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SYSTEMS OF PARAMETRIC STRONG QUASI-EQUILIBRIUM
PROBLEMS: EXISTENCE AND WELL-POSEDNESS ASPECTS

Jia-wei Chen* and Yeong-Cheng Liou

Abstract. In this article, we investigate the existence of solutions and Levitin-
Polyak well-posedness for a class of system of parametric strong quasi-equilibrium
problems (SPSQEP) involving set-valued mappings in Hausdorff topological vec-
tor spaces. The existence of solutions to the problem (SPSQEP) are presented, and
then the notions of Levitin-Polyak well-posedness and generalized Levitin-Polyak
well-posedness for (SPSQEP) are introduced. Moreover, some metric character-
izations of these well-posedness are derived under quite mild conditions. The
relationships between these well-posedness of (SPSQEP) and the existence and
uniqueness of its solutions are established. Finally, some examples are given to
illustrate the presented results.

1. INTRODUCTION

The equilibrium problem, which was first introduced by Blum and Oettli [1], pro-
vides a unified model of many problems such as optimization problems, variational
inequality problems, complementarity problems, fixed point problems and so on. For
the past decades, many authors intensively studied and generalized different types of
equilibrium problems and obtained a lot of existence results (see, e.g., [2, 3, 4, 5, 6]
and the references therein). It is well-known that well-posedness is an important topic
in optimization theory and applications, because it ensures that, for approximating so-
lution sequences, there exists a subsequence which converges to a solution. Since any
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algorithm can generate only an approximating solution sequence, which is applicable
only if the problem is well-posed under consideration. For parametric problems, well-
posedness is closely related to stability. The concept of well-posedness for minimization
problems (MP) was first introduced by Levitin and Polyak[7] and Tykhonov [8], respec-
tively, which are so-called Levitin-Polyak and Tykhonov well-posedness, respectively.
The well-posedness of (MP) implies the existence and uniqueness of solutions of (MP).
In many practical situations, the solutions of (MP) are more than one. In this case, the
notion of well-posedness in the generalized sense was introduced, which implies the
existence of solutions of (MP). The study of Levitin-Polyak well-posedness for scalar
convex optimization problems with functional constraints was initiated by Konsulova
and Revalski [9]. Since then, many authors proposed various well-posedness for (MP)
(see, e.g., [2, 10, 11] and the references therein). In 1981, Lucchetti and Patrone
[12] introduced the first notion of well-posedness for variational inequalities, which is
a generalization of the Tykhonov well-posedness of (MP). Lignola and Morgan [13]
also introduced another notion of well-posedness for variational inequalities, which is
distinct from that of Lucchetti and Patrone [12]. In the following years, the well-
posedness and generalized well-posedness have attracted much attention because of the
importance in the stability theory and existence of solution for variational inequalities
and equilibrium problems (see, e.g., [14, 15, 16, 17, 18, 19] and the references therein).
In [20], Hu, Fang, Huang and Wong investigated the well-posedness and generalized
well-posedness for a system of equilibrium problems, derived some metric character-
izations for these well-posedness, and proved that the well-posedness of system of
equilibrium problems is equivalent to the existence and uniqueness of its solution. Li
and Li [21] also introduced two type of Levitin-Polyak well-posedness for equilibrium
problems with abstract set constraints. Thereafter, Peng, Wang and Zhao [22] intro-
duced four type of Levitin-Polyak well-posedness for vector equilibrium problems with
abstract set and functional constraints. Peng and Wu [23] also explored the generalized
Tykhonov well-posedness for system of vector quasi-equilibrium problems, and gave
some metric characterizations for these well-posedness in locally convex Hausdorff
topological vector spaces. Stability and existence of solutions to the system problem
are very important topics. Note that well-posedness plays an important role in studying
the stability and the existence of solutions. In the objective reality, many practical
problems always appear in the systems. However, there are very few results on the
Levitin-Polyak well-posedness for systems of parametric quasi-equilibrium problems.

Inspired and motivated by the works of [20, 23], the aim of this paper is to investi-
gate the existence of solutions and Levitin-Polyak well-posedness for a class of system
of parametric strong quasi-equilibrium problems involving set-valued mappings (SP-
SQEP) in Hausdorff topological vector spaces. The existence of solutions to the prob-
lem (SPSQEP) are presented, and then the notions of Levitin-Polyak well-posedness
and generalized Levitin-Polyak well-posedness for (SPSQEP) are introduced. More-
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over, some metric characterizations of these well-posedness are derived under quite
mild conditions. We also establish the relationships between these well-posedness of
(SPSQEP) and the existence and uniqueness of its solution.

2. PRELIMINARIES

Throughout this paper, without other specifications, let I be an index set, R be
the set of real numbers, and let

∧
(the space of parameters) be a metric space, Zi

be topological vector space, Xi be a normed linear space and Yi be Hausdorff topo-
logical vector spaces for i ∈ I , Hi and Ki be nonempty convex subsets of Xi and
Yi, respectively. Let X =

∏
i∈I Xi, Y =

∏
i∈I Yi, H =

∏
i∈I Hi, K =

∏
i∈I Ki and

X−i =
∏

j∈I,j �=iXj . Denote the element of X−i by x−i, and so x ∈ X denote by
x = (x−i, xi) ∈ X−i × Xi. We always denote 2X by the family of all nonempty
subsets of X . Let Γi : H × ∧ → 2Hi , Ti : H × ∧ → 2Ki , Ψi : H × Hi → 2Zi ,
Fi : H×K×Hi → 2Zi and Ci : H → 2Zi be set-valued mappings such that, for each
x ∈ H,Ci(x) is a proper closed convex and pointed cone in Zi with intCi(x) �= ∅ for
i ∈ I .

For each p ∈ ∧
, we consider the following system of parametric strong quasi-

equilibrium problems involving set-valued mappings (in short, (SPSQEP)): find x∗ ∈ H
such that for each i ∈ I , x∗i ∈ Γi(x∗, p), and there exists y∗i ∈ Ti(x∗, p) satisfying

Fi(x∗, y∗, xi) + Ψi(x∗, xi) ⊆ Ci(x∗), ∀xi ∈ Γi(x∗, p).

