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ON THE CONVERGENCE OF INEXACT PROXIMAL POINT ALGORITHM
ON HADAMARD MANIFOLDS

P. Ahmadi and H. Khatibzadeh*

Abstract. In this paper we consider the proximal point algorithm to approximate
a singularity of a multivalued monotone vector field on a Hadamard manifold.
We study the convergence of the sequence generated by an inexact form of the
algorithm. Our results extend the results of [3, 25] to Hadamard manifolds as well
as the main result of [11] with more general assumptions on the control sequence.
We also give some application to optimization.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈 , 〉 and norm ‖ . ‖. A possibly
multivalued mapping A : H −→ 2H is said to be monotone (resp. strongly monotone)
operator provided that

〈y2−y1, x2−x1〉 � 0 (resp. � α ‖ x1−x2 ‖2) , ∀xi ∈ D(A), ∀yi ∈ A(xi) , i = 1, 2 ,

where α is a fixed positive real number and D(A) denotes the domain of A defined
by D(A) := {x ∈ H : A(x) �= ∅}. A is maximal monotone if and only if A is
monotone and R(I + A) = H , where I is the identity mapping of H . Given any
function ϕ : H −→] − ∞, +∞] (not necessarily convex) with the domain D(ϕ), its
subdifferential is defined by

∂ϕ(x) := {w ∈ H | ϕ(x)− ϕ(y) � 〈w, x− y〉 , ∀y ∈ H}.

The function ϕ is called proper if and only if there exists an x ∈ H such that ϕ(x) <
+∞. It is a well-known result that if ϕ is a proper, convex and lower semicontinuous
function, then ∂ϕ is a maximal monotone operator. We refer the reader to the book
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by Morosanu [21] in order to understand monotone operators and subdifferential of
convex functions in Hilbert spaces.

One of the most important problems in maximal monotone operator theory is ap-
proximation of a zero of the maximal monotone operator and one of the most popular
algorithms to find a zero of a maximal monotone operator is the proximal point algo-
rithm. This algorithm was first proposed by Martinet [19] for convex functions. The
proximal point algorithm for a maximal monotone operator A : H −→ 2H , which
has been introduced by Rockafellar [25], is the sequence generated by the following
process

(1) yn = (1 + λnA)−1(yn−1 + en) , n = 1, 2, ...,

where {λn} is a positive real sequence and {en} is a sequence in Hilbert space H .
The algorithm (1) is also a discretization of nonhomogeneous first order evolution
equation of maximal monotone type. Rockafellar in his seminal paper [25] showed the
weak convergence of the sequence {yn} generated by (1) to a zero of A, provided that
λn � λ > 0, ∀n � 1, and

∑∞
n=1 ‖en‖ < +∞. Brézis and Lions [3] proved the weak

convergence of the sequence {yn} with condition
∑∞

n=1 λ2
n = +∞ on the parameter

sequence {λn} and the same condition on the error sequence {en}. They also proved
some other weak and strong convergence theorems with additional conditions on the
maximal monotone operator A. Djafari Rouhani and Khatibzadeh [13] showed that
the weak and strong convergence results of Brézis and Lions may be obtained without
maximality assumption of the monotone operator A, and when the monotone operator
is maximal, the weak and strong convergence point belongs to A−1(0). In fact they
proved that the weak and strong convergence theorems for the sequence {yn} are valid
without assuming A−1(0) �= ∅. The second author [17] and Zaslavski [29] studied
the convergence of the sequence {yn} without summability assumption on the error
{en}. Convergence analysis of a modified version of the proximal point algorithm
under more general error sequence studied in [5, 18, 24, 28]. Recently, the monotone
operators have been defined by Németh [23] in single valued case, and by Li, López,
Márquez and Wang [11, 12] as well as by Iwamiya and Okochi [15] in set-valued case
on Hadamard manifolds.

Since we aim to study multivalued monotone vector fields on Hadamard manifolds,
we remind some indispensable backgrounds about Riemannian manifolds from [16]
and [26].

