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WEIGHTED INEQUALITIES ON MORREY SPACES FOR LINEAR
AND MULTILINEAR FRACTIONAL INTEGRALS
WITH HOMOGENEOUS KERNELS

Takeshi lida

Abstract. In this paper, we consider weighted inequalities for linear and multi-
linear fractional integrals with homogeneous kernels on Morrey spaces. Recently,
weighted inequalities without homogeneous kernels were proved by the authors.
In this paper, we generalize ones with homogeneous kernels.

1. INTRODUCTION

The purpose of this paper is to unify some inequalities on multi-Morrey spaces for
linear and multilinear fractional operators with homogeneous kernels. For simplifica-
tion, we assume that all the functions are non-negative. We first recall some standard
notations. All cubes in R™ are supposed by the definition to have their sides parallel to
the coordinate axes. For a cube @@ C R™, we use /(@) to denote the side-length of @
and c@ to denote the cube with the same center as @ but with side-length ¢/(Q). Let
|E| denote the Lebesgue measure of E. The integral average of a measurable function
u over E' is written

m(u) = fEu(ac)da:: % /E w(z)da.

For 1 < p < oo, p’ is the conjugate index namely, 1—1) + Z% = 1. Let f be a locally

integrable function on R™. The fractional integral operator I,,f(z), 0 < a < m, is

given by
I.f(x) ::/R Ady.

n ‘[E — y‘n_a
Moreover, for 0 < a < n, M, f(z) denotes the fractional maximal function:
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Mafte)i=sup o [ 1wl
> y|<r

For 0 < p < po < oo, the Morrey space M5 (R™) is defined by the norm (or quasi-
norm)

IFlyge = sup \Q\%(f \f(x)\pda:)p.
QCR™ Q

Q:cubes

There is a remarkable result on the Morrey boundedness of I,,. It is due to Adams [1]
(see also [2, 4]):

Theorem A. Let 0 < a < n, 1 <p<py<ocand1l < ¢q < gy < oco. The
inequality holds

Mo | gz < C I f | agzo

if =1 _2gnd L =2,
q0 Po n q0 Po

We introduced the multi-Morrey space (in our earlier paper [11]), which we recall
now.

Definition 1. Let 0 < p < pg < 00, 1 < p1y....pm < 00, P := (p1,. .., pm)
and L = - +---+ L. One says that f = (f1,..., fm) € ME(R™) if the following
quantity is finite:

0 iy g R T (fapan) <

Q:cubes

Remark 1. The expression defined in (1) is not a norm on MZ];O(R") as long as
m > 2. In fact, since, m > 2, then

17 Aty =2 i > 20 = 1L+ -

the triangle inequality fails. Moreover, it may be equal to zero when only one of the
components is zero (see [11]).

Remark 2. When p = pg, we have

Hﬂ’/\/{‘}? - ﬁ HfjHL"j (Rn)

Hence, the results will cover ones in Lebesgue spaces.
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Moreover we shall define linear and multilinear fractional operators with kernels.

Definition 2. Let f be a locally integrable function on R™.
(1) Given 0 < a < n and a measurable function 2 on R™\{0}, define
Qx —
hnado) = [ S 010,
n ‘[E — y‘

(2) Given 0 < « < n and a measurable function 2 on R™\{0}, define

Mg o f(z) :=sup
r>0

s [ 0I5 -y

Let f = (f1,-.., fm) be a collection of m locally integrable functions on R".
(3) Given 0 < a < mn and a measurable function Q, on R™™\ {0}, define

Io. am (f) (2) = /mn Q(z—y1,. ., T — Ym) H;nzl fj<yj>dg’

‘({E — Y- T — ym)‘mn_a

— —

where dy = dyi - - - dy,,. Moreover put Iy ., (f)(x) := I a.m(f)(2).
(4) Given 0 < a < mn and a measurable function Q, on R™\ {0}, define

n 1 “
Ma, am = / Qu (¥ i(z — ;)| dy,
oo (F) (0) =sup o || @IVt~ )l

where |§] = [(y1, .., Ym)| = \/\y1\2 + -+ |ym|?. Moreover, put M, , (f)
((E) = Ml,oc,m (f_> ((E)

Remark 3. Let 0 < @ < n and 2 be a kernel as above. Then,

oo (f)(@)] < Lioa(lfD(2).

In the actual proof, /o o(|f])(z) will be controlled and as a consequence Iq . is
proven to be bounded. In view of this pointwise inequality, there is no need to take
care of the problem of the absolute convergence of the integral defining Io (f)(z).

In these frameworks, we investigate some weighted inequalities. The boundedness
of I,f on weighted Lebesgue spaces was investigated by Muckenhoupt and Whee-
den [17]. The inequalities of I,f on Morrey spaces were discovered by Adams [1]
and Olsen [18]. Using the inequality of I,f on Morrey spaces, Olsen investigated
the Schrodinger equation. The boundedness of I . f on weighted Lebesgue spaces
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was investigated by Ding and Lu (see [5] and also [15]). In 2010, Chen and Xue [3]
extended the Ding and Lu result to as a sort of multilinear version.

On the other hand, Komori and Shirai [13] introduced the weighted Morrey spaces
and showed the boundedness of I, f on weighted Morrey spaces. The boundedness is
not the Adams type, but the Spanne type (see [19]). Chiarenza and Frasca [4] showed
that the Adams inequality is more precise than the Spanne inequality.

Hence, it is natural to consider the Adams inequality on weighted Morrey spaces.
In [12], we considered weight condition

Plooos = 5B (\‘g)\)%(ﬂgw@)p“)%% /w“’”)_p/dx);_/“‘“

Q,Q’":cubes

which is related to the boundedness of the Hardy-Littlewood maximal operator M
on weighted Morrey spaces. In [12], we showed that the Adams inequality and the
Olsen type inequality on weighted Morrey spaces for linear and multilinear fractional
integral operators. In this paper, we extend the results to linear and multilinear fractional
integral operators with homogeneous kernels. The rest of the present paper is organized
as follows: In Section 2, we state main results. In Section 3, we list some lemmas
to prove main results. In Section 4, we prove main results. In Section 5, we take
up an example which does not belong to the product on m Morrey spaces but the
multi-Morrey quantity is finite.

2. MAIN REsuLTS
2.1. Linear operators

We state a fundamental result which is the Adams inequality with homogeneous ker-
nels. As far as we know, the result is even new. Firstly, let S~ := {x € R" : |z| = 1}
be the unit sphere.