We denote the solution set of (SPSQEP) by S(p).
Special cases are as follows:
(1) If I is singled, (SPSQEP) is equivalent to the following parametric strong

set-valued quasi-equilibrium problems (in short, (PSSQEP)): find x∗ ∈ H such that
x∗ ∈ Γ(x∗, p), and there exists y∗ ∈ T (x∗, p) satisfying

F (x∗, y∗, x) + Ψ(x∗, x) ⊆ C(x∗), ∀x ∈ Γ(x∗, p),

where Γ : H ×∧ → 2H , T : H ×∧ → 2K, Ψ : H ×H → 2Z , F : H ×K ×H → 2Z

and C : H → 2Z be set-valued mappings such that, for each x ∈ H,C(x) is a proper
closed convex and pointed cone in Z with intC(x) �= ∅.

(2) If, for each i ∈ I, Ci(x) = −Di(x), then (SPSQEP) is equivalent to find
x∗ ∈ H such that for each i ∈ I , x∗i ∈ Γi(x∗, p), and there exists y∗i ∈ Ti(x∗, p)
satisfying

Fi(x∗, y∗, xi) + Ψi(x∗, xi) ⊆ −Di(x∗), ∀xi ∈ Γi(x∗, p).

(3) If, for each i ∈ I and some p ∈ ∧
, Γi(x, p) = Γi(x) and Ti(x, p) = Ti(x)

for x ∈ H , then (SPSQEP) is equivalent to find x∗ ∈ H such that for each i ∈ I ,
x∗i ∈ Γi(x∗), and there exists y∗i ∈ Ti(x∗) satisfying

Fi(x∗, y∗, xi) + Ψi(x∗, xi) ⊆ −Di(x∗), ∀xi ∈ Γi(x∗),(2.1)
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which has been studied by Xie and He[24].
(4) If the index set I is a singleton, F (x, y, z) ≡ 0 for all (x, y, z) ∈ H ×K ×H ,

then (SPSQEP) is equivalent to find x∗ ∈ H such that x∗ ∈ Γ(x∗) and

Ψ(x∗, x) ⊆ −D(x∗), ∀x ∈ Γ(x∗),

which has been studied by Fu [25] and references therein.
We first recall some definitions and facts which are needed in the sequel.

Definition 2.1. ([26]). Let A,B be nonempty subsets of a normed linear space
(X, ‖ · ‖). The Hausdorff metric H (·, ·) between A and B is defined by

H (A,B) = max{e(A,B), e(B,A)},
where e(A,B) = supa∈A d(a, B) is the excess of set A to set B, and d(a, B) =
infb∈B ‖a− b‖.

Definition 2.2. ([26]). Let A be a nonempty subset of a normed linear space
(X, ‖ · ‖) X . The Kuratowski measure of noncompactness M of the set A is defined
by

M (A) = inf{ε > 0 : A ⊂ ∪n
i=1Ai, diamAi < ε, i = 1, 2, · · · , n},

where diam stands for the diameter of a set.

Facts 2.3. ([19, 26]). If Δ,∇ are nonempty closed subset of a normed linear
space (X, ‖ · ‖), Δ is compact and Δ ⊆ ∇, then the following hold:

(i) M (Δ) = 0;
(ii) M (∇) ≤ 2 H (∇,Δ) = 2e(∇,Δ).

Definition 2.4. ([27, 28]). Let
∨

and E be Hausdorff topological vector spaces.
A set-valued mapping ψ :

∨ → 2E is said to be
(i) upper semicontinuous (in short, u.s.c.) at υ0 ∈

∨
iff, for each open set V with

ψ(υ0) ⊂ V , there exists δ > 0 such that

ψ(υ) ⊂ V, ∀υ ∈ B(υ0, δ),

where B(υ0, δ) denotes the closed ball centered at υ0 with radius δ;
(ii) lower semicontinuous (in short, l.s.c.) at υ0 ∈

∨
iff, for each open set V with

ψ(υ0)
⋂
V �= ∅, there exists δ > 0 such that

ψ(υ)∩ V �= ∅, ∀υ ∈ B(υ0, δ);

(iii) closed iff, the graph of ψ is closed, i.e., the set Gr(ψ) = {(ζ, υ) ∈ ∨×E :
ζ ∈ ψ(υ)} is closed in

∨×E .
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We say ψ is l.s.c. (resp. u.s.c.) on
∨

iff it is l.s.c. (resp. u.s.c.) at each υ ∈ ∨
.

ψ is called continuous on
∨

iff it is both l.s.c. and u.s.c. on
∨

.

Facts 2.5. ([27, 28]). (i) ψ is l.s.c. at υ0 ∈ ∨
if and only if, for any net {υα} ⊆ ∨

with υα → υ0 and ζ0 ∈ ψ(υ0), there exists a net {ζα} ⊆ E with ζα ∈ ψ(υα) for all
α, such that ζα → ζ0.

(ii) If ψ is compact-valued, then ψ is u.s.c. at υ0 ∈ ∨
if and only if, for any net

{υα} ⊆ ∨
with υα → υ0 and for any net {ζα} ⊆ E with ζα ∈ ψ(υα) for all α, there

exists ζ0 ∈ ψ(υ0) and a subnet {ζβ} of {ζα} such that ζβ → ζ0.
(iii) If ψ is u.s.c. with closed values, then ψ is closed; Conversely, if ψ is closed

and E is compact, then ψ is u.s.c.

Definition 2.6. ([29]). Let E1, E2 be topological vector spaces, g : E1×E1 → 2E2

and C : E1 → 2E2 be set-valued mappings such that, for each x ∈ E1, C(x) is a proper
closed convex and pointed cone in E2 with intC(x) �= ∅. g is said to be above C(x)-
convex with respect to the second argument if, for any x, y, z ∈ E1 and t ∈ [0, 1],

g(x, ty + (1 − t)z) ⊆ tg(x, y) + (1 − t)g(x, z)− C(x).