Let M be a complete and connected m-dimensional Riemannian manifold, with a
Riemannian metric 〈, 〉 and the corresponding norm denoted by ‖.‖. For p ∈ M the
tangent space at p is denoted by TpM and the tangent bundle of M by TM . Throughout
the paper we assume that M is a complete, simply connected Riemannian manifold of
non-positive sectional curvature of dimension m, which is called a Hadamard manifold
of dimension m.
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Proposition 1.1. ([26, p. 221]). Let p ∈ M . Then expp : TpM → M is a
diffeomorphism, and for any two points p, q ∈ M there exists a unique normalized
geodesic joining p to q, which is, in fact, a minimal geodesic.

Let [a, b] be a closed interval in R, γ : [a, b] → M a smooth curve. The length of
γ is defined as

L(γ) :=
∫ b

a

‖γ̇(t)‖dt

and the Riemannian distance d(p, q) is defined by

d(p, q) : = inf{L(γ)| γ : [0, 1] → M is a piecewise smooth curve with

γ(0) = p , γ(1) = q} ,

which induces the original topology on M . Furthermore, d(p, q) = ‖ exp−1
p q‖, for any

two points p, q ∈ M (see [26]).
A geodesic joining p to q in M is said to be minimal if its length equals d(p, q). By

definition, a geodesic triangle Δ(p1p2p3) of a Riemannian manifold is a set consisting
of three points p1, p2 and p3, and three minimal geodesics joining these points.

Proposition 1.1 shows that any m-dimensional Hadamard manifold has the same
topology and differential structure as the Euclidean space R

m. In fact, Hadamard
manifolds and Euclidean spaces have some similar geometrical properties. One of
them is described in the following proposition.

Proposition 1.2. ([26, p. 223]) (Comparison theorem for triangles). Let Δ(p1p2p3)
be a geodesic triangle. Denote by γi : [0, li] → M the geodesic joining pi to pi+1,
and set li := L(γi), αi := ∠(γ̇i(0),−γ̇i−1(li−1)), where i = 1, 2, 3 (mod 3). Then

(2)
α1 + α2 + α3 � π ,

l2i + l2i+1 − 2lili+1 cos αi+1 � l2i−1 .

Since

〈exp−1
pi+1

pi, exp−1
pi+1

pi+2〉 = d(pi, pi+1)d(pi+1, pi+2) cosαi+1 ,

so the inequality (2) may be rewritten as follows

(3) d2(pi, pi+1) + d2(pi+1, pi+2) − 2〈exp−1
pi+1

pi, exp−1
pi+1

pi+2〉 � d2(pi+2, pi).

The monotone vector fields were first defined by Németh, [22], and the monotone
point-to-set vector fields were first considered by Cruz Neto, Ferreira and Lucambio
Pérez, [6]. For some important properties of monotone vector fields we refer to [7,
10]. The following definition extends some notions of the monotonicity, from the
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corresponding notions in Hilbert spaces (see [4, 20, 21, 30]), to multivalued vector
fields on Hadamard manifolds. Let X (M) denote the set of all multivalued vector
fields A : M −→ 2TM such that A(x) ⊆ TxM for each x ∈ M and the domain D(A)
of A is closed and convex, where D(A) is defined by

D(A) = {x ∈ M : A(x) �= ∅} .

Definition 1.3. ([11]). Let A ∈ X (M). Then A is said to be
(i) monotone if the following condition holds for any x, y ∈ D(A):

(4) 〈u, exp−1
x y〉 � 〈v,− exp−1

y x〉 , ∀u ∈ A(x) and ∀v ∈ A(y) ;

(ii) strongly monotone if there exists ρ > 0 such that, for any x, y ∈ D(A), we
have

(5) 〈u, exp−1
x y〉 − 〈v,− exp−1

y x〉 � −ρd2(x, y) , ∀u ∈ A(x) and ∀v ∈ A(y) ;

(iii) maximal monotone if it is monotone and the following implication holds for
any x ∈ D(A) and u ∈ TxM :

(6) 〈u, exp−1
x y〉 � 〈v,− exp−1

y x〉 , ∀y ∈ D(A) and v ∈ A(y) =⇒ u ∈ A(x).