Proposition 1. Suppose that we are given parameters, «, s, p, po, ¢, go Satisfying
0<a<n l<s<oo (1<) <p<py<ocandl<q<qgy< oo. Assume that

1 1
— __g and i:p

o po n d% po
Moreover suppose that Q € L*(S"~1) is homogeneous of order 0: For any A > 0,
Q(Az) = Q(z). Then we have

Ha.a (Nl < C NIl Ls g1y [1f 1| ngzo -

Remark 4. The condition of index s’ > 1 is related to the integrablity of homo-
geneous kernels Q. If the homogeneous kernel  satisfies Q € L>°(S"1), then we
obtain the condition of indices which is completely corresponding to the condition of
the Adams inequality.
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Suppose that a quantity of weights [w]g, 4, IS finite:

ow s ()7 (fera)} (o)

Q,Q":cubes

The following theorem is, so to speak, the Adams inequality on weighted Morrey
spaces with homogeneous kernels (see [1, 2]). Because of the complicated condition
of weights, the proof of Theorem 1 is not as simple as that of Proposition 1.

1
7

S

Theorem 1. Suppose that we are given parameters «, s, p, po, ¢, qo satisfying
0<a<n l<s<oo (1<) <p<py<ooandl<q<qgy< oco. Assume that

1 1
— __g and i:p

@ po N o po

Moreover suppose that Q € L*(S*~!) is homogeneous of order 0: For any A > 0,
Q(Az) = Q(x). If there exists a > 1 such that

) [w*]ag 4 2 < o0,
then we have
1

/ g
oo (Hwll oo < Clw*lin o o 195 @n1y [fwl o -

S/

Moreover we obtain the following inequality.
Theorem 2. Suppose that we are given parameters «, s, p, po, ¢, qo satisfying
0<a<n l<s<oo (1<) <p<py<ocandl<q<qgy< oo. Assume that
1 1 « q P

—=——— and —=—.
q0 bo N q0 Po

Moreover suppose that Q2 € L*(S™~!) is homogeneous of order 0. If [w®]a o » < o0,
then we have

1Moo (fwllym < Clwli o o 120l gomr 1wl ago -

9
gl

AN

»

In order to state the Ding and Lu result, we recall the class A, and the class A, ,(cf.
[6, 7, 15]). Firstly, we recall the definition of the class A,,.

Definition 3. Let 1 < p < oco. A positive weight function w defined on R™ belongs
to the class A,(R™) and is called an A,-weight if

[w]a, = nggn <wi(ac)da:) <wi(x)ﬁda:)p_l < oo.

Q:cubes
Moreover put A (R") := 51 4p(R").
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Next, we recall the definition of the class A, ,(R").

Definition 4. Let 1 < p < oo and 0 < ¢ < oco. A positive weight function w
defined on R™ belongs to the class A, ,(R") and is called an A, ,-weight if

[w]a,, = nggn <wi<x>qu)§ <wi(x)‘p/da:) i < oo.

Q:cubes
Remark 5. It is well known that if a weight w satisfies w € A, ,(R™) if and only
if
w? € Al-l—i/(Rn)v
P

w P € A1+%/<Rn>.

Similarly, a weight w satisfies w* € A» o (R") if and only if

These properties allow us to use the reverse Holder inequality (see Lemma 3).

When ¢ = ¢go and p = pg, Theorems 1 and 2 are reduced to weighted LP- inequal-
ities.

Corollary 1. [5,15]. Let0 < a <n,1<s<o00,1<s <p< Zand
Suppose that Q € L(S"~1), for all A > 0, Q(Az) = Q(z) and w* € A
(1) If 0 < a < n, then

3R

(®").

(SRR

S

1
Hevafll o < Clw™1a, 4 190 L@ 1o

)
S/S

(2) If 0 < a < n, then

L

1Moo fl pagun < Ol T3, o 190 Le@n1y 11l Logur) -
(w?)

s!s!

Proof of Corollary 1. Under the condition of Corollary 1, we check that, if the
weight w satisfies w® € Az o (R"), then w satisfies the condition (2). In fact, by the
reverse Holder inequality, for °every cube Q C R™ we have

( wi@)%) ¢ ( wi(ac)qda:) ¢
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Hence for pair of cubes Q C @', we have

S/ 1

(&) ’ (f werae) ™ (f wie

S/ 1

- (\g\)% (fdf@wdx)a‘q (F ooV
: <f Qw@)aqu)é—q (ff /w<w>‘8/<5>/dx) (%)

s’ 1

gc<f w@wm)q</ w@y%5Mm)%Y

< C’[ws/]AEM% < 0.

|
m\
)
=
8
N———
e

Therefore by Theorems 1 and 2, we obtain Corollary 1. |

2.2. Multilinear operators

We pass to the multilinear case. The next theorem is the Adams inequality on
weighted Morrey spaces for multilinear fractional operators with homogeneous kernels.
Firstly, let S,,, := S*~! x --- x S*~1. Suppose that a quantity of multiple weights

(W], 4. 9iven below is finite:

Tonar = 0 (137) _( f - watayae) il (f, wts) i)™

<. \|’—‘

j=1
Q,Q":cubes
Theorem 3. Suppose that we are given parameters «, s, p1,- .., Pm D, Do, ¢ G0
P = (p1,...,pm) satisfying0 < a <n, 1 <s < oo, (1 <)s' <p1,...,pm < 0,
b=l 0<p<py<ocand0<g< g < oo Assume that
1 1
—==_-% ad L-L
q0 bo N q0 Po
Moreover assume that 2, € L*(S,,,,) satisfies the following homogeneity: For any
Ay ey Am >0, (M, ooy A@m) = Qu(x1, ..o, @), If there exists a > 1 such
that
3) (0] g o 2 <0

/

where @ := (wf .. .,w%). Then we have the following inequality:

—

i (7)1

@ |

)

%490 ¢ P
s’ Vsl

qQ —
My

<C [w} o 2 10l e, I(Fr0ns s Fntm) oo
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Remark 6. In a series of main results, we can replace the kernel €, with the
following kernels ,..: Q.. € L* (S™ 1) and for any A > 0, Qu(Az1, ..., Azp) =
Qui(x1, ..., xm). However, this case does not cover results due to Chen and Xue.
Hence we use the kernel €2,.

