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MAPS ACTING ON SOME ZERO PRODUCTS

Hung-Yuan Chen*, Kun-Shan Liu and Muzibur Rahman Mozumder

Abstract. Let R be a prime ring with nontrivial idempotents. Assume ∗ is an
involution of R. In this note we characterize the additive map δ : R → R such that
δ(x)y∗ +xδ(y)∗ = 0 whenever xy∗ = 0 and φ : R → R such that φ(x)φ(y)∗ = 0
whenever xy∗ = 0.

1. INTRODUCTION

Throughout, R denotes a prime ring with center Z, right (resp. left) Martindale
quotient ring Qr (resp. Q�), and symmetric Martindale quotient ring Q. The overrings
Q, Q� and Qr of R are also prime rings. The center C of Q is a field, which is called
the extended centroid of R. We refer the reader to the book [1] for details.

By a derivation of R, we mean an additive map d : R → R such that d(xy) =
d(x)y+xd(y) for all x, y ∈ R. For a ∈ R, the map ad(a) : x ∈ R �−→ [a, x] def.= ax−xa
is a derivation of R, which is called the inner derivation induced by the element a. An
additive map g : R → R is called a generalized derivation if there exists a derivation
d of R such that g(xy) = g(x)y + xd(y) for any x, y ∈ R. The simplest example of
generalized derivation is a map of the form g(x) = ax + xb, for some a, b ∈ R.

In what follows, ∗ denotes an involution of R, that is, an anti-automorphism of
period 2. An ideal I of R is called a ∗-ideal of R if I = I∗. It is well-known that any
involution of R can be uniquely extended to an involution of Q (see [4]). A derivation
d of R is called symmetric if d(x∗) = d(x)∗ for any x ∈ R and is called anti-symmetric
if d(x∗) = −d(x)∗ for any x ∈ R. Analogously, a homomorphism φ of R is called
symmetric if φ(x∗) = φ(x)∗ for any x ∈ R. With some easy modifications, one can
slightly extend the above definitions to (symmetric) derivations from an ideal I (with
I = I∗) to R.
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For a ∈ R, let �a denote the left multiplication map by a. For a derivation d of R,
it is clear that d(x)y+xd(y) = 0 whenever xy = 0. More generally, if an additive map
φ is of the form �α + d, where α ∈ Z and d is a derivation, then φ(x)y + xφ(y) = 0
whenever xy = 0. In [3], Chebotar, Ke and Lee proved that the converse is true if
R has an identity and possesses a nontrivial idempotent. Lee removed the assumption
that R has an identity ([8, Corollary 1.2]).

In the vein, our goal is to characterize the additive map δ such that δ(x)y∗ +
xδ(y)∗ = 0 whenever xy∗ = 0. Precisely, in Section 3 we show the following.

Theorem 3.4. Let R be a prime ring with an involution ∗. Assume R has
nontrivial idempotents. If δ : R → R is an additive map such that δ(x)y∗+xδ(y)∗ = 0
whenever xy∗ = 0. Then there exists a symmetric derivation g : Q → Q such that
δ(xy) = δ(x)y + xg(y) for any x, y ∈ R.

Clearly, homomorphisms are also preserving zero products. If φ is a homomorphism
of R, then φ(x)φ(y) = 0 whenever xy = 0. In [3], Chebotar, Ke and Lee considered the
converse. They showed that if R has an identity and possesses a nontrivial idempotent,
φ : R → R is a bijective additive map such that φ(x)φ(y) = 0 whenever xy = 0,
then φ(xy)φ(z) = φ(x)φ(yz) for any x, y, z ∈ R. Moreover, if 1 ∈ R, then φ(xy) =
λφ(x)φ(y) for any x, y ∈ R, where λ = φ(1)−1 ∈ C ([3, Theorem 3]).

Recently, Swain considered the result for involutions. He considered a bijective
additive map φ : R → R such that φ(x)φ(y)∗ = 0 whenever xy∗ = 0, and φ(x)∗φ(y) =
0 whenever x∗y = 0. He proved that if R contains nontrivial idempotents, then the
map φ must be of the form φ(x) = tg(x), where t ∈ Q with tt∗ ∈ C and g : R → Q

is a symmetric monomorphism ([9, Theorem 6]). One can check that if φ(x) = ag(x),
where a ∈ Q and g : R → Q is a symmetric homomorphism, then φ(x)φ(y)∗ = 0
whenever xy∗ = 0, but we can not conclude that the map must be of this form if
only one-sided condition is assumed. However, Swain considered a special case of this
situation and showed that: If R is generated by all idempotents, then φ(xy) = φ(x)g(y)
for any x, y ∈ R, where g : R → Q is a symmetric homomorphism. In particular, if
1 ∈ R, then φ(x) = tg(x), where t = φ(1) ([9, Theorem 4]). In Section 4, we extend
Swain’s theorem by removing the assumption that R is generated by all idempotents.