Iwamiya and Okochi have introduced an alternative definition of monotonicity in
terms of the distance function between geodesics (see [15]). It has been proved that
both definitions are equivalent (see [11]).

Definition 1.4. ([11]). Let A ∈ X (M) and x0 ∈ D(A). Then A is said to be upper
Koratowski semicontinuous at x0 if, for any sequences {xk} ⊆ D(A) and {uk} ⊂ TM
with each uk ∈ A(xk), the relations limk→∞xk = x0 and limk→∞uk = u0 imply that
u0 ∈ A(x0). A is said to be upper Koratowski semicontinuous on M if it is upper
Koratowski semicontinuous at each point x0 ∈ D(A).

In [11, Proposition 3.5] it has been shown that each maximal monotone vector field
is upper Koratowski semicontinuous.

Definition 1.5. Let X be a metric space. A map T : X → X is called nonexpansive
if d(T (x), T (y)) � d(x, y), for all x, y ∈ X .

Definition 1.6. ([12]). Given λ > 0 and A ∈ X (M), the resolvent of A of order
λ is the set-valused mapping Jλ : M → 2M defined by

(7) Jλ(x) := {z ∈ M : x ∈ expz λAz} , ∀x ∈ M
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It is a well-known result that if A ∈ X (M), D(A) = M , the vector field A is
maximal monotone if and only if Jλ is single-valued and firmly nonexpansive and
D(Jλ) = M (see [12]).

Ferreira and Oliveira in [9] introduced the exact (without error) proximal point
algorithm

(8) 0 ∈ λnA(xn+1) − exp−1
xn+1

xn , n = 0, 1, 2, ...,

where {λn} is a positive real sequence and A : M −→ 2TM is a multivalued monotone
vector field. Some properties of the proximal sequence for finding singularities of vector
fields were shown in [8], and recently, some important properties of the algorithm for
optimization problem in Hadamard manifolds were established (see [1, 2, 27]).

Li, López and Márquez have studied the algorithm (8) in [11] as well. The main
result of [11] is the convergence of {xn} to a singularity of the monotone vector field
A when λn � λ > 0. It extends Rockafellar’s result when en ≡ 0 on Hadamard
manifolds setting. Our aim in this paper is to extend the convergence results of Brézis
and Lions in Hadamard manifolds. We study the convergence of the sequence generated
by

(9) 0 ∈ λnA(yn+1) − exp−1
yn+1

yn + en , n = 0, 1, 2, ...

to a singularity of the maximal monotone operator A under summability assumption on
{en} and appropriate assumptions on the sequence {λn} and the maximal monotone
operator A. Our results extend previous results of [3, 11, 25]. In [11] authors studied
the convergence of the sequence given by (8) to a singularity of A under the assumption
λn � λ > 0. In this paper our motivation is to study the convergence of the sequence
{yn} given by (9) to a singularity of the monotone vector field A under the more
general assumptions on the control parameter {λn} and summability assumption on the
error sequence {en}. Obviously, more freedom in choosing the parameters {λn} and
existence the error sequence in the algorithm given by (9) can be useful from practical
and computational point of views. Note that the existence of the sequence {xn} in (8)
is guaranteed by the maximal monotonicity of A and Remark 4.4-(ii) of [11].

2. CONVERGENCE RESULTS IN THE PROXIMAL POINT ALGORITHM

We first recall the notion of Fejér convergence and the following related result from
[14].

Definition 2.1. Let X be a complete metric space and K ⊆ X be a nonempty set.
A sequence {xn} ⊂ X is called Fejér convergent to K if

d(xn+1, y) � d(xn, y), ∀y ∈ K and n = 0, 1, 2, ... .
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Lemma 2.2. Let X be a complete metric space and K ⊆ X be a nonempty set.
Let {xn} ⊂ X be Fejér convergent to K and suppose that any cluster point of {xn}
belongs to K. If the set of cluster points of {xn} is nonempty, then {xn} converges
to a point of K.