We obtain the following inequality with respect to the multilinear fractional maximal
operator.

Theorem 4. Let 1 < s <00, 1 < <pj <00, 0<a<mn, 0<p<py< oo,
0<qg<qo<oo, 3=p+-+3, iozpi——and & = I Moreover assume
that Q, € L*(S,, ) satisfies the followmg homogeneity: For any Ay,..., A\, > 0,
Qe Mz, .o Am@m) = Qu(z1, .. ., 2,). Suppose that [ }ﬂl o5 < Then

s/ sl s/

=

Mo (7) -]

a0
My

»Q o |

<cla]n L o120, G, o+ Fontom) | v -
s/ sl

s/

Moen [16] introduced the multiple weights class Ap, (R™) (see also [14]):

Definition 5. Let 1 < p1,...,pm <00, 5 = - +---+ - and 0 < ¢ < co. One
says that a vector of weights « is in the multiple weights class Ap (R™) if
1
9 m =l
/ P
W], . = sup f wi(z)ldx <f w;(y; _pfdy‘) 7 < o0.
@, = s, H s | TT( f, it i
Q:cubes J

In Theorems 3 and 4, if we take ¢ = g9 and p = pg, we obtain the following
corollary which generalizes the result due to Chen and Xue [3].

Corollary 2. Let 1 < s <00, 1 <§ <p;j <00, 0<a<mn,0<qg< ocoand

1= 4.+ L2 Moreover assume that Q. € L*(S,,,) satisfies the following

homogeneity: For any A, ..o A > 0, Qu( Mz, AnTm) = Q1,0 Tn).
Suppose that @* € A5 , (R™).

s/ sl

(1) If 0 < a < mn, then

1 m
TSI o X (1T
H o\ | oy < € 12 Ag 1921, (Sm,n)]l_IIHfJ”L”J(wf])
(2) If 0 < a < mn, then
1 m
a,m F <C|:_i8/i|5/ Q* s j 1 NE
[ Mo ()] ey €[ 1, Il (S,,L,n)jf[l\rf]\rmw;])

S S/
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In fact, for Q; € L*(S"!) and Q;(\z) = Q;(x), if we take

o ) [[2, Qi(z;) (forall j=1,...,m; z; #0),
H(T1,.. ., ;) = .
! 0 (otherwise),

then Corollary 2 corresponds to the result due to Chen and Xue [3]. For the sake of
the convenience, we shall state the unweighted version of Theorems 3 and 4, which
are new results as well.

Corollary 3. Let 1 < s < o0, 1<8/<pj<00 O<a<mn, 0<p<p < oo,
0<qg<gqo<o0, 3=ro 4+ - =_-—2and L =P Moreover assume
that Q, € L*(S,, ) satisfies the following homogenelty For any Aq,..., A\ > 0,
Qe Mz, o Amm) = (1, ..o, 2.

(1) If 0 < a < mn, then

HIQ*7a’m (f> MQO - C HQ HL° gm n "]FHMPO '
(2) If 0 < a < mn, then
i (] =1

Remark 7. Another proof of Corollary 3 is obtained by the boundedness of 1, .,
and a standard argument. However, the proof of Theorem 3 is not as simple as the
proof of Corollary 3.

We can extend Theorems 3 and 4 to two-weighted versions. Firstly, suppose that a

quantity of two-weight type multiple weights [v, w]qo B

P = 500, (“g,“)%(va@)qu)%ﬁ(fQ/wj(y]) )

=1
Q,Q":cubes J

By the same argument as Theorem 3, we obtain the following inequalities.

x;.\|’—‘

Theorem 5. Let 1 < s <00, 1 < ¢ <pj <00, 0 <a<mn, 0<p<py< oo,
0<qg<gy<oo, 3=y +- -+ - =-1—2and L = 2. Moreover assume
that Q, € L*(S,, ) satisfies the followmg homogenelty For any Aq,..., A\, > 0,

Qe Mz, o Amm) = (1, ..o, 2.

Case 1. Let ¢ > 1. Suppose that there exists @ > 1 such that [vs/, wﬂ o 5 <
0o. Then e
1
HIQ*,oc,m< ) HMqO = C ['US ’u75 i| ;_CI/Q71/Q7%S HQ*HLS(gm,n) H(fl'll)b .. .,fmwm>HMI;SO .

S S s'a
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Case 2. Let 0 < ¢ < 1. Suppose that there exists @ > 1 such that [vs/, wﬂ

< oo. Then

=

AV v
| . am )vHMqO —C[”vas}u o 2 12 e NG00, Frnwn) s

S/ / /

On the other hand, we have the following inequality.

Theorem 6. Let1<S<OO,1<S/<pj<OO 0<a<mn,0<p<py< oo,
0<qg<gqo<o0, 3=ro+-+5 - =_-—2and L = P Moreover assume
that Q, € L*(S,, ) satisfies the following homogenelty For any Aq,..., A\ > 0,
Qe(Mz1, .o Am@m) = Qu(z1, ..., z,). Suppose that there exists a > 1 such that

r L
[vs ,ws} . < oo. Then
90 g P
8/75/75/(1

2 =

=

[ Ma. (o

c[o a7, 19l
0/70/7E

) H(f1w17 sty fmwm>HMI;SO .

sm,n

HMqo -

Moreover, we can generalize Theorems 5 and 6 in order to include the Olsen
type inequality. Suppose that another quantity of two-weight type multiple weights

(o) i, )’

J=1

[v’ w]fmﬂ“oquﬁ:

1
. _ Q[ \ ©
[v’w]qomoquﬁ T ngg/ <\Q’\ ’Q
Q,Q":cubes

< \|’—‘

Then we obtain the following inequalities.

Theorem 7. Let 1 < s < oo, 0 <a<mn, 1 < <pj <oo,0<p<py< oo,
Pm

0 <qg<q <rg< o, %:i+---+% 1<a<m1n{f,i1,...,s/ ,
i—i L2 4 — P andry > 2 Moreover assume that 2, € L*(S, )

satlsfles the followmgqhomogenelty Forany A\i,..., A\ > 0, Qu( M1, ..o, AdnTm)
Qu(x1, ..o, Tm).

Case 1. Let ¢ > 1. Suppose that [vs/, wﬂ < 0o. Then
w %97%7%

1
ag B HQ*HLS(gm,n) H(flwl’ Y fmwm>HM1;30 .

