k ≥ 2 is
an integer and, for any i ∈ {1, . . . , k − 1} and any subset σ = {σ(1), . . . , σ(i)} of
{1, . . . , k− 1}, T

α,	bσ
is bounded from Lp(μ) to Lq(μ) for the same p, q as those such

that Tα is bounded from Lp(μ) to Lq(μ).
The case that μ(X ) < ∞ can be proved by a way similar to that used in the proof

of [8, Theorem 3.10], the details being omitted. Thus, without loss of generality, we
may assume that μ(X ) = ∞. We first claim that, for any r ∈ (1,∞), f ∈ Lp(μ) and
x ∈ X ,

(3.11)

M̃#, α(T
α,	b

f)(x) � ‖
b‖RBMO(μ)

[
Mr,6Tαf(x) + M

(α)
r,5 f(x)

]
+

k−1∑
i=1

∑
σ∈Ck

i

‖
bσ‖RBMO(μ)Mr,6(Tα,	bσ′f)(x).

Once (3.11) is proved, by Lemmas 2.5 and 2.6, an argument similar to that used
in the proof of Theorem 3.9, and Remark 3.2, we conclude that, for all p ∈ (1, 1/α),
1/q = 1/p− α and f ∈ Lp(μ),

‖T
α,	b

f‖Lq(μ) ≤ ‖N (T
α,	b

f)‖Lq(μ) �
∥∥∥M̃#,α(T

α,	b
f)
∥∥∥

Lq(μ)

� ‖
b‖RBMO(μ)

[
‖Mr,6(Tαf)‖Lq(μ) + ‖M (α)

r,5 (f)‖Lq(μ)

]
+

k−1∑
i=1

∑
σ∈Ck

i

‖
bσ‖RBMO(μ)‖Mr,6(Tα,	bσ′f)‖Lq(μ)

� ‖
b‖RBMO(μ)

⎡⎣‖Tαf‖Lq(μ) + ‖f‖Lp(μ) +
k−1∑
i=1

∑
σ∈Ck

i

‖T
α,	bσ′f‖Lq(μ)

⎤⎦
� ‖
b‖RBMO(μ)‖f‖Lp(μ),

which is desired.
As in the proof of [14, Theorem 2], to prove (3.11), it suffices to show that, for all

x and B with B � x,

(3.12)

1
μ(6B)

∫
B
|T

α,	b
f(y)− hB| dμ(y)

� ‖
b‖RBMO(μ)

[
Mr,6(Tαf)(x) + M

(α)
r,5 f(x)

]
+

k−1∑
i=1

∑
σ∈Ck

i

‖
bσ‖RBMO(μ)Mr,6(Tα,	bσ′f)(x)
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and, for an arbitrary ball Q, a doubling ball R with Q ⊂ R and x ∈ Q,

(3.13)

|hQ − hR| �
[
K̃Q,R

]k
K̃

(α)
Q,R

{
‖
b‖RBMO(μ){Mr,6Tαf(x) + M

(α)
r,5 f(x)}

+
k−1∑
i=1

∑
σ∈Ck

i

‖
bσ‖RBMO(μ)Mr,6(Tα,	bσ′f)(x)

⎫⎬⎭ ,

where

hQ := mQ

(
Tα

(
k∏

i=1

[m
Q̃
(bi)− bi]fχX\ 6

5
Q

))
and

hR := mR

(
Tα

(
k∏

i=1

[mR(bi)− bi]fχX\ 6
5
R

))
.

Let us first prove (3.12). With the aid of the formula that, for all y, z ∈ X ,

k∏
i=1

[m
Q̃
(bi) − bi(z)] =

k∑
i=0

∑
σ∈Ck

i

[b(y)− b(z)]σ′[m
Q̃
(b)− b(y)]σ,

where, if i = 0, then σ′ = {1, . . . , k} and σ = ∅, [m
Q̃
(b) − b(y)]∅ = 1, it is easy to

see that, for all y ∈ X ,

T
α,	b

f(y) = Tα

(
k∏

i=1

[m
Q̃
(bi)− bi]f

)
(y)−

k∑
i=1

∑
σ∈Ck

i

[m
Q̃
(b)− b(y)]σT

α,	bσ′f(y),

where, if i = k, T
α,	bσ′f(y) := Tα(f)(y). Therefore, for all balls Q � x, we have

1
μ(6Q)

∫
Q

∣∣∣Tα,	b
f(y)− hQ

∣∣∣ dμ(y)

≤ 1
μ(6Q)

∫
Q

∣∣∣∣∣Tα

(
k∏

i=1

[m
Q̃
(bi) − bi]fχ6

5
Q

)
(y)