Theorem 2.3. Let A ∈ X (M) be a maximal monotone vector field such that
A−1(0) �= ∅. Suppose that x0 = y0 ∈ D(A). Assume that the sequences {xn} and
{yn} are generated by the algorithms (8) and (9), respectively. If {xn} converges to
a singularity of A, then {yn} does.

Proof. Let {yn} converge to a singularity of A, then by (9) we have

(10) exp−1
yk

yk−1 − ek ∈ λkA(yk) , k = 1, 2, ... .

For every fixed k, consider the sequence {ξn(k)} defined by

ξ0(k) = yk , ξ1(k) = Jλk+1
(yk) , ... , ξn(k) = Jλk+n

(ξn−1(k)) .

By Theorem 4 of [12], Jλ is nonexpansive, so

d(ξn(k), ξn+1(k − 1)) = d(Jλk+n
(ξn−1(k)), Jλk+n

(ξn(k − 1)))
� d(ξn−1(k), ξn(k − 1))
� ... � d(ξ0(k), ξ1(k − 1))
= d(yk, Jλk

(yk−1))

By definition of Jλk
(yk−1) we have

(11) exp−1
Jλk

(yk−1) yk−1 ∈ λkAJλk
(yk−1) .

This together (4) and (10) imply that

〈exp−1
Jλk

(yk−1)
yk−1, exp−1

Jλk
(yk−1)

yk〉 � 〈exp−1
yk

yk−1 − ek,− exp−1
yk

Jλk
(yk−1)〉

Hence by (3), we get
d(yk, Jλk

(yk−1)) � ‖ek‖.
Therefore

(12) d(ξn(k), ξn+1(k − 1)) � ‖ek‖.

By the assumption {ξn(k)} converges to some ξ(k), so (12) implies that

d(ξ(k), ξ(k− 1)) � ‖ek‖.
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Hence {ξ(k)} is a Cauchy sequence and so {ξ(k)} converges to some a. On the other
hand

d(yk, ξn+1(k − n − 1)) �
d(yk, ξ1(k−1))+d(ξ1(k−1), ξ2(k−2))+· · ·+d(ξn(k−n), ξn+1(k−n−1)) �

k∑
i=k−n

‖ei‖ , ∀k > n ,

hence

d(yn+k, ξn+1(k − 1)) �
k+n∑
i=k

‖ei‖.

By the triangular inequality

d(yk+n, a) � d(yk+n, ξn+1(k − 1)) + d(ξn+1(k − 1), ξ(k− 1)) + d(ξ(k − 1), a).

Taking limsup when n → +∞ from both sides of this inequality, we get that

limsupn→+∞d(yn, a) �
+∞∑
i=k

‖ei‖ + d(ξ(k − 1), a).

Now the theorem is proved by letting k → +∞.

Theorem 2.4. Let A ∈ X (M) be maximal monotone such that A−1(0) �= ∅. Let
{λn} be a sequence of positive real numbers with

(13)
+∞∑
n=1

λ2
n = +∞ .

If y0 ∈ D(A), then the sequence {yn} generated by (9) converges to a singularity of
A.

Proof. By Theorem 2.3 it is enough to show the convergence of the sequence {xn},
defined by (8), to a singularity of A. For this purpose, we show that the sequence {xn}
is Fejér convergent to A−1(0) and any cluster point of {xn} belongs to A−1(0), then
one gets the result by Lemma 2.2. Let x ∈ A−1(0). By (8), we get

(14) λ−1
n+1 exp−1

xn+1
xn ∈ A(xn+1) , n = 0, 1, 2, ... .

Hence the monotonicity of A, for u = λ−1
n+1 exp−1

xn+1
xn ∈ A(xn+1) and v = 0 ∈ A(x),

implies that

(15) 〈exp−1
xn+1

xn, exp−1
xn+1

x〉 � 0 .
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Consider the geodesic triangle Δ(xnxn+1x). By inequality (3) of the comparison
theorem for triangles, one obtains

d2(xn+1, x) + d2(xn+1, xn) − 2〈exp−1
xn+1

xn, exp−1
xn+1

x〉 � d2(xn, x) .