< 8/ _’8/ b/
[0 (7) o]y <7y
7 ’

a S/ S S s/a

Case 2. Let 0 < ¢ < 1. Suppose that [vs 0o. Then

8/
mmii
o/ o

1
e g’ | s
HIQ*,oc,m (f) HMQO _C[’US/uwS/} aqq HQ*HL°(

o g i Sm,n) H(flwl’ T fmwm>HMI;30 :
W
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On the other hand, we have the following inequality.

Theorem 8. Let 1 < s < o0, 0 < oo < mim, 1<s’<p]<oo 0<p<py< oo,
0<q§q0<r0§oo,l:i1+ —i—ﬁL:——i— -4 & = £ and
ro > %. Moreover assume that 2, € L°(S,,,,) satisfies the followmg homogeneity:
For any Ay,..., Ay > 0, Qu(Mz1, ..o Am@m) = Qu(z1, ..., 2m). Suppose that
[vs/, 71)’5/} . < oo. Then

20 ﬂ/l a P

s’ sl 75!V sla

! !
_<C [vs ,wﬂ
Mqo

IGY i,

_9 i/ %S ‘ (Sm,n) H (fl’U)l,. o 7fmwm> HMI;SO .
Theorem 7 has two corollaries. In Theorem 7, if we take v = g and @ = (1,...,1),
then we have the Olsen type inequality. For the linear case, we refer to [8, 9, 18, 24,

25, 26, 27, 28, 29].

Corollary 4. Assume that the conditions of Theorem 7.
Case 1. Let ¢ > 1. For g € Mo (R"),

[ 0 0m (7)| g = € My 19215 1] -
Case 2. Let 0 < ¢ < 1. For g € M°(R"),
o 2 cm ()] g = Nolagp 192 ] -

The following inequalities are understood as a sort of the Fefferman-Stein inequality
(see [15], Theorem 1.3.2, p. 17).

Corollary 5. Under the conditions of Theorem 7, moreover assume that 0 < ¢; <

; 1 1 1
ri<oo (i=1,...,m). Leta_%:Z?l1a’%:ZT1rand

1

1 ) a; .

m@w:wm@w</wwwwo (i=1...m),
Q> Q

where @ runs over all cubes.
Case 1. Let g > 1. If [(01- - 0m)®, W |agy rg o & < 00 then

[t (7)1 o = 19
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Case 2. Let 0 < g < 1. If [(v1---vm)® , W¥]agy rg ¢ 5 < 00, then
s s’ Tt %
i (7)) < o TPy b
< [(f1W, .. ~,mem)HMf30 .
For the sake of convenience, we prove Corollary 5.
Proof of Corollary 5. Write
—_—
[m U, W}
1
L/ p _] / 23 7
= Sup ‘Q‘T‘O <f (vl .. .’U?TL)(x)aqodx) qO <f W 8 CLS/ dx) (as/) .
QCR" Q
Q:cubes

In Theorem 7, we take v = vy ---v,,, and w; = W;. Since 0 < g < ¢p < oo and
a > 1, by Holder’s inequality, we have

(v1 - o), W (01 o), W <loreovn W
U1 Um) adg _9_?;7 1 m) agg 7"_91/%3 Py 1 ms
It suffices to show that [ U, } < oo. By Holder’s inequality, for every cube

@ C R™ we have

!

@17 (f - smyman) ™ < [l (futeras)”

On the other hand, by definition of W, for all y; € Q,
1 ) q;
Wiy:) > Q" <vai(Zi)qldzi) )

This implies that, for all y; € Q,

Wi(yi>_8/(§%>/ < <‘Q\% <vai(Zi>qidZi) ;_l> e

Hence we obtain

QIS <fQ(v1~-~vm)(a:)“q°da:)L ﬁ (wi y;) =" () dyj) (7
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Therefore we conclude -
[v1~~~vm,W} <1< oo

By Theorem 7, we obtain the desired inequality. ]
A similar argument yields two corollaries of Theorem 8.

Corollary 6. Assume that the conditions of Theorem 8. For g € M °(R"™), we
have the following inequality:

Hg.MQ*7a’m ( >HMQO - CHgHMTO HQ HL° 877L7l ’JFHMPO .
Corollary 7. Under the conditions of Theorem 8, moreover assume that 0 < ¢; <
rigoo(izl,...,m).Letin: ?;é!%: zm17~_and

1

W;(z) := sup \Q\’}_z <vai(yi)qidyi) “ (t=1,...,m).

Q3
e )
If[<v1”'vm>suws]@mq P OO,then
PRI EIN]
e 1T i/
| Mo am (F) w1 '”mHMgo <C [(01 v, " Ll B P

»

s'’s

w

X H(f1W17 .. 7mem>HM

]
w3

3. SoME LEMMAS

3.1. Fractional integral operators

Lemma 1. If 0 < a < n and Q € L*(S™ 1) then, we have

oo (F)(@)] < C Q| s gn-1) Lo (F) (2),

Fla) = (M (1) @)

I0.a(N@) < ClQ gy Y25 inf  M[|fI7] @)7,

kEZ veB(z, 28+ r)

where

o=

Proof. Since

we have

0N < C12lenny 2 gy [ v 1] )y

kEeZ

= O e zkai/ F(y)dy.
D e ey A
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Therefore

1 XB(z 2k+1
Qkai _c p
Z ‘B([B, 2k+1>‘ /yEB(a:Qk‘H dy /n Z 2k <y> Y

F(y)
< C/ Z 9k(n—a) dy,

R»
k=|log |z —y|] -1

where |-| is the floor function. Note that the series can be calculated explicitly; we
obtain

! F(y)
2“7/ F(y)dy < C o,
;Z Bz, 25 0] yepeaey W)y = Rr (2llogs [z—yl)-1)"7¢ !
Since
[logy |z — y|| > logy |z — y| — 1,
we have

1
gllogz [z=yl]=1 > glogale—yl=2 _ — |5 _ |,

Hence we have

F(y
ZQka 2k+1 / F(y)dy < C 7_< 21 ~dy = CI,F(x).
ez [L’ ‘ yEB(z 2k+1) Rn ‘IL' y‘

Therefore we obtain Lemma 1. ]
Chiarenza and Frasca [4] proved the following inequality:

Lemma 2. If 1 < p < py < o0, then
1M £ o gy < C Il o ey -
We recall the reverse Holder inequality (see [6, 7, 15]):

Lemma 3. Let 1 < p < oo. If w € A,(R™) then there exists constants C' and
e > 0, depending only on p and the A, constant of w, such that for every cube @,

<wi(a:)1+eda;) i <C <wi(a:)da:) .