Facts 2.7. ([24, Theorem 3.2]). For each i ∈ I , let Zi be topological vector space,
Hi and Ki be nonempty convex subsets of Hausdorff topological vector spaces Xi and
Yi, respectively, and let Fi : H × K × Hi → 2Zi, Ci : H → 2Zi be two set-valued
mappings such that Ci is l.s.c. and, for each x ∈ H , Ci(x) is a proper closed convex
and pointed cone in Zi with intCi(x) �= ∅, Γi : H → 2Hi , Ti : H → 2Ki be two closed
convex-valued mappings and Ψi : H × Hi → 2Zi be l.s.c. with respect to the first
argument and above Ci(x)-convex with respect to the second argument. Assume that
the following conditions hold:

(i) for each i ∈ I , xi ∈ Hi, yi ∈ Ki, Γ−1
i (xi) and T−1

i (yi) are open sets of H ;
(ii) for each i ∈ I, x′i ∈ Hi, the mapping (x, y) �→ Fi(x, y, x′i) is l.s.c. and, for

each x ∈ H and yi ∈ Ti(x), the mapping x′i �→ Fi(x, y, x′i) is above Ci(x)-convex;
(iii) there exist nonempty compact sets Ω ⊆ H,Ξ ⊆ K and nonempty compact

convex sets Ui ⊆ Hi, Li ⊆ Ki for each i ∈ I such that, for any (x, y) ∈ H × K \
(Ω× Ξ), there exists i′ ∈ I with xi′ ∈ Ui′

⋂
Γi′(x) and yi′ ∈ Li′

⋂
Ti′(x) satisfying

Fi′(x, y, xi′) + Ψi′(x, xi′) �⊆ −Ci′(x).

Then the problem (2.1) has a solution.

3. EXISTENCE OF SOLUTIONS TO (SPSQEP)

In this section, we shall study the existence and closedness of the approximation
solutions set of the problem (SPSQEP) under some suitable conditions. Let ei : H → Zi



342 Jia-wei Chen and Yeong-Cheng Liou

be continuous such that ei(x) ∈ intCi(x) for all x ∈ H . For ε ≥ 0 and p ∈ ∧
, we

firstly consider the following approximation for (SPSQEP): find x∗ ∈ H such that for
each i ∈ I , x∗i ∈ Γi(x∗, p), and there exists y∗i ∈ Ti(x∗, p) satisfying

Fi(x∗, y∗, xi) + Ψi(x∗, xi) + εei(x∗) ⊆ Ci(x∗), ∀xi ∈ Γi(x∗, p).(3.1)

Theorem 3.1. Let
∧

be a metric space and, for each i ∈ I , Zi, Ki and Yi be
the same as Facts 2.7, Hi be a nonempty convex subset of a normed linear space Xi,
and let Fi : H × K × Hi → 2Zi , Ci : H → 2Zi be two set-valued mappings such
that Ci is u.s.c., and for each x ∈ H , Ci(x) is a proper closed convex and pointed
cone in Zi with intCi(x) �= ∅, ei : H → Zi be continuous such that ei(x) ∈ intCi(x)
for all x ∈ H , Γi : H × ∧ → 2Hi , Ti : H × ∧ → 2Ki be two closed convex-valued
mappings and Ψi : H × Hi → 2Zi be l.s.c. with respect to the first argument and
above −Ci(x)-convex with respect to the second argument. Assume that the following
conditions hold:

(i) for each i ∈ I , xi ∈ Hi, yi ∈ Ki, Γ−1
i (xi) and T−1

i (yi) are open sets of H×∧
;

(ii) for each i ∈ I, x′i ∈ Hi, the mapping (x, y) �→ Fi(x, y, x′i) is l.s.c. and, for
each x ∈ H and yi ∈ Ti(x), the mapping x′i �→ Fi(x, y, x′i) is above −Ci(x)-convex;

(iii) there exist nonempty compact sets Ω ⊆ H,Ξ ⊆ K and nonempty compact
convex sets Ui ⊆ Hi, Li ⊆ Ki for each i ∈ I such that, for any (x, y) ∈ H × K \
(Ω × Ξ), there exists i′ ∈ I with xi′ ∈ Ui′

⋂
Γi′(x, p) and yi′ ∈ Li′

⋂
Ti′(x, p) for

each p ∈ ∧
satisfying

Fi′(x, y, xi′) + Ψi′(x, xi′) �⊆ Ci′(x).(3.2)

Then, for each ε ≥ 0, p ∈ ∧
, the problem (3.1) has a solution.

Proof. Let ε ≥ 0, p ∈ ∧
and let Di(x) = −Ci(x) for all x ∈ H . Then, for each

x ∈ H and yi ∈ Ti(x), the mapping x′i �→ Fi(x, y, x′i) is above Di(x)-convex and
Ψ : H × Hi → 2Zi is above Di(x)-convex with respect to the second argument. It
follows from (3.2) that

Fi′(x, y, xi′) + Ψi′(x, xi′) �⊆ −Di′(x).

Since Ci is u.s.c. for each i ∈ I , Di is l.s.c. Therefore, by Facts 2.7, there exists
x∗ ∈ H such that for each i ∈ I , x∗i ∈ Γi(x∗, p), and there exists y∗i ∈ Ti(x∗, p)
satisfying

Fi(x∗, y∗, xi) + Ψi(x∗, xi) ⊆ −Di(x∗), ∀xi ∈ Γi(x∗, p).

By virtue of ei(x) ∈ intCi(x) for each i ∈ I , one has εei(x) ∈ −Di(x) for each
i ∈ I, x ∈ H and so,

Fi(x∗, y∗, xi) + Ψi(x∗, xi) + εei(x∗)

⊆ −Di(x∗) −Di(x∗) ⊆ −Di(x∗), ∀xi ∈ Γi(x∗, p).
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This implies that there exists x∗ ∈ H such that for each i ∈ I , x∗i ∈ Γi(x∗, p), and
there exists y∗i ∈ Ti(x∗, p) satisfying

Fi(x∗, y∗, xi) + Ψi(x∗, xi) + εei(x∗) ⊆ Ci(x∗), ∀xi ∈ Γi(x∗, p).

Therefore, for each ε ≥ 0, p ∈ ∧
, the problem (3.1) has a solution. This completes the

proof.

Remark 3.2. It is easy to see that for each p ∈ ∧
, the solutions sets of the problem

(SPSQEP) is nonempty under the conditions of Theorem 3.1. Moreover, if I is a
singleton, the problem (PSSQEP) is also solvable.

For p∗ ∈ ∧
, for any δ, ε > 0, we introduce the following approximating solution

set for (SPSQEP):

Ωp∗(δ, ε) =
⋃

p∈B(p∗,δ)

{x ∈ H : ∀i ∈ I, di(xi,Γi(x, p)) ≤ ε, ∃yi ∈ Ti(x, p), s.t.