∣∣∣∣∣ dμ(y)

+
k∑

i=1

∑
σ∈Ck

i

1
μ(6Q)

∫
Q

∣∣∣[mQ̃
(b)− b(y)

]
σ

∣∣∣ ∣∣∣Tα,	bσ′f(y)
∣∣∣ dμ(y)

+
1

μ(6Q)

∫
Q

∣∣∣∣∣Tα

(
k∏

i=1

[
m

Q̃
(bi) − bi

]
fχX\ 6

5
Q

)
(y)− hQ

∣∣∣∣∣ dμ(y)

=: I1 + I2 + I3.
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Take 1/s2 = 1/r − α. Using the boundedness of Tα from Ls/(1+sα)(μ) into
Ls(μ) for s ∈ (1,∞) and some arguments similar to those used in the proofs of
[14, Theorem 1.1] and [8, Theorem 1.9], we conclude that, for all x ∈ X , I1 �
‖
b‖RBMO(μ)M

(α)
r,5 f(x),

I2 �
k∑

i=1

∑
σ∈Ck

i

‖
bσ‖RBMO(μ)Mr,6

(
T

α,	bσ′f
)

(x)

and I3 � ‖
bσ‖RBMO(μ)M
(α)
r,5 f(x), which imply (3.12).

Now we turn to prove (3.13). Let Q be an arbitrary ball and R a doubling ball in
X such that x ∈ Q ⊂ R. Denote NQ,R + 1 simply by N . Write

|hQ − hR|

≤
∣∣∣∣∣mR

[
Tα

(
k∏

i=1

[
m

Q̃
(bi) − bi

]
fχX\6N Q

)]

−mQ

[
Tα

(
k∏

i=1

[
m

Q̃
(bi)− bi

]
fχX\6N Q

)]∣∣∣∣∣
+

∣∣∣∣∣mR

[
Tα

(
k∏

i=1

[
m

Q̃
(bi) − bi

]
fχX\6N Q

)]

−mR

[
Tα

(
k∏

i=1

[mR(bi) − bi] fχX\6N Q

)]∣∣∣∣∣
+

∣∣∣∣∣mQ

[
Tα

(
k∏

i=1

[
m

Q̃
(bi) − bi

]
fχ6N Q\ 6

5
Q

)]∣∣∣∣∣
+

∣∣∣∣∣mR

[
Tα

(
k∏

i=1

[mR(bi)− bi] fχ6N Q\ 6
5
R

)]∣∣∣∣∣ =: L1 + L2 + L3 + L4.

An estimate similar to that for I3, together with KQ,R � K̃Q,R, we see that, for all
x ∈ X , L1 � [K̃Q,R]k‖
b‖RBMO(μ)M

(α)
r,5 f(x).

By some arguments similar to those used in the proofs of [14, Theorem 1.1] and
[8, Theorem 1.9], we easily see that, for all x ∈ X ,

L2 �
[
K̃Q,R

]k

⎧⎨⎩
k−1∑
i=1

∑
σ∈Ck

i

‖
bσ′‖RBMO(μ)Mr,6

(
T

α,	b
f(x)

)

+‖
b‖RBMO(μ)Mr,6(Tαf)(x) + ‖
b‖RBMO(μ)M
(α)
r,5 f(x)

}
,
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L3 � [K̃Q,R]kK̃(α)
Q,R‖
b‖RBMO(μ)M

(α)
r,5 f(x) and L4 � ‖
b‖RBMO(μ)M

(α)
r,5 f(x).

Combining the estimates for L1, L2, L3 and L4, we then obtain (3.13) and hence
complete the proof of Theorem 1.15.

Now we are ready to prove Theorem 1.19. In what follows, for any k ∈ N

and i ∈ {1, . . . , k}, let Ck
i be as in the introduction. For all sequences of numbers,

r := (r1, . . . , rk), and i-tuples σ := {σ(1), . . . , σ(i)} ∈ Ck
i , let 
b and 
bσ be as in

Theorem 1.15,

‖
bσ‖Oscexp Lrσ (μ) :=
i∏

j=1

‖bσ(j)‖Osc
exp L

rσ(j) (μ)

and, in particular,

‖
b‖OscexpLr (μ) :=
k∏

j=1

‖bj‖Osc
exp L

rj (μ).

Then we prove Theorem 1.19.

Proof of Theorem 1.19. Without loss of generality, by homogeneity, we may assume
that ‖f‖L1(μ) = 1 and ‖bi‖Oscexp Lri (μ) = 1 for all i ∈ {1, . . . , k}.