2. PRELIMINARIES

In the following, we will always assume that R is a prime ring with nontrivial
idempotents. Let E be the additive subgroup generated by idempotents of R, and E

be the subring generated by E . We begin with a useful result for maps acting on zero
products.

Theorem 2.1. ([5, Theorem 2.3]). Let R be a prime ring with nontrivial idempo-
tents. If Φ: R × R → R is a biadditive map such that Φ(x, y) = 0 whenever xy = 0.
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Then Φ(xa, y) = Φ(x, ay) for any x, y ∈ R and any a ∈ E . In particular, there exists
a nonzero ideal I of R such that Φ(xa, y) = Φ(x, ay) for any x, y ∈ R and any a ∈ I .

We have the next lemma as a special case of [2, Lemma 4.5].

Lemma 2.2. ([2, Lemma 4.5]). Let R be a prime ring. If f, g : R → R are
additive maps such that f(x)y = xg(y) for any x, y ∈ R. Then there exists q ∈ Q
such that f(x) = xq and g(x) = qx for any x ∈ R.

3. SYMMETRIC DERIVATIONS

In this section, we always assume that δ : R → R is an additive map such that

(3.1) δ(x)y∗ + xδ(y)∗ = 0 whenever xy∗ = 0.

We will characterize such map δ by a series of lemmas.

Lemma 3.1. There exists a nonzero ideal I = I∗ of R such that

(3.2) δ(xa)y + xaδ(y∗)∗ = δ(x)ay + xδ(y∗a∗)∗

for any x, y ∈ R and any a ∈ I.

Proof. Define Φ(x, y) = δ(x)y + xδ(y∗)∗ for x, y ∈ R. Then for xy = 0 we
have x(y∗)∗ = 0, hence Φ(x, y) = δ(x)(y∗)∗ + xδ(y∗)∗ = 0 by (3.1). In view of
Theorem 2.1, there exists a nonzero ideal I of R such that Φ(xa, y) = Φ(x, ay) for
any x, y ∈ R and any a ∈ I . This means, δ(xa)y + xaδ(y∗)∗ = δ(x)ay + xδ(y∗a∗)∗.
We may replace I by I ∩ I∗ and just assume I∗ = I .

In the following I denotes the specific ideal of R in Lemma 3.1.

Lemma 3.2. There exists a symmetric derivation g : I → Q such that δ(xa) =
δ(x)a + xg(a) for all x ∈ R and a ∈ I .

Proof. By Lemma 3.1 we have

(3.3)
(
δ(xa) − δ(x)a

)
y = x

(
δ(y∗a∗)∗ − aδ(y∗)∗

)

for all x, y ∈ R and a ∈ I . Applying Lemma 2.2 to (3.3), there exists an additive map
g : I → Q such that

(3.4) δ(xa) − δ(x)a = xg(a)

and

(3.5) δ(y∗a∗)∗ − aδ(y∗)∗ = g(a)y.
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Combining (3.4) and (3.5),

(3.6) δ(xa) = δ(x)a + xg(a) = δ(x)a + xg(a∗)∗.

So g(a∗) = g(a)∗ for all a ∈ I . Moreover, using (3.6) to expand δ(xab) in two ways,
we have

δ(x(ab)) = δ(x)ab + xg(ab)
=δ((xa)b) = δ(xa)b + xag(b) = δ(x)ab + xg(a)b + xag(b)

for all x∈R and a, b ∈ I . Hence g(ab)=g(a)b+ag(b) for all a, b ∈ I , as asserted.

Lemma 3.3. g can be uniquely extended to a symmetric derivation on Q.

Proof. Note that from (3.4) and (3.5) we know Rg(I) and g(I)R are both
contained in R. Hence, if we set J = I2, we have J∗ = J and g(J) ⊆ g(I)I+Ig(I) ⊆
R. This means, g restricted on J is a derivation from J into R. Hence g can be uniquely
extended to a derivation on Q (see [6]). For any q ∈ Q, choose W to be a nonzero
ideal of R such that W ⊆ I and qW + Wq ⊆ R. Since g(a)∗ = g(a∗) for all a ∈ I ,
we see

g(wq)∗ = (g(w)q + wg(q))∗ = q∗g(w)∗ + g(q)∗w∗

=g((wq)∗) = g(q∗w∗) = g(q∗)w∗ + q∗g(w∗) = g(q∗)w∗ + q∗g(w)∗,

for all w ∈ W 2. So g(q∗) = g(q)∗ for any q ∈ Q.

Now we are ready to characterize completely the map δ satisfying (3.1).