Fi(x, y, ωi) + Ψi(x, ωi) + εei(x) ⊆ Ci(x), ∀ωi ∈ Γi(x, p)}.

whereB(p∗, δ) means the closed ball centered at p∗ with radius δ in
∧

, di(xi,Γi(x, p)) =
infw∈Γi(x,p) ‖xi − w‖.

It is easy to see that if 0 ≤ δ1 ≤ δ2, 0 ≤ ε1 ≤ ε2, then S(p∗) ⊆ Ωp∗(δ1, ε1) ⊆
Ωp∗(δ2, ε2).

The following result shows the closedness of the approximating solution set Ωp∗(δ, ε),
and the relationship between Ωp∗(δ, ε) and the solution set S(p∗) of (SPSQEP) for
p∗ ∈ ∧

.

Theorem 3.3. Let
∧

be finite dimensional. For each i ∈ I , let Ci : H → 2Zi be a
set-valued mappings such thatCi is u.s.c., and for each x ∈ H,Ci(x) is a proper closed
convex and pointed cone in Zi with intC(x) �= ∅, ei : H → Zi be continuous with
ei(x) ∈ intCi(x) for x ∈ H , and let the set-valued mappings Fi : H ×K ×Hi → 2Zi

and Ψi : H × Hi → 2Zi be continuous, Ti : H × ∧ → 2Ki be u.s.c. with compact
values, and Γi : H × ∧ → 2Hi be l.s.c. and closed. Then the following statements
hold:

(i) for each δ, ε ≥ 0,Ωp∗(δ, ε) is closed;

(ii) S(p∗) =
⋂

δ,ε>0 Ωp∗(δ, ε).

Proof. (i) Let us show that for each δ, ε ≥ 0,Ωp∗(δ, ε) is closed. Let any sequence
{xn} ⊂ Ωp∗(δ, ε) and xn → x̂. Then there exists pn ∈ B(p∗, δ), for each i ∈ I,

di(xn
i ,Γi(xn, pn)) ≤ ε(3.3)
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and there exists yn
i ∈ Ti(xn, pn) such that

(3.4) Fi(xn, yn, ωi) + Ψi(xn, ωi) + εei(xn) ⊆ Ci(xn), ∀ωi ∈ Γi(xn, pn), n ∈ N.

Without loss of generality, let pn → p̂ ∈ B(p∗, δ), since
∧

is finite dimensional. Since
Γi : H × ∧ → 2Hi is l.s.c. and closed, and from (3.3), one has

di(x̂i,Γi(x̂, p̂)) ≤ ε.(3.5)

Again from the u.s.c. and compactness of Ti, i ∈ I, there exist a subsequence {ynk
i }

of {yn
i } and ŷi ∈ Ti(x̂, p̂) such that ynk

i → ŷi. Since for each i ∈ I, ei, Fi and Ψi

are continuous, Ci is u.s.c., and for each x ∈ H,Ci(x) is a proper closed convex and
pointed cone, we obtain, from (3.4),

Fi(x̂, ŷ, ωi) + Ψi(x̂, ωi) + εei(x̂) ⊆ Ci(x̂), ∀ωi ∈ Γi(x̂, p̂),

and therefore, x̂ ∈ Ωp∗(δ, ε), which implies that Ωp∗(δ, ε) is closed for all δ, ε ≥ 0.
(ii) Let us prove that S(p∗) =

⋂
δ,ε>0 Ωp∗(δ, ε). Clearly, S(p∗) ⊆ ⋂

δ,ε>0 Ωp∗(δ, ε).
We only need to prove that S(p∗) ⊇ ⋂

δ,ε>0 Ωp∗(δ, ε). Let x̄ ∈ ⋂
δ,ε>0 Ωp∗(δ, ε). Then

x̄ ∈ Ωp∗(δ, ε) for all δ, ε > 0. Without loss of generality, let two sequences {δn}
and {εn} with δn, εn > 0 and (δn, εn) → (0, 0). So, x̄ ∈ Ω(δn, εn) and there exists
pn ∈ B(p∗, δn), for each i ∈ I,

di(x̄i,Γi(x̄, pn)) ≤ εn,(3.6)

and there exists ȳn
i ∈ Ti(x̄, pn) such that

Fi(x̄, ȳn, ωi) + Ψi(x̄, ωi) + εnei(x̄) ⊆ Ci(x̄), ∀ωi ∈ Γi(x̄, pn).

Since ei, Fi,Ψi are continuous, Ti is u.s.c. with compact values, and Γi : H×∧ → 2Hi

is l.s.c. with closed, taking the limit in (3.6), one can conclude that

di(x̄i,Γi(x̄, p∗)) = 0,(3.7)

and there exist a subsequence {ȳnk
i } of {ȳn

i } and ȳi ∈ Ti(x̄, p∗) such that ȳnk
i → ȳi,

and so,

Fi(x̄, ȳ, ωi) + Ψi(x̄, ωi) ⊆ Ci(x̄), ∀ωi ∈ Γi(x̄, p∗).

Therefore x̄ ∈ S(p∗), i.e.,
⋂

δ,ε>0 Ωp∗(δ, ε) ⊆ S(p∗). This completes the proof.

Remark 3.4. According to Theorem 3.3, the solution set S(p) of (SPSQEP) is
closed under the conditions of Theorem 3.3. Furthermore, the approximating solution
set for (SPSQEP) corresponding to the parameter p∗ ∈ ∧

, for any δ, ε > 0, Ωp∗(δ, ε) �=
∅ under the assumptions of Theorems 3.1 and 3.3. We also show that Ωp∗(δ, ε) �= ∅
for all δ, ε > 0 in Theorem 4.19.
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4. LEVITIN-POLYAK WELL-POSEDNESS FOR (SPSQEP)

In this section, we introduce the notions of Levitin-Polyak well-posedness and
generalized Levitin-Polyak well-posedness for (SPSQEP), explore the necessary and
sufficient conditions of these well-posedness, and establish the relationships between
these well-posedness and the existence and uniqueness of solution to (SPSQEP).