It follows from (15) that
d2(xn+1, x) � d2(xn, x)

which shows that {xn} is Fejér convergent to A−1(0).
Now, we show that any cluster point of {xn} belongs to A−1(0). Let x′ be a cluster

point of {xn}. Then there exists a subsequence {nk} of {n} such that xnk
→ x′. Let

un := λ−1
n exp−1

xn
xn−1 , n = 1, 2, ... .

Hence un ∈ A(xn) for each n � 1 by (8). We claim that un → 0. The monotonicity
of A implies that

〈un+1, exp−1
xn+1

xn〉 � 〈un,− exp−1
xn

xn+1〉 , n = 1, 2, ... .

Hence

λn+1‖un+1‖2 � ‖un‖‖ exp−1
xn

xn+1‖
= ‖un‖‖ exp−1

xn+1
xn‖

= ‖un‖λn+1‖un+1‖,

which shows that the sequence {‖un‖} is nonincreasing. The inequality (3), in the
geodesic triangle Δ(xnxn+1x), and the inequality (15) show that

d2(xn+1, xn) � d2(xn, x)− d2(x, xn+1) .

Hence
λ2

n+1‖un+1‖2 � d2(xn, x)− d2(x, xn+1).

Summing up from n = 0 to n = k, and by the fact that {‖un‖} is a nonincreasing
sequence, we get that

(16) ‖uk+1‖2
k∑

n=0

λ2
n+1 � d2(x0, x) < ∞ .

By taking limit from the both sides of the inequality (16), when k → +∞, and using
(13) one gets that un → 0.

Thus the subsequence {unk
} of {un} converges to 0 as well. Since xnk

→ x′ and
A is upper Kuratowski semicontinuous at x′ by Proposition 3.5 of [11], 0 ∈ A(x′),
that is, x′ ∈ A−1(0). Now the theorem is proved by Lemma 2.2.
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Theorem 2.5. Let A ∈ X (M) be such that A−1(0) �= ∅. Suppose that A is
maximal monotone and strongly monotone. Let {λn} be a sequence of positive real
numbers such that

(17)
∞∑

n=0

λn = +∞ .

Let y0 ∈ D(A), then the sequence {yn} generated by (9) converges to a singularity of
A.

Proof. By Theorem 2.3 we only need to prove the convergence of the sequence
{xn}, defined by (8), to a singularity of A. Let x ∈ A−1(0), so 0 ∈ A(x) and
λ−1

n+1 exp−1
xn+1

xn ∈ A(xn+1) by (8). The strong monotonicity of A and (8) imply that

(18) 〈λ−1
n exp−1

xn
xn−1, exp−1

xn
x〉 � −ρd2(xn, x) n = 1, 2, ... .

Consider the geodesic triangle Δ(xn−1xnx). By inequality (3) of the comparision
theorem for triangles, we have that

d2(xn−1, xn) + d2(xn, x)− 2〈exp−1
xn

xn−1, exp−1
xn

x〉 � d2(x, xn−1) .

It follows from (18) that

2ρλnd2(xn, x) � d2(x, xn−1) − d2(xn, x) n = 1, 2, ...

and

(19) d2(xn, x) � d2(xn−1, x) n = 1, 2, ... .

Hence

2ρ

k∑
n=1

λnd2(xn, x) �
k∑

n=1

(d2(x, xn−1) − d2(xn, x)) .

Combining this with (19), we obtain

2ρd2(xk, x)
k∑

n=1

λn � d2(x, x◦) k = 1, 2, ... .

This together (17) implies that limk→∞d2(xk, x) = 0, that is xn → x, as n → +∞.

Definition 2.6. A map A : M → 2TM is called demipositive if there exists x◦ ∈
A−1(0) such that Ω(x◦) ⊂ A−1(0), where Ω(x◦) is the set of all p ∈ M for which
there are sequences {pn} ⊂ M and {ωn} ⊂ TM such that ωn ∈ A(pn) , pn → p ,
〈ωn,− exp−1

pn
x◦〉 → 0 and {‖ωn‖} is a bounded sequence.
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Theorem 2.7. Let A ∈ X (M) be a maximal monotone and demipositive multi-
valued vector field. Suppose that {λn} is a sequence of positive real numbers such
that

(20)
∞∑

n=1

λn = +∞ .