In [10], the author completely characterized the multiple weights class A 5 q(R")
in terms of A,-weights (see also [3]):
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Lemma 4. Let 1 < p1,...,ppm < 00, 5 = 2=+ -+ --and 0 < ¢ < oo. A

vector w = (wy, wo, . . ., wy,) of weights satisfies w € Az q(R”) if and only if

(wi -+ -wm)? € A1+Q<m_%> .

-} .
w; GAHp;.S].(]R") (j=1,...,m),

1 1 _ 1 (5 _
where s; = & + o (j=1,...,m).
Lemma 4 gives us that if @ € Aﬁq(R") then (w;---wy,)? and wj_pj (7 =
1,...,m) have the property of the reverse Holder inequality. We need the follow-
ing Lemma 5 in order to prove Theorems 3, 5 and 7.

Lemma 5. [12]. Let 0 < a < mn, P = (P1, -+, Pm), R

1—1) = pil +-+ zﬁ' Then we have the following inequality:
400 < 1y
where
m 1
- ' .
M, 710 = s t@ TL (£, 16007 )
Q> i=1 Q

and @ runs over all cubes.

Next, we define a maximal function as follows:

1

(va(y)"dy) "

=

@ N (7)) sl ()’

where @ runs over all cubes and

m

m3q (f5/> = H1 <f3Q | £ i)l dyj) :

1=

We derive the following pointwise inequalities by Holder’s inequality and the corre-
sponding conditions of weights. We take advantage of the following Lemma 6 in order
to show Theorem 5.

Lemma 6. Under the condition of Theorem 5, we have the following inequality.

Case 1. Let ¢ > 1. Suppose that [vs/, u?s/} < o0, then

agg aq P
S/ 78/78/61
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Niga(f o)) < € [ @] ]

adg ag B a7§<f1w17'~~afmwm><$>~

Case 2. Let 0 < ¢ < 1. Suppose that [vs/ i

| I
Q
=}
o
e

, W 5 <00, then
s sl s
1
~ — A )
ME (f,v)(x) <C [vs ,ws} g o 5 M, s(fiw, ..., fmwm)(x).
5/ 7?7% ’a

We take advantage of the following Lemma 7 in order to show Theorem 7.
Lemma 7. Under the condition of Theorem 7, we have the following inequality

Case 1. Let ¢ > 1. Suppose that [vs/,wﬂ

. < oo, then
agg ro ag P

1
~ — A v
Wizt (fro) @) < O [ | Ly sy iy Mo 2 (s o) (0),
Case 2. Let 0 < g < 1. Suppose that [vs/, ws} . < oo, then
- S by
Mg (f,v) (x) <C [US ’LUS}:_%Q;(}’% ; Ma—%,§<f1w1’ ooy fmwm) ().

By Holder’s inequality and the corresponding conditions of weights, we obtain
Lemmas 6 and 7.

3.2. Fractional maximal functions

By Holder’s inequality, we obtain Lemma 8.

Lemma 8. Let 0 < a<mn, 1 <s<ooand 0 < as’ < mn. Moreover assume
that Q, € L*(S,,) satisfies the following homogeneity: For any Ay,

ce A > 0,
Qe Mz, oy Amm) = Qu(x1, ..., 2). Then we have

s .

Ma.a (F) (@) < ClRN g, Masian (£ fr) (@)

In [12], we have the following inequalities. We use the following inequality in
order to prove Theorem 2.

Lemma 9. [12]. Let0§a<n,1<p§po<oo,1<q§q0<oo,qio_pio_
and (;LO - 1%' If [w]ge,qp < o0, then

3e

IMa (Pl g0 < Clwlgog | frollpgzo -

We use the following inequality in order to prove Theorem 4.
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Lemma 10. [12]. Let 0 < a <mn, 0 < p < pp < o0, 0 < q < gy < o0,

i_ 1, .., 1 1 _1_ «a 9 _ P n _
P P + + Pm’' @  po m and % ~ po’ It [w]qoqup < oo, then
[ (£) o+ wom) |y < Cll 1001 Fritom) g

We use the following inequality in order to prove Theorem 6.

Lemma 11. [12]. Let 1 < p; <00, 0 <a <mn, 0 <p < py < o0, 0 < q<
1

i_ 1, .., 1 1 _1_ o 9 _ P i ~
o < 00, P P + + Pm’' Q0 Po g’ g0~ po’ If for a > 1, [v’w]qoquP/a < 0,
then
[Mam (e o < Cl00 81, 0 00 o)l

Lastly, we use the following inequality in order to prove Theorem 8.

Lemma 12. [12]. Let 0 < a<mn, 1 <p; <00, 0 <p <py <00, 0<q<

i_ 1, .., 1 1 __1,1_ a9 _P n
q0<7’0§OO,p—_?1+ +pm’ @__ po  To M’ QG PO and 02 g Suppose
that for a > 1, [v, 0] 5, < oo. Then we have

q0,70,9,P/a
[Main (F) 0] o < C 1ol 570 1100, )l

a
4. PROOFS
4.1. Proof of Proposition 1
Firstly, we give the proof of Proposition 1.

Proof of Proposition 1. By Lemma 1, we obtain

0.0 (F) g0 @y < C U pogn1y MaF g0 gy -
Theorem A vyields

S/

oFlLygogary < CIE Laggoary = € M1 [1£1°]

39_ .
2 (R)
By Lemma 2, we obtain
1 1
M <] s = Cllvg -
o (] g = I ) = € W o

oS
oS

Therefore we obtain Proposition 1. ]
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However, the proofs of the other theorems are not as simple as Proposition 1.

Since the proofs of that of Theorems 5 and 7 are similar to Theorem 3, we omit
their details. Moreover since the proofs of Theorems 2, 4 and 6 are the same argument
as that of Theorem 8, we concentrate on Theorem 8.

Therefore, we prove Theorems 1, 3 and 8. The proofs method are straight.

4.2. Proofs of main theorems for linear operators

We will prove Theorem 1.