Definition 4.1. Let
∧

be a metric space and, a sequence {pn} ⊂ ∧
such that pn →

p∗. A sequence {xn} ⊂ H is said to be Levitin-Polyak (in short, L-P) approximating
solution sequence corresponding to {pn} for (SPSQEP) if there exist a sequence {εn}
of positive real numbers with εn → 0 and for each i ∈ I, yn

i ∈ Ti(xn, pn) such that

di(xn
i ,Γi(xn, pn)) ≤ εn

and

Fi(xn, yn, ωi) + Ψi(xn, ωi) + εnei(xn) ⊆ Ci(xn), ∀ωi ∈ Γi(xn, pn), n ∈ N.

Definition 4.2. (i) (SPSQEP) is said to be L-P well-posed if for each p ∈ ∧
,

(SPSQEP) has a unique solution x(p), and for any sequence {pn} ⊂ ∧
with pn →

p, every L-P approximating solution sequence corresponding to {pn} of (SPSQEP)
converges strongly to x(p).

(ii) (SPSQEP) is said to be generalized L-P well-posed if for each p ∈ ∧
, the

solution set S(p) �= ∅, and for any sequence {pn} ⊂ ∧
with pn → p, every L-P ap-

proximating solution sequence corresponding to {pn} of (SPSQEP) has a subsequence
which converges strongly to some point of S(p).

Remark 4.3. It is easy to see that L-P well-posedness and generalized L-P well-
posedness for (SPSQEP) imply that the solution set S(p) of (SPSQEP) is nonempty
and compact; Moreover, any L-P well-posedness for (SPSQEP) is also generalized L-P
well-posedness for (SPSQEP).

Now we discuss the sufficient and necessary conditions for the (generalized) L-P
well-posedness of (SPSQEP).

Theorem 4.4. (SPSQEP) is L-P well-posed if and only if for each p ∈ ∧
,

Ωp(δ, ε) �= ∅, ∀δ, ε > 0, and diam[Ωp(δ, ε)] → 0, as (δ, ε) → (0, 0).

Proof. For the necessity. Suppose that (SPSQEP) is L-P well-posed. It follows
from Definition 4.2 that for each p ∈ ∧

, S(p) = {x(p)} and so, x(p) ∈ Ωp(δ, ε) �= ∅
for all δ, ε > 0. Suppose to the contrary that diam[Ωp(δ, ε)] �→ 0 as (δ, ε) → (0, 0).
Then there exist σ > 0 and two sequences {δn} and {εn} of positive real numbers with
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(δn, εn) → (0, 0) such that diam[Ωp(δn, εn)] > σ. Thus, there exists xn ∈ Ωp(δn, εn)
such that

d(x(p), xn) = ‖xn − x(p)‖ ≥ σ.(4.1)

In view of xn ∈ Ωp(δn, εn), there exists pn ∈ B(p, δn), for each i ∈ I ,

di(xn
i ,Γi(xn, pn)) ≤ εn

and there exists yn
i ∈ Ti(xn, pn) such that

Fi(xn, yn, ωi) + Ψi(xn, ωi) + εnei(xn) ⊆ Ci(xn), ∀ωi ∈ Γi(xn, pn), n ∈ N,

and pn → p, since δn → 0. Therefore, {xn} is a L-P approximating solution sequence
corresponding to {pn} for (SPSQEP) and so, ‖xn − x(p)‖ → 0, which contradicts
(4.1).

For the sufficiency. Suppose that for each p ∈ ∧
,Ωp(δ, ε) �= ∅ for all δ, ε > 0, and

diam[Ωp(δ, ε)] → 0 as (δ, ε) → (0, 0). Clearly, S(p) = {x(p)}. If not, take x̂ ∈ S(p)
arbitrarily and, x̂ �= x(p). Then x̂ ∈ Ωp(δ, ε). Moreover, one has

diam[Ωp(δ, ε)] ≥ ‖x̂− x(p)‖ > 0,

which is a contradiction.
For any sequence {pn} ⊂ ∧

with pn → p. Let {xn} be a L-P approximating
solution sequence corresponding to {pn} for (SPSQEP). Then there exist a sequence
{εn} of positive real numbers with εn → 0 and yn

i ∈ Ti(xn, pn) such that

di(xn
i ,Γi(xn, pn)) ≤ εn

and

Fi(xn, yn, ωi) + Ψi(xn, ωi) + εnei(xn) ⊆ Ci(xn), ∀ωi ∈ Γi(xn, pn), n ∈ N.

Put δn = ‖pn − p‖. Then δn → 0 and xn ∈ Ωp(δn, εn). Consequently, we have

‖xn − x(p)‖ ≤ diamΩp(δn, εn) → 0,

namely, xn → x(p). Therefore, (SPSQEP) is L-P well-posed. This completes the
proof.

It is well known that if (SPSQEP) has more than one solutions, then for each
p ∈ ∧

, the diameters of the approximating solution sets Ωp(δ, ε) do not tend to zero.
For this reason, we consider the Furi-Vignoli type characterization (see, e.g., [10]) of
the generalized L-P well-posedness for (SPSQEP) by using Kuratowski measure of
noncompactness (see, e.g., [26]) instead of the diameter.
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Theorem 4.5. Assume that all conditions of Theorem 3.3 are satisfied. Then
(SPSQEP) is generalized L-P well-posed if and only if for each p ∈ ∧

,

Ωp(δ, ε) �= ∅, ∀δ, ε > 0 and lim
(δ,ε)→(0,0)

M (Ωp(δ, ε)) = 0.

Proof. For each p ∈ ∧
, by Theorem 3.3, Ωp(δ, ε) is closed for all δ, ε ≥ 0 and

S(p) =
⋂

δ,ε>0

Ωp(δ, ε).

Suppose that (SPSQEP) is generalized L-P well-posed. It follows from Remark
4.3 that S(p) is nonempty compact. This, together with S(p) ⊆ Ωp(δ, ε), yields that
Ωp(δ, ε) �= ∅ for all δ, ε ≥ 0. According to Facts 2.3, one has

M (Ωp(δ, ε)) ≤ 2H (Ωp(δ, ε), S(p)) = 2e(Ωp(δ, ε), S(p)).(4.2)

So, to show that lim(δ,ε)→(0,0)M (Ωp(δ, ε)) = 0, we only to prove that e(Ωp(δ, ε), S(p))
→ 0 as (δ, ε) → (0, 0). Suppose to the contrary that e(Ωp(δ, ε), S(p)) �→ 0 as (δ, ε) →
(0, 0). Therefore there exist σ > 0, δn > 0 and εn > 0 with (δn, εn) → (0, 0) and
xn ∈ Ωp(δn, εn) such that

d(xn, S(p)) > σ.(4.3)

Since xn ∈ Ωp(δn, εn), there exists pn ∈ B(p, δn) such that, for each i ∈ I , xn
i ∈

Γi(xn, pn), and there exists yn
i ∈ Ti(xn, pn) satisfy

Fi(xn, yn, ωi) + Ψi(xn, ωi) + εnei(xn) ⊆ Ci(xn), ∀ωi ∈ Γi(xn, pn).