Let y0 ∈ D(A), then the sequence {yn} generated by (9) converges to a singularity of
A.

Proof. By Theorem 2.3, we only need to prove that the sequence {xn}, defined by
(8), is convergent to a singularity of A. Let

un := λ−1
n exp−1

xn
xn−1 , n = 1, 2, ... .

Hence un ∈ A(xn) for each n � 1 by (8). Since A is monotone, the same proof of
that of Theorem 2.4 shows that {xn} is Fejér convergent to A−1(0), and {‖un‖} is
a bounded sequence. By Lemma 2.2, we need only to show that any cluster point of
{xn} belongs to A−1(0). Since A is demipositive, there exists x◦ ∈ A−1(0) such that
Ω(x◦) ⊂ A−1(0). First we verify the following assertion. For any ε > 0 there exists
N ∈ N such that

∀n � N , ∃m ∈ N , N � m � n ; d(xn, xm) < ε and 〈um,− exp−1
xm

x◦〉 < ε .

By (8), we obtain

λk〈uk, exp−1
xk

x◦〉 = 〈exp−1
xk

xk−1, exp−1
xk

x◦〉, k = 1, 2, ... ,

and so

λk〈uk,− exp−1
xk

x◦〉 � 1
2
d2(xk−1, x◦) − 1

2
d2(xk, x◦) k = 1, 2, ... .

Hence

(21)
+∞∑
k=1

λk〈uk,− exp−1
xk

x◦〉 < ∞ .

Let
Pε = {k ∈ N : 〈uk,− exp−1

xk
x◦〉 � ε} .

Since
∑

k∈Pε
λk < ∞ by (21), so

∑
k∈Pε

d(xk, xk−1) =
∑
k∈Pε

‖ exp−1
xk

xk−1‖ =
∑
k∈Pε

λk‖uk‖ < ∞ .

Thus there exists N1 ∈ N such that

(22)
∑

k�N1, k∈Pε

d(xk, xk−1) < ε,
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and so there exists N � N1, by (21), such that

〈uN ,− exp−1
xN

x◦〉 < ε .

Hence for any n � N , if n /∈ Pε then assume that m = n, and if n ∈ Pε then let
m be the largest integer number k < n such that k /∈ Pε. Therefore m � N and
{m + 1, ..., n} ⊆ Pε, and so by (22) we obtain that

d(xn, xm) �
n∑

k=m+1

d(xk, xk−1) < ε

and the assertion is proved.
Let x′ be a cluster point of A−1(0). So there exists a subsequence {nk} of {n}

such that xnk
→ x′. By the assertion just proved, there exists a subsequence {xnj} of

{xn} such that xnj → x′ and 〈unj ,− exp−1
xnj

x◦〉 → 0. By demipositivity of A, one
gets that x′ ∈ A−1(0) and the proof is complete by Lemma 2.2.

3. APPLICATION TO OPTIMIZATION

Recall that M is a Hadamard manifold. Let f : M → ] −∞, +∞] be a proper,
lower semicontinuous and geodesically convex function. The domain of f , D(f) =
{x ∈ M | f(x) < ∞}, is a closed convex subset of M . Consider the following
minimization problem.

(23) Min
M

f(x)

If f is defined on a finite dimensional Hilbert space H , then M can be the constraint
set of minimization f on H . Then the problem (23) can be a constraint minimization
problem. The subdifferential of f at x is defined by

∂f(x) = {u ∈ TxM : 〈u, exp−1
x y〉 � f(y)− f(x) , ∀y ∈ M}.

If D(∂f) �= ∅, the subdifferential ∂f(.) is a monotone and upper Kuratowski semicon-
tinuous multivalued vector field, and if D(f) = M , then ∂f is a maximal monotone
vector field (see Theorem 5.1 of [11]).