We prove the theorem by two steps: k = 1 and k > 1.

Step (i) k = 1. It is easy to see that the conclusion of Theorem 1.19 automatically
holds true if t ≤ β6‖f‖L1(μ)/μ(X ) when μ(X ) < ∞. Thus, we only need to deal with
the case that t > β6‖f‖L1(μ)/μ(X ). For any given bounded function f with bounded
support, q0 := 1/(1 − α) and any t > β6‖f‖L1(μ)/μ(X ), applying Lemma 2.6 to f
with t replaced by tq0 , and letting Rj be as in Lemma 2.6(iii), we see that f = g + h,
where g := fχX\∪j6Bj

+
∑

j ϕj and h :=
∑

j(ωjf −ϕj) =:
∑

j hj . Let p1 ∈ (1, 1/α)
and 1/q1 := 1/p1 − α. By (2.7), we easily know that ‖g‖L∞(μ) � tq0 . From this, the
boundedness of Tα from Lp1(μ) to Lq1(μ) and (2.19), it follows that

μ({x ∈ X : |Tα,bg(x)| > t}) � t−q1

∫
X
|Tα,bg(y)|q1 dμ(y) � t−q1‖g‖q1

Lp1(μ)

� t−q1tq0(p1−1)q1/p1‖f‖q1/p1

L1(μ)
� t−q0 ,

where Tα,b := Tα,b1. On the other hand, by (2.3) with p = 1 and t replaced by
tq0 , and the fact that the sequence of balls, {Bj}j , is pairwise disjoint, we see that
μ
(∪j62Bj

)
� t−q0

∫
X |f(y)| dμ(y) � t−q0 , and hence the proof of Step (i) can be

reduced to proving

(3.14)
μ

⎛⎝⎧⎨⎩x ∈ X \
⎛⎝⋃

j

62Bj

⎞⎠ : |Tα,bh(x)| > t

⎫⎬⎭
⎞⎠

�
[‖Φ1/r(t

−1|f |)‖L1(μ) + Φ1/r(t
−1‖f‖L1(μ))

]q0 .
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For each fixed j and all x ∈ X , let bj(x) := b(x)− m
B̃j

(b) and write

Tα,bh(x) =
∑

j

bj(x)Tαhj(x)−
∑

j

Tα(bjhj)(x) =: I(x) + II(x).

For the term II(x), by the boundedness of Tα from L1(μ) to Lq0,∞(μ), we conclude
that

μ ({x ∈ X : |II(x)| > t})

� t−q0

⎡⎣∑
j

∫
X
|bj(y)hj(y)| dμ(y)

⎤⎦q0

� t−q0

⎡⎣∑
j

∫
X
|b(y)− mB̃j

(b)||f(y)|ωj(y) dμ(y)

⎤⎦q0

+t−q0

⎡⎣∑
j

‖ϕj‖L∞(μ)

∫
Rj

|b(y)− m
B̃j

(b)| dμ(y)

⎤⎦q0

=: U + V.

By Lemma 2.6(iii), we easily know that Rj is also (6, β6)-doubling and Rj = R̃j .
Thus, from Lemmas 2.2 and 2.1, an argument similar to that used in the proof of [14,
Theorem 1.2], (2.5) and the fact that {6Bj}j is a sequence of finite overlapping balls,
we deduce that

(3.15) V � t−q0

⎡⎣∑
j

‖ϕj‖L∞(μ)μ(Rj)

⎤⎦q0

� t−q0

[∫
X
|f(y)| dμ(y)

]q0

.

On the other hand, by the generalized Hölder inequality ([8, Lemma 4.1]), Lemma
2.2 and an argument similar to that used in the proof of [14, Theorem 1.2], we have

(3.16) U �
[‖Φ1/r(t

−1|f |)‖L1(μ) + Φ1/r(t
−1‖f‖L1(μ))

]q0 .

Combining (3.15) and (3.16), we know that

(3.17) μ ({x ∈ X : |II(x)| > t}) �
[‖Φ1/r(t

−1|f |)‖L1(μ) + Φ1/r(t
−1‖f‖L1(μ))

]q0 ,

which is desired.
Now we turn our attention to I(x). Let xj be the center of Bj . Let θ be a bounded

function with ‖θ‖
Lq′0(μ)

≤ 1 and the support contained in X \ (∪j62Bj). By the
vanishing moment of hj and (1.8), we see that
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∫
X\(∪j62Bj)

|I(x)θ(x)| dμ(x)

�
∑

j

∫
X\2Rj

|bj(x)θ(x)|
∣∣∣∣∫X hj(y)[Kα(x, y)− Kα(x, xj)] dμ(y)

∣∣∣∣ dμ(x)

+
∑

j

∫
2Rj\62Bj

|bj(x)θ(x)||Tαhj(x)| dμ(x)

�
∑

j

rδ
Rj

∫
X
|hj(y)| dμ(y)

∫
X\2Rj

|bj(x)θ(x)|
[d(x, xj)]δ[λ(xj, d(x, xj))]1−α

dμ(x)

+
∑

j

∫
2Rj\62Bj

|bj(x)θ(x)||Tα(ωjf)(x)| dμ(x)

+
∑

j

∫
2Rj

|bj(x)θ(x)||Tα(ϕj)(x)| dμ(x) =: G + H + J.