This implies that pn → p∗ and {xn} is a L-P approximating solution sequence corre-
sponding to {pn} of (SPSQEP). By the generalized L-P well-posedness of (SPSQEP),
there exists a subsequence {xnk} of {xn} which converges strongly to some point of
S(p). Furthermore,

d(xnk, S(p)) → 0 as k → ∞,

which contradicts (4.3). Consequently, e(Ωp(δ, ε), S(p)) → 0 as (δ, ε) → (0, 0).
Hence, from (4.2), M (Ωp(δ, ε)) → 0 as (δ, ε) → (0, 0), that is, lim(δ,ε)→ (0,0)M (Ωp

(δ, ε)) = 0.
Conversely, let p ∈ ∧

,Ωp(δ, ε) �= ∅ for all δ, ε > 0 and lim(δ,ε)→(0,0)M (Ωp(δ, ε)) =
0. By the definition of Ωp(δ, ε), we get

Ωp(δ̃, ε̃) ⊆ Ωp(δ̂, ε̂), ∀ε̃, δ̃, δ̂, ε̂ ∈ R+ \ {0}, δ̃ ≤ δ̂, ε̃ ≤ ε̂.(4.4)

Since Ωp(δ, ε) is nonempty and closed and S(p) =
⋂

δ,ε>0 Ωp(δ, ε), from (4.4) and the
Kuratowski theorem (see, e.g. [30] or [10, Theorem 2.1]), one has

H (Ωp(δ, ε), S(p)) → 0 as (δ, ε) → (0, 0)(4.5)
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and S(p) is nonempty and compact. For any {pn} ⊆ ∧
with pn → p, let {xn} be

any L-P approximating solution sequence corresponding to {pn} of (SPSQEP). Then
for each i ∈ I, xn

i ∈ Γi(xn, pn) and there exist a sequence positive real numbers {εn}
with εn → 0 and yn

i ∈ Ti(xn, pn) such that

Fi(xn, yn, ωi) + Ψi(xn, ωi) + εnei(xn) ⊆ Ci(xn), ∀ωi ∈ Γi(xn, pn), n ∈ N.

Set δn = ‖pn − p‖. Then δn → 0 and xn ∈ Ωp(δn, εn) for n ∈ N . By (4.5), one has

d(xn, S(p)) ≤ H (Ωp(δ, ε), S(p)) → 0 as (δ, ε) → (0, 0).

Since S(p) is nonempty, then there exists a sequence {x̄n} ⊆ S(p) such that

d(xn, x̄n) → 0.

From the compactness of S(p), it follows that there exists a subsequence {x̄nk} of
{x̄n} which converges strongly to some point x̄ ∈ S(p). Then the corresponding
subsequence {xnk} of {xn} such that xnk → x̄. Therefore (SPSQEP) is generalized
L-P well-posed. This completes the proof.

Similar to Fang etc. [19], we define a function q : [0,+∞)× [0,+∞) → [0,+∞)
for (SPSQEP) corresponding to parameter p ∈ ∧

by

q(δ, ε) = e(Ωp(δ, ε), S(p)), ∀(δ, ε) ∈ [0,+∞) × [0,+∞).

We now present the relationship between the noncompactness measureM (Ωp(δ, ε))
→ 0 as (δ, ε) → (0, 0) and q(δ, ε) → 0 as (δ, ε) → (0, 0).

Assume that S(p) is nonempty and compact. It follows from S(p) ⊆ Ωp(δ, ε) for
each (δ, ε) ∈ [0,+∞) × [0,+∞), Definition 2.1 and Facts 2.3 that

M (Ωp(δ, ε)) ≤ 2q(δ, ε) = 2H(Ωp(δ, ε), S(p)).

Therefore, q(δ, ε) → 0 as (δ, ε) → (0, 0) which implies that M(Ωp(δ, ε)) → 0 as
(δ, ε) → (0, 0).

From the proof of Theorem 4.5, we can obtain the following characterization by
considering Hausdorff metric of approximate solution set.

Theorem 4.6. (SPSQEP) is generalized L-P well-posed if and only if for each
p ∈ ∧

, S(p) is nonempty compact, and H (Ωp(δ, ε), S(p)) → 0 as (δ, ε) → (0, 0)
[or, q(δ, ε) → 0 as (δ, ε) → (0, 0)].

Proof. It directly follows from the proof of Theorem 4.5 and so omitted it here.
This completes the proof.
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The following theorems show that under some suitable conditions, the L-P well-
posed and generalized L-P well-posed of (SPSQEP) is equivalent to the uniqueness and
existence of its solutions.

Theorem 4.7. Assume that all conditions of Theorem 3.3 are satisfied and,
∧

is
finite dimensional. If for each p ∈ ∧

, there exist some δ̃ > 0 and ε̃ > 0 such that
Ωp(δ̃, ε̃) is nonempty bounded. Then (SPSQEP) is L-P well-posed if and only if for
each p ∈ ∧

, S(p) is a singleton.

Proof. The necessity is obvious. For the sufficiency. Suppose that for each
p ∈ ∧

, S(p) = {x(p)}. For any sequence {pn} ⊆ ∧
with pn → p, let {xn} be any

L-P approximating solution sequence corresponding to {pn} of (SPSQEP). Then for
each i ∈ I, xn

i ∈ Γi(xn, pn) and there exist a sequence {εn} of positive real numbers
with εn → 0 and yn

i ∈ Ti(xn, pn) such that

Fi(xn, yn, ωi) + Ψi(xn, ωi) + εnei(xn) ⊆ Ci(xn), ∀ωi ∈ Γi(xn, pn), n ∈ N.