Proof of Theorem 1. For every cube Qo = Q(zo,r) C R", we decompose
f = Fx300 + fX3Qo) = fo + foo. Firstly we estimate |I.q(foo) ()] For = € Qo,

we have
Qx —
ot < [ DLW,
ye(3Qo)c | —y|

S/ \Q(w—y)L\_J‘sy)\dy
—yl>r |z =y
— / \Q(w—y)L\_J“(fy>\dy
= J2kr<jo—yl<2rtir |2 — Y|
<) ohon—a Qz —y)|[f(y)]dy.
2 G g, 2O
By Holder’s inequality, we obtain
‘IQ,ocfoo@:)‘
00 1 . s Y s
<> o | [ 20— y) dy> ( / 7w) dy>
= () |z—y|<2**ir |z —y| <2*HLr
e 1 2k+1y % , %
=S L[ magrraae) ([ s
k=0 <2k"r’> S§n—1 0 |Jf—y|§2k+1r

By the homogeneity of €,

0,0 foo ()|

o0

1 2k+1r % s
<N 19 gen / "Lq / Fy)° dy
P <2kr>n—a H HL (Sn—1) < 0 ) < |I—y|§2k+1r‘ ( )‘

o0

%—n—l—a W s
scuﬂumgn_l)z(2’%) (/WWQOU@)\ dy) :

k=0

1
S’

L
7
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Hence, for x € )y, we obtain

ool < Oy Y- (20) 7 ([ wrtr o)™

k=0

3

Therefore, we can estimate I o foo (2);

Qol 4 ( /Q |zg,afoo<x>|qw<x>wx)

%) 174 %
sc@om-mmm)(/ [Dz’fr)%-"ﬂ(/ )l dy) ]wuwdaz)
@ |12 2843/ Qo

k

1

< Ol s gn-1y [Qol® 2

T “a)” ( d)
AR (/Wmovw y /Qowu:) .

By Holder’s inequality, we have

=

Qol# ( /Q |fg,afoo<x>|qw<x>wx)q

< C 10 o) | QoI ™ Z|2k+3fQ| F( o P ury)
nQo

1 1

X </2k+3ﬁ%w(y)_s,(§),dy>S_,(SL,)I (/Qow(x)quf

1_1 Lpapl L , , »
U gy [QoIEH S |2 Qo] T ([ iwruera)
k=0 288 /nQo
X |2k+3\/ﬁQo|%_% (/ w(y)” 'I(§)'dy> ") (/ w(a:)qu> "
2k+3./nQo Qo

By virtue of the definition of the Morrey norm || - HMgo, we have

Qo ( /Q |fg,afoo<x>|qw<x>wx)q

oo L —-L

Qo )( Qo )

<C Q s(Qn—1 w P n
= H HL (S )Hf HM,,O(]R )};<|2k+3\/ﬁQo| |2k+3\/ﬁQ0|

1
=7
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By virtue of the condition (2) and a > 1, we obtain

Qoli ( /Q ug,afoo<x>\qw<x>qu)"

!

*la

gel-

< Ol pe(gn-1y [w

k(11
O%E/waHMPO 22 qO a)

7 ’

=«

!

< CIQ peggny [

Qu

o/
w0 9 p waHMgO'

PR

Next, we estimate Io o fo(z). For z € Qo, we have the following inequality:

s\ L
Hoafo(@)| < ClQ gy D UQ) mso(f17)¥ xo (),
QED(Qo)

where D(Qo) is the collection of all dyadic subcubes of Q) and

msQ (‘f‘ )i/ = <f3Q\f(y)\s/dy)$.

That is, D(Qo) denotes the set of all those cubes obtained by dividing @y into 2"
congruent cubes of half its length, dividing each of those into 2™ congruent cubes. By
convention, Qo itself belongs to D(Qy). In fact, for = € Q,

[z =)l 1foW

oafola)| < |

n ‘ y‘n—a
Oz —
_Z/ | y)\ifg(y)\dy
i o || =~y
< 12z = y)[fo(y)| dy.
;% 2k=1y /|a: y|<2kr
By Holder’s inequality, we have
[0 fo(z)]
: 3
= / \Q<w—y>\3dy> ( / o)l dy> .
ke% 2k=tr < |z —y|<2Fr |z—y|<2Fr

By the homogeneity of €,
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|~

@ =

( / )] dy>
3QoN{|z—y|<2kr}

[0, fo(z)]

1 , 2k
- 0O s d€ - n—ld
< kze:z (2F—1p)n—a (/Snl 2(&)]° dg /0 ! l>

= O gy ST (2E) e / Fw)| dy
Lo )Z 3QoN{|z—y|<2Fr}

k€eZ

<\|’_

< C N o g Q)"+ T / FoITdy | xo(@).
[l D P ((4) <3Qom{|w_yl<m)}|( | ol

k€Z QeD(Qo),
1(Q)=2"r

A geometric observation shows

Ho.afo(@)] < ClIQL@y D D UQTF* </3

1
57

W) dy) Ya(@)

kE€Z QED(Qo), Q
(Q)=2Fr
= Ol ey D UQ mag(If]T) T xq ().
QeD(Qo)

1
Let v := m3q, (\f\8/> . We choose A, = (2-18")¥ > 1.
For k € N, let

1

7

Dy, = U {Q € D(Qo); m3q (\f\8/> T > ’YOA]:} :

Considering the maximal cubes with respect to inclusion, we can write Dy, = Uj Q-
By the maximality of @) ;, we obtain the following:

1
(5) YA < msg, (\f\s ) T <2y AR,
On the other hand, let £y = QO\DI and Ekvj = Qk,j\Dk—l—l- Then {Eo} and {EkJ}

are disjoint and Ey U (U,w E;w) recovers QQo. Moreover if we take sufficently large
A,, then we have

(6) |Qo| <2|Eo| and |Qk;| < 2|E;|.