From (1.2), Hölder’s inequality, Corollary 2.3, (2.1), (i) through (iv) of Lemma 2.1, we
deduce that∫

X\2Rj

|bj(x)θ(x)|
[d(x, xj)]δ[λ(xj, d(x, xj))]1−α

dμ(x)

�
∞∑

k=1

(
2krRj

)−δ 1
[λ(xj, 2krRj)]1−α

∫
2k+1Rj

|b(x)− m ˜2k+1Rj
(b)||θ(x)| dμ(x)

+
∞∑

k=1

(
2krRj

)−δ 1
[λ(xj, 2krRj)]1−α

|m
B̃j

(b)−m ˜2k+1Rj
(b)|

∫
2k+1Rj

|θ(x)| dμ(x)

�
∞∑

k=1

(
2krRj

)−δ
[

μ(2k+2Rj)
λ(xj, 6krRj)

]1−α

+
∞∑

k=1

K
B̃j , ˜2k+1Rj

(
2krRj

)−δ
[

μ(6k+1Rj)
λ(xj, 6krRj)

]1−α

� r−δ
Rj

,

where we used the fact that

K
B̃j , ˜2k+1Rj

� K
B̃j ,Rj

+ KRj,2k+1Rj
+ K

2k+1Rj, ˜2k+1Rj
� KRj,2k+1Rj

� k.

Since ‖hj‖L1(μ) �
∫
X |f(y)|ωj(y) dμ(y), we further see that G � ‖f‖L1(μ).

On the other hand, applying Hölder’s inequality, Corollary 2.3, (2.1), (iv), (i) and
(iii) of Lemma 2.1, the boundedness of Tα from Lp1(μ) to Lq1(μ) with p1 ∈ (p0, 1/α)
and 1/q1 = 1/p1−α, (2.7), and the fact that {6Qj}j is a sequence of finite overlapping
balls, we obtain
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J ≤
∑

j

∫
2Rj

[
|b(x)− m

2̃Rj
(b)|+ |m

B̃j
(b)− m

2̃Rj
(b)|

]
|Tα(ϕj)(x)θ(x)| dμ(x)

≤ ‖θ‖
Lq′

0 (μ)

∑
j

⎧⎨⎩
[∫

2Rj

|b(x)− m
2̃Rj

(b)|q0|Tαϕj(x)|q0 dμ(x)

]1/q0

+

[∫
2Rj

|Tαϕj(x)|q0 dμ(x)

]1/q0 ∣∣∣mB̃j
(b)− m

2̃Rj
(b)

∣∣∣
⎫⎬⎭

�
∑

j

⎧⎨⎩‖Tαϕj‖Lq1(μ)

[∫
2Rj

|b(x)− m
2̃Rj

(b)|q0(q1/q0)′ dμ(x)

]1/q0−1/q1

+[μ(4Rj)]1/q0−1/q1|m
B̃j

(b)− m
2̃Rj

(b)|
}

�
∑

j

[μ(4Rj)]1/q0−1/q1‖ϕj‖Lp1(μ)

�
∑

j

[μ(4Rj)]1/q0−1/q1‖ϕj‖L∞(μ)[μ(Rj)]1/p1 �
∫
X
|f(x)| dμ(x),

where we used the fact that

|m
B̃j

(b)− m
2̃Rj

(b)| ≤ |m
B̃j

(b)− mRj(b)|+ |mRj(b)− m
2̃Rj

(b)| � 1.