Theorem 3.4. Let R be a prime ring with an involution ∗. Assume R has nontrivial
idempotents. If δ : R → R is an additive map such that δ(x)y∗+xδ(y)∗ = 0 whenever
xy∗ = 0. Then there exists a symmetric derivation g : Q → Q such that δ(xy) =
δ(x)y + xg(y) for any x, y ∈ R.

Proof. From Lemmas 3.2 and 3.3 we know there is a symmetric derivation
g : Q → Q and a nonzero ideal I of R with I∗ = I , such that δ(xa) = δ(x)a + xg(a)
for any x ∈ R and a ∈ I . Take x, y ∈ R and a, b ∈ I , from (3.2) we can compute
δ(xya)b + xyaδ(b∗)∗ in two ways:

δ((xy)a)b + (xy)aδ(b∗)∗ = δ(xy)ab + xyδ(b∗a∗)∗

=δ(x(ya))b + x(ya)δ(b∗)∗ = δ(x)yab + xδ(b∗a∗y∗)∗

=δ(x)yab + x
(
δ(b∗)a∗y∗ + b∗g(a∗y∗)

)∗

=δ(x)yab + x
(
δ(b∗)a∗y∗ + b∗g(a∗)y∗ + b∗a∗g(y∗)

)∗

=δ(x)yab + x
(
δ(b∗a∗)y∗ + b∗a∗g(y)∗

)∗

=δ(x)yab + xyδ(b∗a∗)∗ + xg(y)ab.
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So
(
δ(xy) − δ(x)y − xg(y)

)
I2 = 0, and this implies that δ(xy) = δ(x)y + xg(y) for

any x, y ∈ R. This completes the proof of our theorem.

Recall that a derivation d of R is called anti-symmetric if d(x∗) = −d(x)∗ for any
x ∈ R. Analogous to Theorem 3.4, we have

Theorem 3.5. Let R be a prime ring with an involution ∗. Assume R has nontrivial
idempotents. If δ : R → R is an additive map such that δ(x)y∗−xδ(y)∗ = 0 whenever
xy∗ = 0. Then there exists a anti-symmetric derivation g : Q → Q such that δ(xy) =
δ(x)y + xg(y) for any x, y ∈ R.

4. HOMOMORPHISM TYPE WITH INVOLUTIONS

The aim of this section is to generalize Swain’s result in [9, Theorem 4] by removing
the condition E = R. Throughout this section, we always assume that φ : R → R is a
bijective additive map such that

(4.1) φ(x)φ(y)∗ = 0 whenever xy∗ = 0.

Lemma 4.1. There exists a nonzero ideal I = I∗ of R such that

(4.2) φ(xa)φ(y∗)∗ = φ(x)φ(y∗a∗)∗

for any x, y ∈ R and any a ∈ I .

Proof. Define Φ̃(x, y) = φ(x)φ(y∗)∗ for x, y ∈ R. Then for xy = 0 = x(y∗)∗,
we have Φ̃(x, y) = φ(x)φ(y∗)∗ = 0 by (4.1). In view of Theorem 2.1, there exists a
nonzero ideal I of R such that Φ̃(xa, y) = Φ̃(x, ay) for any x, y ∈ R and any a ∈ I .
This means, φ(xa)φ(y∗)∗ = φ(x)φ(y∗a∗)∗. We may replace I by I ∩ I∗ and just
assume I∗ = I .

In the following I denotes the specific ideal of R in Lemma 4.1.

Lemma 4.2. If rφ(J)∗ = 0 or φ(J)r = 0 for some r ∈ R and some nonzero ideal
J of R. Then r = 0.

Proof. Assume rφ(J)∗ = 0. By replacing J by J ∩ J∗, we may assume J∗

= J . Since φ is bijective, there exists r′ ∈ R such that φ(r′) = r. Now 0 =
rφ(R∗(I ∩ J)∗)∗ = φ(r′)φ(R∗(I ∩ J)∗)∗ = φ(r′(I ∩ J))φ(R)∗ = φ(r′(I ∩ J))R, so
r′(I ∩ J) = 0, and hence r′ = 0, implying r = 0. The other case can be shown
analogously.

Lemma 4.3. There exists a symmetric monomorphism g : I → Q such that φ(xa) =
φ(x)g(a) for any x ∈ R and a ∈ I .
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Proof. Set X = φ(x) and Y = φ(y∗)∗ in (4.2) for x, y ∈ R. Since φ is surjective,
we obtain that

(4.3) φ(φ−1(X)a)Y = Xφ(φ−1(Y ∗)a∗)∗,

for any X, Y ∈ R, and any a ∈ I . Applying Lemma 2.2 to (4.3), there exists an
additive map g : I → Q such that

(4.4) φ(φ−1(X)a) = Xg(a)

and

(4.5) φ(φ−1(Y ∗)a∗)∗ = g(a)Y,

for all X, Y ∈ R and a ∈ I . Setting X = φ(x) in (4.4), we get

(4.6) φ(xa) = φ(x)g(a)

for any x ∈ R and a ∈ I . Similarly, (4.5) yields that

(4.7) φ(xa∗) = φ(x)g(a)∗.