In [12, 24, 25, 26, 27, 29], the above relationships (6) are shown. For the sake
of self-containedness, we shall check (6) . Firstly, fix a cube Q. ;. Since Qi ; =
(Qk,j N Di11) U Ey, 5, we estimate [Q ; N Dy41]. For o € Qg j N Dy, there exists
@ > x such that 3Q) C 3Qy, ;. Therefore we have

’ 1
VAT < M(|f* x30,,) ()7 .
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Hence we have
/ 1
Qi N Dir € { € Quys MUT xag,,) (@) > nAl |
By the weak-boundedness of M on L!'(R") and (5), the above inclusion implies that

Qs N Dl < {2 € Qs MUSI X3, (@) > (0AEH) ||
3" / /
< — o [fW)I” dy
(’YOAI»E—H)S 3Qk,j

.3 f
(o AF™)s \ V3,

18™ 1
< a7 |Qk,j| = §\Qk7j\~

f () dy> 13Q;|

A similar argument yields
|Qol < 2|Ey|.
Moreover let

=

Do) = {Q & D@k mag (171 <04

and

1
S’

Dy,j(Qo) = {Q € D(Qo); Q C Qr.j»10AY < mag (\f\8/> T < ’YoAlfH} :

Then Dy(Qo) U (in‘ DkJ(QO)) recovers D(Qo);

(7) D(Qo) = Do(Qo) U (U Dk,j(Qo)) :
k7j
By duality, we have
HIQ,oc(f(ﬁwHLq(Qo) = sup HIQ,oc(f(ﬁwQHLl(QO) :
914" () =1

So we take g € L7 (Qo), g(x) > 0 ae. x € Qo and [|g v (o,, = 1. Moreover let

®) I= Y 1(Qrmsg(f)? /Q w(a)g(z)dz

Q€Do(Qo)

and
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©) = Y 1Q msa(f)? / w(z)g(x)d.
Q€Dy, ;(Qo) @

By (7), (8) and (9), we have
| el @)l w@g(a)ds

Qo

o L
<Oy > UQ M) [ i
QED(Qo) N

CQLs(snl)( > +Z > ) ) msq \f\s/)i/cgw(w)g(w)dw

Q€Do(Qo)  k.J QeDy,;(Qo)

= C[|9 s (gn-1) (I + ZHM‘) :
k7j

Next, since I is controlled in a manner similar to 11} ;, we estimate 11}, ;.

= Y 1Qrma (1£1F)” | wt@iatoras

Q€eDy,;(Qo)

<At DT UQT [ w(w)g(r)da
Q€Dy, ;(Qo) /Q
l @ w(z)g(x)dz
S Q) /Q (2)g(x)

1
S A*mSQkJ' <‘f‘8 > ’
) QEDy,;(Qo)

< Amsq, (1A17)7 1@ey)" [ wiwho(ads

< As |Qr jl Mg, (\f\s/>? H(Qr )" <fQ 'w(x)“quJ)

1

, (aq)’
X f g(2) D dz: .
Qk,j

By virtue of (6) we have
(QkJ) <f
Qrk,j

5]

1

aq

\IH

IT; < 2A.|Byglmagy, (1f17)°

(10) x < fQ g(@”qydx) o
ot ()? (£, worn)

w(a:)“qda:>
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1

x f g)“Vdy | da
Qk]

<24, [ MO (f,w)(x)- M [\gwq)/} ()@ da,

Ey.;
where we recall
1 1
~ S aq
M) o) = sup (@) mag (111) ' (f wiyaan) ™
Q> Q
Similarly, we obtain
(11) 1<24 | W (fw) () M [lg ] (@) da.
Eo

Hence from (10) and (11) we have
I+ ZII;” <24, / NI, (f,0) (2) - M [1g] 0] (@)@ d

By Holder’s inequality and the Hardy-Littlewood maximal theorem about the L(24)'-
boundedness of the maximal operator, we have

1
o

I+ZII,”§C</ N ( >qu)% (/OM[\gMV} (a:)(_aqq/T/da:)q
<C’</OM“‘1 )qda:)%</o\ ()\qu)%

-l .|

L9(Qo)

where we used HgHLq/(QO) = 1 and supp(g) C Qo for the equality of the last line.
Therefore, we obtain the inequality:

Maa(fo)wllzaiop < € 190 @m)

g (f,w)|| an’

By Lemma 3 and the condition (2), we can obtain the pointwise inequality;

M (fw) (@) < C [ |, Mee |(fw)E] (2)F,

@90 49 P “a
S N

where
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In fact, since a > 1, we have (£)" > (&) Thus, we take advantage of Holder’s
inequality and Lemma 3 for their indices;

1

msQ (\f\8/>? <wi(y)“qdy)an < C[ Srqo <

} It uwia)"
3Q
This implies that

S

~ ’ % P a
M (o) @) < Cw”] 5, M |(Fw)E] (2)7
Therefore we obtain
5% g <c[w]l ., 1o M [(r2]”
q0 q 0 @ a
1o a”(f’uglL%Qw =LY Jem g 1O Ell L4(Qo)
1 a
1S P D
scpﬂwa_M%kmw}L%
S/ 78/70/ aq
P

ap apo
P _ P o L b
- ) aq - aqo
agp app n .
we can take advantage of Theorem A. This implies that Mep : MZPO/P(R7) —
aqo/p ;
M., I (R™). Therefore we obtain
Qol % || N1 (£, w)|
Q 49 s w
0 «,S Lq(Qo)
a 1
ary Pllp A
<C[ﬂ@%%(ﬂm o = C [0

Hence we obtain the desired inequality.

[ ]
4.3. Proofs of main theorems for multilinear operators
Next we shall prove Theorem 3.

Proof of Theorem 3. For Qo = Q(zo,r), we decompose f; = fjx3q, +
fix3go) = f]O + f5°. Then we have the following;

Io.am (F) @)= Tooam (s £2) @+ Y Tovam (A S ) (@)

(l17"'7l7n)7£(07-..70)

A + Z B(l17---7lm)'
(lly---yl7n)7é(07---70)
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By a standard argument, we estimate B;; where [= (l1,...,lyn). For z € Qo, we have

@) £ () )
< [ 1 Iy e )

x_yl,___,x_ym)lmn «
</ |f1(y1) - - fon(ym)] |
- [(Z=Y1,eesT—Ym ) |>T |(l‘ — Y- _,x_ym)lmn—a

Q*(‘/L‘_yla"'ax_y7n)|dg

< OO/ |f1(y1)-..fm(ym)| |Q (l’—yl r—y )|dg’
N * ge ey m
=0V 2 r<|(z—y1,....z—ym )| <2F+1r |(x—y1, ey x_ym)|mn—a
= 1
SZW/M ey <2k 1% (@—v1, - 2—ym)| | f1(y1) - fn(ym)| dF.
k=0 C Y1 Ym T
By Holder’s inequality, we have
) 1 %
By / |Q*(l’—y1,...,x—y )l‘sdg
| l| z% 2/€7~)mn a ( (it )| <217 m