To estimate H, by (1.7), (1.2) and (1.3), we see that, for all x ∈ 2Rj \ 62Bj ,

|Tα(ωjf)(x)| � 1
[λ(xj, d(x, xj))]1−α

∫
6Bj

|f(y)|ωj(y) dμ(y),

which further implies that

H �
∑

j

{∫
2Rj\Rj

|bj(x)θ(x)|
[λ(xj, d(x, xj))]1−α

dμ(x) +
∫

Rj\62Bj

· · ·
}∫

X
|f(y)|ωj(y) dμ(y)

�
∑

j

{
1

[λ(xj, rRj)]1−α

[∫
X
|bj(x)|q0 dμ(x)

]1/q0

+
N−1∑
k=0

[
μ((3 × 62)k+2Bj)

λ(xj, (3 × 62)krBj )

]1−α

+
N−1∑
k=0

[
μ((3 × 62)k+1Bj)

λ(xj , (3× 62)krBj)

]1−α

|mB̃j
(b) − m ˜(3×62)k+1Bj

(b)|
}

×
∫
X
|f(y)|ωj(y) dμ(y),

where N ∈ N satisfies that Rj = (3×62)NBj . Obviously, for each k ∈ {0, . . . , N−1},
(3× 62)kBj ⊂ Rj and hence

|m
B̃j

(b)− m ˜(3×62)k+1Bj
(b)| � KBj,(3×62)k+1Bj

� KBj,Rj � 1.
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Consequently, by the fact that Rj is the smallest (3 × 62, C
(3×62)+1
λ )-doubling ball of

the family {(3 × 62)kBj}k∈N and an argument similar to that used in the proof of
Lemma 3.4(iii), we see that

H �
∑

j

(
1+

N−1∑
k=0

[
μ((3×62)kBj)

λ(xj, (3×62)krBj)

]1−α
)∫

X
|f(y)|ωj(y) dμ(y)

�
∫
X
|f(y)| dμ(y).

Combining the estimates for G, H and J, we then conclude that∫
X\(∪j62Bj)

|I(x)θ(x)| dμ(x) � ‖f‖L1(μ).

Thus, we have

μ

⎛⎝⎧⎨⎩x ∈ X \
⎛⎝⋃

j

62Bj

⎞⎠ : |I(x)| > t

⎫⎬⎭
⎞⎠

� t−q0

∫
X\(∪j62Bj)

|I(x)|q0 dμ(x) �
[
t−1

∫
X\(∪j62Bj)

|f(x)| dμ(x)

]q0

,

which, together with (3.17), implies (3.14) and hence completes the proof of Theorem
1.19 in the case that k = 1.

Step (ii) k > 1. The proof of this case is completely analogous to that of
[14, Theorem 1.2], the details being omitted, which completes the proof of Theorem
1.19.

4. SOME APPLICATIONS

In this section, we apply all the results of Theorems 1.13, 1.15 and 1.19 to a specific
example of fractional integrals to obtain some interesting conclusions.

We first need the following notion.

Definition 4.1. Let ε ∈ (0,∞). A dominating function λ is said to satisfy the ε-
weak reverse doubling condition if, for all r ∈ (0, 2 diam(X )) and a ∈ (1, 2 diam(X )/r),
there exists a number C(a) ∈ [1,∞), depending only on a and X , such that, for all
x ∈ X ,
(4.1) λ(x, ar) ≥ C(a)λ(x, r)
and, moreover,

(4.2)
∞∑

k=1

1
[C(ak)]ε

< ∞.
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Remark 4.2.

(i) We remark that the 1-weak reverse doubling condition is just the weak reverse
doubling condition introduced in [9, Definition 3.1]. Moreover, it is easy to see
that, if ε1 < ε2 and λ satisfies the ε1-weak reverse doubling condition, then λ

also satisfies the ε2-weak reverse doubling condition.

(ii) Assume that diam(X ) = ∞. Let a = 2k and r = 2−k in (4.1). Then, by (4.2),
we see that, for any fixed x ∈ X ,

lim
k→∞

λ(x, 2−k) ≤ lim
k→∞

1
C(2k)

λ(x, 1) = 0.

Thus, by the fact that r → λ(x, r) is non-decreasing for any fixed x ∈ X , we
further know that limr→0 λ(x, r) = 0.

On the other hand, by (4.2), we see that limk→∞ C(2k) = ∞. Letting a = 2k

and r = 1 in (4.1), by an argument similar to that used for the case r → 0, we
know that, for any fixed x ∈ X , limr→∞ λ(x, r) = ∞.

(iii) By Remark 1.4(i), the dominating function in the Euclidean space Rd with a
Radon measure μ as in (1.1) is λ(x, r) := C0r

κ, which satisfies the ε-weak
reverse doubling condition for any ε ∈ (0,∞).

(iv) If (X , d, μ) is an RD-space, namely, a space of homogeneous type in the sense
of Coifman and Weiss with a measure μ satisfying both the doubling and the re-
verse doubling conditions, then λ(x, r) := μ(B(x, r)) is the dominating function
satisfying the ε-weak reverse doubling condition for any ε ∈ (0,∞). It is known
that a connected space of homogeneous type in the sense of Coifman and Weiss
is always an RD-space (see [47, p. 65] and [9, Remark 3.4(ii)]).