We recall the following Lemma from [17] which is necessary to prove the following
theorem.

Lemma 3.1. Suppose that {an} and {bn} be two positive real sequences such
that {an} is nonincreasing and converges to zero, and

∑+∞
n=1 anbn < +∞. Then

(
∑n

k=1 bk)an → 0 as n → +∞.
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Theorem 3.2. Let f be a proper, lower semicontinuous, and convex function on
M and A = ∂f . Let {λn} be a sequence of positive real numbers such that

(24)
∞∑

n=0

λn = +∞ .

Let y0 ∈ D(A), then the sequence {yn} generated by (9) converges to a singularity
of A, which is a minimum point of f (by definition of f ). In addition, if en ≡ 0 then
f(yn) − f(x) = o((

∑n
i=1 λi)−1), where x is a minimum point of f .

Proof. By Theorem 2.3, we need only to verify that the sequence {xn}, defined
by (8), is convergent to a singularity of A. For this purpose, we first prove that {xn}
is Fejér convergent to A−1(0). Let x ∈ A−1(0) and n � 0. Then 0 ∈ A(x) and
λ−1

n+1 exp−1
xn+1

xn ∈ A(xn+1) by (8). So the monotonicity of A implies that

(25) 〈λ−1
n+1 exp−1

xn+1
xn, exp−1

xn+1
x〉 � 〈0,− exp−1

x xn+1〉 = 0.

Consider the geodesic triangle Δ(xnxn+1x). By inequality (3) of the comparision
theorem for triangles, we have that

d2(xn+1, x) + d2(xn+1, xn) − 2〈exp−1
xn+1

xn, exp−1
xn+1

x〉 � d2(xn, x) .

It follows from (25) that

d2(xn+1, x) � d2(xn, x) n = 0, 1, 2, ... .

Thus {xn} is Fejér convergent to A−1(0). To complete the proof, we need only to
prove that A−1(0) contains each cluster point of {xn} by Lemma 2.2. For this purpose,
we first show that {f(xn)} is a nonincreasing sequence, and f(xn) → f(x). Since
λ−1

n+1 exp−1
xn+1

xn ∈ A(xn+1) , so by definition of the subdifferential, we have

〈λ−1
n+1 exp−1

xn+1
xn, exp−1

xn+1
xn〉 � f(xn)− f(xn+1) n = 0, 1, 2, ... .

Hence f(xn) − f(xn+1) � 0 for each n � 0, and so {f(xn)} is a nonincreasing
sequence.

By definition of the subdifferential and the inequality (3) in the geodesic triangle
Δ(xn−1xnx), we obtain that

f(xn) − f(x) � −〈λ−1
n exp−1

xn
xn−1, exp−1

xn
x〉

=
1
2
λ−1

n (d2(x, xn−1)− d2(xn−1, xn) − d2(xn, x)).

Hence

(26) 2λn(f(xn) − f(x)) � d2(x, xn−1) − d2(xn, x),
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and so

2(f(xk) − f(x))
k∑

n=0

λn � d2(x◦, x) k = 1, 2, ... .

Taking limit in the previous inequality when k → +∞ and using (24), we obtain that
f(xk) → f(x).

Now, let y◦ be a cluster point of {xn}, so there exists a subsequence {nk} of {n},
such that xnk

→ y◦, hence by the lower semicontinuity of f , we have

(27) f(y◦) � liminfk→∞f(xnk
) = f(x) .

On the other hand 0 ∈ A(x) implies that x ∈ Sf , where

Sf = {x ∈ M : f(x) � f(y) , ∀y ∈ M} .

Thus by (27), we obtain that

f(y◦) � f(y) , ∀y ∈ M .

This means that 0 ∈ A(y◦), that is, y◦ ∈ A−1(0).
For the rate of convergence, summing up in the both sides of inequality (26) from

n = 1 to +∞; we get
∑+∞

n=1 λn(f(xn) − f(x)) < ∞. Now the result is obtained by
Lemma 3.1 and the assumptions.

Other applications in variational inequalities and saddle point problems can be
found in [11].
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