Set δn = ‖pn − p‖. Then, xn ∈ Ωp(δn, εn) and δn → 0. Since Ωp(δ̃, ε̃) is nonempty
bounded, there exists ñ ∈ N such that {xn} ⊆ Ωp(δn, εn) ⊆ Ωp(δ̃, ε̃) for all n ≥ ñ.
So, {xn} is bounded. Let {xnk} be any subsequence of {xn} with xnk → x̄. Then
there exists pnk ∈ B(p, δn), for each i ∈ I,

di(x
nk
i ,Γi(xnk , pnk)) ≤ εn(4.6)

and there exists ynk
i ∈ Ti(xnk , pnk) such that

(4.7) Fi(xnk , ynk , ωi) + Ψi(xnk , ωi) + εnei(xnk) ⊆ Ci(xnk), ∀ωi ∈ Γi(xnk , pnk).

It follows from δn → 0 that pnk → p ∈ B(p, δn), since
∧

is finite dimensional. Since
Γi : H × ∧ → 2Hi is l.s.c. and closed, by (4.6), we derive that

0 ≤ di(x̄i,Γi(x̄, p)) ≤ 0,

that is, di(x̄i,Γi(x̄, p)) = 0 and thus, x̄i ∈ Γi(x̄, p). By the u.s.c. and compactness
of Ti, i ∈ I, there exist a subsequence {ynk

i } of {yn
i } and ȳi ∈ Ti(x̄, p) such that

ynk
i → ȳi. Since for each i ∈ I, ei, Fi and Ψi are continuous, Ci is u.s.c. such that

for each x ∈ H,Ci(x) is a proper closed convex and pointed cone, take the limit in
(4.7), we have, by Facts 2.5 (iii),

Fi(x̄, ȳ, ωi) + Ψi(x̄, ωi) ⊆ Ci(x̄), ∀ωi ∈ Γi(x̄, p)

and so, x̄ ∈ S(p). Take into account S(p) = {x(p)}, we conclude that x̄ = x(p). It
follows from the arbitrariness of {xnk} that xn converges strongly to x(p). Therefore
(SPSQEP) is L-P well-posed. This proof is completed.
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Theorem 4.8. Assume that all conditions of Theorem 3.3 are satisfied and,
∧

is
finite dimensional. If for each p ∈ ∧

, there exist some δ̃ > 0 and ε̃ > 0 such that
Ωp(δ̃, ε̃) is nonempty bounded. Then (SPSQEP) is generalized L-P well-posed.

Proof. For each p ∈ ∧
, let {pn} ⊆ ∧

such that pn → p, and {xn} be any L-P
approximating solution sequence corresponding to {pn} of (SPSQEP). Then for each
i ∈ I, xn

i ∈ Γi(xn, pn) and there exist a sequence {εn} of positive real numbers with
εn → 0 and yn

i ∈ Ti(xn, pn) such that

Fi(xn, yn, ωi) + Ψi(xn, ωi) + εnei(xn) ⊆ Ci(xn), ∀ωi ∈ Γi(xn, pn), n ∈ N.

Put δn = ‖pn − p‖. Then δn → 0 and xn ∈ Ωp(δn, εn) for n ∈ N . Furthermore, we
have xn ∈ Ωp(δ̃, ε̃) for all sufficiently large n. By the boundness of Ωp(δ̃, ε̃), there
exists a subsequence {xnk} of {xn} with xnk → x̄. By the similar proof of Theorem
4.7, we obtain that x̄ ∈ S(p) and so, S(p) �= ∅. Therefore (SPSQEP) is generalized
L-P well-posed. This proof is completed.

The following result says that the problem (SPSQEP) is solvable under the condi-
tions of Theorem 4.8.

Theorem 4.9. Let
∧

be finite dimensional. Assume that all conditions of Theorem
3.3 are satisfied and for each p ∈ ∧

, there exist some δ̃ > 0 and ε̃ > 0 such that
Ωp(δ̃, ε̃) is nonempty bounded. Then, for each p ∈ ∧

, S(p) is nonempty and compact.

Proof. It directly follows from Definition 4.2 and Theorems 4.6 and 4.8. This
proof is completed.

The following theorem shows that the solvability of the problem (SPSQEP) is
equivalent to its generalized L-P well-posedness under the conditions of Theorem 4.9.

Theorem 4.10. Let
∧

be finite dimensional. Assume that all conditions of Theorem
3.3 are satisfied and for each p ∈ ∧

, there exist some δ̃ > 0 and ε̃ > 0 such that
Ωp(δ̃, ε̃) is nonempty bounded. Then the generalized L-P well-posedness of (SPSQEP)
is equivalent to the nonemptiness of its solutions set.

Proof. The necessity is obvious. For the sufficiency. Assume that the solutions set
of the problem (SPSQEP) is nonempty. Then S(p) �= ∅ for p ∈ ∧

. Let {pn} ⊆ ∧
such

that pn → p. Suppose that (SPSQEP) is not generalized L-P well-posed. That is, there
exists a L-P approximating solution sequence {xn} corresponding to {pn} of (SPSQEP)
such that for any subsequence {xnk} of {xn} with xnk → x̂, d(xnk, S(p)) �→ 0. So,
there exists ρ > 0 such that

lim
k
d(xnk , S(p)) = d(x̂, S(p)) ≥ ρ.(4.8)

Since {xn} is a L-P approximating solution sequence corresponding to {pn} of (SP-
SQEP). Then for each i ∈ I, xnk

i ∈ Γi(xnk , pnk) and there exist a sequence {εnk
} of
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positive real numbers with εnk
→ 0 and ynk

i ∈ Ti(xnk , pnk) such that

Fi(xnk , ynk , ωi) + Ψi(xnk , ωi) + εnk
ei(xnk) ⊆ Ci(xnk), ∀ωi ∈ Γi(xnk , pnk).

Set δnk
= ‖pnk −p‖. Then δnk

→ 0 and xnk ∈ Ωp(δnk
, εnk

) for k ∈ N . By the similar
proof of Theorem 4.8, x̂ ∈ S(p) and so d(x̂, S(p)) = 0, which contradicts (4.8). This
proof is completed.

If I is a singleton, from Theorems 4.4-4.10, one can derive the similar results for
(PSSQEP).

Corollary 4.11. (PSSQEP) is L-P well-posed if and only if for each p ∈ ∧
,

Ωp(δ, ε) �= ∅, ∀δ, ε > 0, and diam[Ωp(δ, ε)] → 0, as (δ, ε) → (0, 0).