(v) We remark that the ε-weak reverse doubling condition is much weaker than the
assumption introduced by Bui and Duong in [2, Subsection 7.3]: there exists
m ∈ (0,∞) such that, for all x ∈ X and a, r ∈ (0,∞), λ(x, ar) = amλ(x, r).

Before we give an example, we first establish a technical lemma adapted from [10,
Lemma 2.1]. It turns out that the integral kernel 1/[λ(y, d(x, y))]1−α for α ∈ (0, 1) is
locally integrable.

Lemma 4.3. Let α ∈ (0, 1) and λ satisfy the α-weak reverse doubling condition.
Then there exists a positive constant C, depending on α, such that, for all x ∈ X and
r ∈ (0, 2 diam(X )),∫

B(x,r)

1
[λ(y, d(x, y))]1−α

dμ(y) ≤ C[λ(x, r)]α.
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Proof. From (1.3), (1.2), (4.1) and (4.2), we deduce that∫
B(x,r)

1
[λ(y, d(x, y))]1−α

dμ(y)

�
∫

B(x,r)

1
[λ(x, d(x, y))]1−α

dμ(y) �
∞∑

j=0

μ(B(x, 2−jr))
[λ(x, 2−j−1r)]1−α

�
∞∑

j=0

λ(x, 2−jr)
[λ(x, 2−j−1r)]1−α

�
∞∑

j=0

[λ(x, 2−j−1r)]α

�
∞∑

j=1

1
[C(2j)]α

[λ(x, r)]α � [λ(x, r)]α,

which completes the proof of Lemma 4.3.

For all α ∈ (0, 1), f ∈ L∞
b (μ) and x ∈ X , the fractional integral Iαf(x) is defined

by

Iαf(x) :=
∫
X

f(y)
[λ(y, d(x, y))]1−α

dμ(y).(4.3)

Notice that, if (X , d, μ) := (Rd, | · |, μ), λ(x, r) := C0r
κ with κ ∈ (0, d] and the

measure μ is as in (1.1), then Iα is just the classical fractional integral in the non-
doubling space (Rd, | · |, μ).

We now show that the kernel of Iα satisfies all the assumptions of this article. By
(1.3), we know that the integral kernel Kα(x, y) := 1

[λ(y,d(x,y))]1−α satisfies (1.7). By
Remark 1.4(iii), without loss of generality, we may assume that λ satisfies that there
exist ε, C̃ ∈ (0,∞) such that, for all x ∈ X , r ∈ (0,∞) and t ∈ [0, r],

(4.4) |λ(x, r + t) − λ(x, r)| ≤ C̃
tε

rε
λ(x, r).

Remark 4.4. By (4.4), we see that, for a fixed x ∈ X , r → λ(x, r) is continuous
on (0,∞).

Now we show that the integral kernel Kα of Iα also satisfies (1.8).

Proposition 4.5. Assume that λ satisfies (4.4). Then the integral kernel Kα of Iα

in (4.3) satisfies (1.8).

Proof. For all x, x̃, y ∈ X with d(x, y) ≥ 2d(x, x̃), we consider the following
two cases.
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Case (i) d(x, y) ≤ d(x̃, y). Let t = d(x̃, y) − d(x, y) and r = d(x, y). Then, by
0 ≤ t ≤ d(x, x̃) ≤ 1

2d(x, y) ≤ d(x, y) = r and (4.4), we see that

|λ(y, d(x̃, y))− λ(y, d(x, y))|

� [d(x̃, y)− d(x, y)]ε

[d(x, y)]ε
λ(y, d(x, y)) �

[
d(x, x̃)
d(x, y)

]ε

λ(y, d(x, y)).

From this, d(x, y) ≤ d(x̃, y), Definition 1.3 and (1.3), we further deduce that

|Kα(x, y)− Kα(x̃, y)|

≤
∣∣∣∣ 1
λ(y, d(x, y))

− 1
λ(y, d(x̃, y))

∣∣∣∣1−α

=
|λ(y, d(x̃, y))− λ(y, d(x, y))|1−α

[λ(y, d(x̃, y))λ(y, d(x, y))]1−α

� [d(x, x̃)]ε(1−α)

[d(x, y)]ε(1−α)[λ(y, d(x̃, y))]1−α
� [d(x, x̃)]ε(1−α)

[d(x, y)]ε(1−α)[λ(x, d(x, y))]1−α
.