Replacing a by a∗ in (4.6), we see φ(xa∗) = φ(x)g(a∗). Comparing with (4.7) we get
φ(x)

(
g(a∗) − g(a)∗

)
= 0 for all x ∈ R. Hence g(a∗) = g(a)∗ for all a ∈ I . For any

x ∈ R and a, b ∈ I we have

φ(x(ab)) = φ(x)g(ab)

=φ((xa)b) = φ(xa)g(b) = φ(x)g(a)g(b).

So g(ab) = g(a)g(b) for any a, b ∈ I . Moreover, if g(a) = 0 for some a ∈ I ,
φ(x)g(a) = φ(xa) = 0 for any x ∈ R. So Ra = 0 since φ is injective, and a = 0
follows. This means, g is a symmetric monomorphism on I .

Lemma 4.4. If q · g(J) = 0 for some q ∈ Q� and some nonzero ideal J of R, then
q = 0. Analogously, if g(J) · q′ = 0 for some q′ ∈ Qr and some nonzero ideal J of
R, then q′ = 0.

Proof. Assume q · g(J) = 0. There exists a nonzero ideal M of R such that
Mq ⊆ R. So for any m ∈ M , 0 = mq · g(J ∩ I) = φ(r)g(J ∩ I) = φ

(
r(J ∩ I)

)
for

some r ∈ R with φ(r) = mq, hence r(J ∩ I) = 0, implying r = 0. That is, Mq = 0,
so q = 0 follows. The other case can be shown analogously.

Recall that ∗ can be extended to Q and an ideal I is called a ∗-ideal if I = I∗.
Before stating the main result, we define a new notion.



Maps Acting on Some Zero Products 263

Definition. Let R be a prime ring with an involution ∗. Assume g : R → Q� is
a homomorphism. If there exists a nonzero ∗-ideal I of R such that g(I) ⊆ Q and
g(a)∗ = g(a∗) for all a ∈ I , then g is called partially symmetric on R.

Now we prove the main result of this section.

Theorem 4.5. Let R be a prime ring with an involution ∗. Assume R has nontrivial
idempotents. If φ : R → R is a bijective additive map such that φ(x)φ(y)∗ = 0
whenever xy∗ = 0. Then there exists a monomorphism g : R → Q� partially symmetric
on R such that φ(xy) = φ(x)g(y) for any x, y ∈ R.

Proof. Continuing with Lemma 4.3, we extend g : I → Q to a map from R to
Q� by the following:

For r ∈ R, define gr : Rφ(R) → R by the rule

gr(
∑

i

xiφ(yi)) =
∑

i

xiφ(yir),

where xi, yi ∈ R. Note that Rφ(R) is a nonzero ideal of R. It is clear that ga = g(a)
for every a ∈ I .

Claim the map gr is well-defined for r ∈ R: If
∑

i xiφ(yi) = 0, then

0 =
∑

i

xiφ(yi)g(rI) =
∑

i

xiφ(yirI)

=
∑

i

xiφ(yir)g(I).

So by Lemma 4.4 we know
∑

i xiφ(yir) = 0.
Since the map is a left R-module map, gr can be regarded as an element in Q�.

Hence we extend g : I → Q to g : R → Q�, and the extension is unique. Moreover, by
definition we have φ(x)g(y) = φ(xy) for any x, y ∈ R.

For x, y, z ∈ R, we expand φ(xyz) in two ways:

φ(x)g(yz) = φ(xyz)
=φ(xy)g(z) = φ(x)g(y)g(z).

Since φ(R) = R, g(yz) = g(y)g(z) for any y, z ∈ R.
If g(y) = 0 for y ∈ R, then φ(R)g(y) = φ(Ry) = 0, implying Ry = 0, and y = 0

follows. Hence g : R → Q� is a partially symmetric monomorphism. This completes
the proof of the theorem.

In the case when R is a simple ring, we see that I = R in the proof of Theorem
4.5. Therefore we have the following theorem.
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Theorem 4.6. Let R be a simple ring with an involution ∗. Assume R has nontrivial
idempotents. If φ : R → R is a bijective additive map such that φ(x)φ(y)∗ = 0
whenever xy∗ = 0. Then there is a symmetric monomorphism g : R → Q such that
φ(xy) = φ(x)g(y) for any x, y ∈ R. Moreover, if 1 ∈ R, then φ(y) = φ(1)g(y) for
all y ∈ R.

We remark that the above theorem can also be obtained by [9, Theorem 4] and [7,
Lemma 2].
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