Corollary 4.12. Assume that all conditions of Theorem 3.3 are satisfied. Then
(PSSQEP) is generalized L-P well-posed if and only if for each p ∈ ∧

,

Ωp(δ, ε) �= ∅, ∀δ, ε > 0 and lim
(δ,ε)→(0,0)

M(Ωp(δ, ε)) = 0.

Corollary 4.13. (PSSQEP) is generalized L-P well-posed if and only if for each
p ∈ ∧

, S(p) is nonempty compact, and H(Ωp(δ, ε), S(p)) → 0 as (δ, ε) → (0, 0) [or,
q(δ, ε) → 0 as (δ, ε) → (0, 0)].

The following example illustrate that the compactness of the solution set S(p) in
Theorems 4.6 and Corollary 4.13 is indispensable.

Example 4.14. Let the spaces
∧

= [−1, 1], X = Y = Z = R = (−∞,+∞),
C(x) = R+ = [0,+∞) for all x ∈ X , H = K = R+ = [0,+∞) and let the mappings
T (x, p) = [1 + p, x + 2],Γ(x, p) = [0, x+ 1 + p], F (x, y, z) = [0, 2y + z − x] and
Ψ(x, z) = [0, x− z

2 ] for all x, y, z ∈ X and p ∈ ∧
. Clearly, the solution set S(p) = H

and so it is not compact. Moreover, Ωp(δ, ε) = H , since S(p) ⊆ Ωp(δ, ε) for all
δ, ε > 0 and δ ∈ (0, 1 − |p|). Therefore, H(Ωp(δ, ε), S(p)) = 0 for all δ, ε > 0 and
δ ∈ (0, 1−|p|). Let {pn} ⊆ ∧

with pn → p∗ ∈ ∧
. It is easy to check that the sequence

{n} is a L-P approximating solution sequence corresponding to {pn} of (PSSQEP).
However, the sequence {n} has no convergent subsequence. Therefore (PSSQEP) is
not generalized well-posed.

Corollary 4.15. Assume that all conditions of Theorem 3.3 are satisfied and,
∧

is finite dimensional. If for each p ∈ ∧
, there exist some δ̃ > 0 and ε̃ > 0 such that

Ωp(δ̃, ε̃) is nonempty bounded. Then (PSSQEP) is L-P well-posed if and only if for
each p ∈ ∧

, S(p) is a singleton.
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Example 4.16. Let the spaces
∧

= (−1, 1), X = Y = Z = R = (−∞,+∞),
C(x) = R+ = [0,+∞) and e(x) = 1 for all x ∈ X , H = K = [−1, 0] and
let the mappings T (x, p) = {−1},Γ(x, p) = [x, 0], F (x, y, z) = −(x − y − z) and
Ψ(x, z) = −z for all x, y, z ∈ X and p ∈ ∧

. It is easy to verify that the solution
set S(p) = {−1} for p ∈ ∧

, there exist δ̃ = ε̃ = 1−|p|
2 ∈ (0, 1 − |p|) such that

Ωp(
1−|p|

2 ,
1−|p|

2 ) = [−1,− |p|+1
2 ] is nonempty bounded and the assumptions of Corollary

4.15 are satisfied. So, from Corollary 4.15, (PSSQEP) is L-P well-posed.

Corollary 4.17. Assume that all conditions of Corollary 4.15 are satisfied. If for
each p ∈ ∧

, there exist some δ̃ > 0 and ε̃ > 0 such that Ωp(δ̃, ε̃) is nonempty bounded.
Then (PSSQEP) is generalized L-P well-posed if and only if for each p ∈ ∧

, S(p) �= ∅.

We remark that the boundness of Ωp(δ̃, ε̃) is necessary for some δ̃, ε̃ > 0.

Example 4.18. Let the spaces
∧

= (−1, 1), X = Y = Z = R = (−∞,+∞),
C(x) = R+ = [0,+∞) for all x ∈ X , H = K = R+ = [0,+∞) and let the mappings
T (x, p) = Γ(x, p) = [0, x], F (x, y, z) = −(x + 5y − z) and Ψ(x, z) = x − z for all
x, y, z ∈ X and p ∈ ∧

. It is easy to check that the assumptions of Corollary 4.17 hold.
But Ωp(δ, ε) is unbounded for all δ, ε > 0 and δ ∈ (0, 1− |p|), since the solution set
S(p) = H is unbounded. So, from Corollary 4.17, (PSSQEP) is not generalized L-P
well-posed.

The following theorem present the sufficient conditions for the Kuratowski measure
of noncompactness M(Ωp(δ, ε)) which approaches to zero as (δ, ε) → (0, 0).

Theorem 4.19. Assume that all conditions of Theorem 4.8 are satisfied. Then, for
each p ∈ ∧

,Ωp(δ, ε) �= ∅, ∀δ, ε > 0 and M(Ωp(δ, ε)) → 0 as (δ, ε) → (0, 0).

Proof. It immediately follows from Theorems 4.5 and 4.8. This proof is completed.

Remark 4.20. (i) If the index set I is a singleton, p ∈ ∧
, H,K are nonempty

closed and convex subsets of a finite dimensional Euclidean space X, f : X → X ,
Γ(x, p) = H,C(x) = (−∞, 0], F (x, y, z) ≡ 0 and Ψ(x, y) = 〈f(x), x− y〉 for all
(x, y, z) ∈ H ×K ×H , then Theorem 4.4 is reduced to Theorem 3.1 of (Hu and Fang
[31],p. 375). Moreover, if X is a Banach space with its dual space X∗, f : X → X∗,
then Theorem 4.4 also is reduced to Theorem 2.3 of (Huang, Yang and Zhu [18],p.
164).

(ii) If ϕ : X → R∪{+∞} is a proper convex and lower semicontinuous functional,
let Ψ(x, y) = 〈f(x), x−y〉+ϕ(x)−ϕ(y) for all x, y ∈ X , then Corollaries 4.11–4.13,
4.15 and 4.17 can be applied to the following mixed variational inequality: find x ∈ X
such that

〈f(x), x− y〉 + ϕ(x)− ϕ(y) ≤ 0, ∀y ∈ X,
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which has been studied by Fang, Huang and Yao [32].
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