This finishes the proof of (1.8) in this case.

Case (ii) d(x̃, y) ≤ d(x, y). In this case, since d(x, y) ≥ 2d(x, x̃), it follows that

d(x, x̃) ≤ 1
2
d(x, y) ≤ 1

2
[d(x, x̃) + d(x̃, y)],

and hence d(x, x̃) ≤ d(x̃, y). Then, by an argument similar to that used in the proof
of Case (i), we see that

|Kα(x, y)− Kα(x̃, y)| � [d(x, x̃)]ε(1−α)

[d(x̃, y)]ε(1−α)[λ(x, d(x, y))]1−α
,

which, together with d(x, y) ≤ d(x, x̃) + d(x̃, y) ≤ 2d(x̃, y), further implies that (1.8)
holds true in this case. This finishes the proof of Proposition 4.5.

To consider the boundedness of Iα on Lebesgue spaces, we need the following
Welland inequality in the present setting, which is a variant of [11, Theorem 6.4].

Lemma 4.6. Assume that diam(X ) = ∞. Let α ∈ (0, 1), ε ∈ (0, min{α, 1− α})
and λ satisfy the ε-weak reverse doubling condition. Then there exists a positive
constant C, independent of f and x, such that, for all x ∈ X and f ∈ L∞

b (μ),

|Iαf(x)| ≤ C
[
M

(α+ε)
1,6 f(x)M (α−ε)

1,6 f(x)
]1/2

,

where M
(α)
1,6 for α ∈ (0, 1) is defined as in Lemma 3.1.

Proof. Without loss of generality, we may assume that the right-hand side of the
desired inequality is finite. Let s ∈ (0,∞). We write

|Iαf(x)| ≤
∫

B(x,s)

|f(y)|
[λ(y, d(x, y))]1−α

dμ(y) +
∫
X\B(x,s)

· · · =: I + II.
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By (1.3), (1.2), (4.1) and (4.2), we see that

I �
∫

B(x,s)

|f(y)|
[λ(x, d(x, y))]1−α

dμ(y) �
∞∑

j=0

1
[λ(x, 2−j−1s)]1−α

∫
B(x,2−js)

|f(y)| dμ(y)

∼
∞∑

j=0

[λ(x, 2−j−1s)]ε

[λ(x, 2−j−1s)]1−α+ε

∫
B(x,2−js)

|f(y)| dμ(y)

� [λ(x, s)]ε
∞∑

j=1

1
[C(2j)]ε

M
(α−ε)
1,6 f(x) � [λ(x, s)]εM (α−ε)

1,6 f(x).

Similarly, we also see that II � [λ(x, s)]−εM
(α+ε)
1,6 f(x). Thus,

|Iαf(x)| � [λ(x, s)]εM (α−ε)
1,6 f(x) + [λ(x, s)]−εM

(α+ε)
1,6 f(x).

By Remark 4.2(ii) and Remark 4.4, we can choose s ∈ (0,∞) such that

[λ(x, s)]ε :=

[
M

(α+ε)
1,6 f(x)

M
(α−ε)
1,6 f(x)

]1/2

.

Then we obtain the desired conclusion and hence complete the proof of Lemma 4.6.

Now we are ready to state the main theorem of this section.

Theorem 4.7. Assume that diam(X ) = ∞. Let α ∈ (0, 1), p ∈ (1, 1/α) and
1/q = 1/p − α. If λ satisfies the ε-weak reverse doubling condition for some ε ∈
(0, min{α, 1− α, 1/q}), then Iα is bounded from Lp(μ) into Lq(μ).

Proof. Let 1
q+
ε

:= 1
q − ε, 1

q−ε
:= 1

q + ε, q+ := 2 q+
ε
q and q− := 2 q−ε

q . Then we have
1 < p < q−ε < q < q+

ε < ∞, 1 < q− < q+ < ∞ and 1/q+ +1/q− = 1. From Lemma
4.6, Hölder’s inequality and Lemma 3.1, it follows that

‖Iαf‖Lq(μ) �
∥∥∥∥[M (α+ε)

1,6 f
]q/2

∥∥∥∥1/q

Lq+ (μ)

∥∥∥∥[M (α−ε)
1,6 f

]q/2
∥∥∥∥1/q

Lq−(μ)

∼ ‖M (α+ε)
1,6 f‖1/2

Lq+ε (μ)
‖M (α−ε)

1,6 f‖1/2

Lq−ε (μ)
� ‖f‖1/2

Lp(μ)
‖f‖1/2

Lp(μ)
∼ ‖f‖Lp(μ),

which completes the proof of Theorem 4.7.

From Theorems 4.7, 1.13, 1.15 and 1.19, we immediately deduce the following
interesting conclusions, the details being omitted.
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Corollary 4.8. Under the same assumption as that of Theorem 4.7, all the conclu-
sions of Theorems 1.13, 1.15 and 1.19 hold true, if Tα therein is replaced by Iα as in
(4.3).
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paces Homogènes, Lecture Notes in Mathematics, 242, Springer-Verlag, Berlin-New
York, 1971.

7. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull.
Amer. Math. Soc., 83 (1977), 569-645.

8. X. Fu, D. Yang and W. Yuan, Boundedness on Orlicz spaces for multilinear commutators
of Calderón-Zygmund operators on non-homogeneous spaces, Taiwanese J. Math., 16
(2012), 2203-2238.

9. X. Fu, Da. Yang and Do. Yang, The molecular characterization of the Hardy space
H1 on non-homogeneous spaces and its application, J. Math. Anal. Appl., (to appear),
http://dx.doi.org/10.1016/j.jmaa.2013.09.021.

10. J. Garcı́a-Cuerva and A. E. Gatto, Boundedness properties of fractional integral operators
associated to non-doubling measures, Studia Math., 162 (2004), 245-261.

11. J. Garcı́a-Cuerva and J. M. Martell, Two-weight norm inequalities for maximal operators
and fractional integrals on non-homogeneous spaces, Indiana Univ. Math. J., 50 (2001),
1241-1280.



Generalized Fractional Integrals and Their Commutators 555

12. J. Garcı́a-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related
Topics, North-Holland Mathematics Studies, 116, North-Holland Publishing Co., Ams-
terdam, 1985.

13. J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, 2001.

14. G. Hu, Y. Meng and D. Yang, Multilinear commutators for fractional integrals in non-
homogeneous spaces, Publ. Mat., 48 (2004), 335-367.

15. G. Hu, Y. Meng and D. Yang, Multilinear commutators of singular integrals with non
doubling measures, Integral Equations Operator Theory, 51 (2005), 235-255.

16. G. Hu, Y. Meng and D. Yang, New atomic characterization of H1 space with non-
doubling measures and its applications, Math. Proc. Cambridge Philos. Soc., 138
(2005), 151-171.

17. G. Hu, Y. Meng and D. Yang, Boundedness of Riesz potentials in nonhomogeneous
spaces, Acta Math. Sci. Ser. B Engl. Ed., 28 (2008), 371-382.

18. T. Hytönen, A framework for non-homogeneous analysis on metric spaces, and the
RBMO space of Tolsa, Publ. Mat., 54 (2010), 485-504.

19. T. Hytönen, S. Liu, Da. Yang and Do. Yang, Boundedness of Calderón-Zygmund opera-
tors on non-homogeneous metric measure spaces, Canad. J. Math., 64 (2012), 892-923.

20. T. Hytönen and H. Martikainen, Non-homogeneous Tb theorem and random dyadic cubes
on metric measure spaces, J. Geom. Anal., 22 (2012), 1071-1107.

21. T. Hytönen, Da. Yang and Do. Yang, The Hardy space H1 on non-homogeneous metric
spaces, Math. Proc. Cambridge Philos. Soc., 153 (2012), 9-31.

22. H. Lin and D. Yang, Spaces of type BLO on non-homogeneous metric measure spaces,
Front. Math. China, 6 (2011), 271-292.

23. H. Lin and D. Yang, An interpolation theorem for sublinear operators on non-homogeneous
metric measure spaces, Banach J. Math. Anal., 6 (2012), 168-179.

24. H. Lin and D. Yang, Equivalent boundedness of Marcinkiewicz integrals on non-homo-
geneous metric measure spaces, Sci. China Math., (to appear).

25. S. Liu, Da. Yang and Do. Yang, Boundedness of Calderón-Zygmund operators on
non-homogeneous metric measure spaces: Equivalent characterizations, J. Math. Anal.
Appl., 386 (2012), 258-272.

26. L. Maligranda, Indices and interpolation, Dissertationes Math. (Rozprawy Mat.), 234
(1985), 49 pp.

27. E. Nakai, On generalized fractional integrals, Taiwanese J. Math., 5 (2001), 587-602.

28. E. Nakai, On generalized fractional integrals in the Orlicz spaces on spaces of homoge-
neous type, Sci. Math. Jpn., 54 (2001), 473-487.

29. F. Nazarov, S. Treil and A. Volberg, The Tb-theorem on non-homogeneous spaces, Acta
Math., 190 (2003), 151-239.



556 Xing Fu, Dachun Yang and Wen Yuan
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