-

x (/ |f1(y1)"'fm(ym)|s dg)
[(T=Y1,eesT—ym )| <2F+17

o0
k=0 (2 T) |T—ym |<2F+1r |z —yo|<2k+1y

[/l |<2b+ |Q*(l’_yl,-..,x_ym)lsdyll dyg---dym>
r—yp|<2kt1p

x (/ |f1(y1)"'fm(ym)|s dg)
[(T=Y1,eesT—ym )| <2F+17
o ok+1,.
S (L (1

(e, ln&)” [ 127 el - -dlm> d{)
j=1

B

2k +ly

1

x (/ |f1(y1)"'f7n(y7n)|s dg) R
[(=y1,-x—ym)|<2k+1r

where d€ = d¢; - - - d&,,. By the homogeneity of Q,(Ai21, . . ., Am@m) = Qu(21, . . .,
Zm), We have

=

o0 ok+1

|Br|SZW /S Q&1 &) dE - H/ i,

k=0
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x (/ |f1(y1)"'fm(ym)|s dy])
[(T—y1,es—Ym ) |<2FH1r

o

1 m .
SC - - 2k:+1 Q B / f Yj S dy
e N RS | £ I

k=0

=

“

Hence we have the following:

|QO|%_% </ |Bl~|q(w1"'wm)(l‘)qdl‘>q

LI e | (( A )

Jj=1

X |Q0|%_§ (/Q (w1 .. -wm)(a:)qu> !

By Holder’s inequality, we have

|Qol0 (/ | B (wy - wm) (2 )m)

<clo, HLs(SM)Z @ ] (/

7j=1 ’ nQo

(Pi %T 1
X <f 1,[}](y])_5 (?’L) dy]) (s ) |Q0|q0
2k+3/nQo

1

X <fQO(U11"'wm >_ H |2k+3\/_Q0

By considering the multi-Morrey quantity, we obtain

|QO|%_% </Q |Bf|q(w1"'w7rl)($)qu>q

CH H H(f f H | 0 ql() (1_%)
< Q2 wi, ... w, » E Qo
*IWLE(Sim,n) 1W1, s JmWm ./\/l 0 < P )

k=0 2 \/_QO

@ |~

5 ()17 ) dyj) E

1.1
o7 (E,L)'
s7 .

’

g <%>_ (f@o(wl . .wm)(x)qu> —}

" H (/ w<y><4>dy) m} "

j=1 k+3/nQo

By the condition (3) and a > 1, we obtain
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|QO|%_% </Q |Bf|q(w1"'w7rl)($)qd$>

<C HQ*HLS(SWW) I(frws, .

Q=

> Qo] 3 (1-%)
VA 0
o Jmttm)| ez [wé }M,l,i D> ( 2K43/nQo| )

AN
1
7

s' k=0
,’ E:
<cla’|n, . 1%, ) o,
FURFIANY

KR} f’mwm) HMI;O .

Therefore we obtain the desired inequality for By

Next, we shall estimate A: For
r € Qg, we have

|A|<Z/ Qe =1, —ym) | T2y |17 (05)]

kEZ k=l <|[(x—y1,..., e —ym)|<2Fr

1
< CZ ri

1
mn—a / |Q*(l’—y1,...,x—ym)|sdg
keZ ) [(=y1,- sz —ym) <257
a1
s’ °
x (/ |f?(y])f2L(ym)| dy) .
|(x—y1,...,a;—ym)|<2kr

By the homogeneity,

dy
|(x_y1,---, _y"L)lIrLIL (6%

A1 Ol e, 2@~ [T (/ 5wl dyj>
kez j=1 3QoN{|z—y;|<2kr}

SR S o G | [ R I
keZQeD(QO), lz—y;|<l(Q)

Jj=1
1(Q)=2Fr

@

m

<O,y S UQTH 3QI H(f 0l d)
Q€ED(Qo) 3Q
= Cl sy D UQmse (7) 7 xala),

QED(Qo)

|~

xq ()

|“&>
I

where for the last equality we have used

msQ (ﬁ) =11 <f3 £ dyj) :
j=1 /3@
This implies that

o=

A C I s,y D UQ msq (F)°

xQ(z).
QED(Qo)
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1

m mn
s !

Let o = msq (f5/> *. We choose that 4, = (2m)¥ - 187 > 1.
For k € N, let

Dy = U {Q € D(Qo); m3q (JFS/>? > ’YOA]:} :

Considering the maximal cubes with respect to inclusion, we can write Dy, = Uj Q. j
Moreover, by maximality of @ ;, we obtain the following inequality;

mn

1
(12) A < myq,, (7)< 25 0Ak.

Let Ey = Qo\D1 and Ej,; = Qi ;\Di+1. Then Ey and Ej; are disjoint. Moreover
Ey and Uk,i E}; recover @y and we have the following inequality:

(13) |Qo| <2|Eyg| and |Qgi| < 2|Ek;l.

In [12, 24, 25, 26, 27, 29], the above relationships (13) are shown. For the sake of
self-containedness, we shall check (13).

Since Qi = (Qk,i N Dit1) U Ey;, firstly we estimate |Qr; N Dyy1|. For z €
Qk,i N D41, there exists @ > x such that 3Q) C 3Qy ;. Therefore we have

m

YA < mag (J?S/y =11 <f3Q 15 )l XSQk,i(yz‘)dyz‘)

j=1
’ / L
<M (f X5 Faxsan, ) (@)

<TIM (15 w0, ) @)

J=1

L
57

Next, let

(14) Aj:(wAﬁﬂ%nmh(ﬁﬁ_%<ﬁQ ummﬁdw>-
k,i

We pay attention to the following relationship:

(15) 145 = (oal™)”.
j=1

Moreover, by (12) and (14) we have

1 1 / _s
(16) - —/ Filyp)|” dy; | <2mA™.
A] ‘3Qk‘,z‘ SQkﬂ-‘ .7( ])‘ J
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(15) implies that

J=1

Qki N D1 C {aﬁ € Qua; [[ MU£1¥ x30..)(2) > (70Alf+1> }

c U {r e Qs MULI xs0.0(@) > 45}
j=1
By the weak-boundedness of M on L'(R") and (16), we obtain

|Qk,i N Dy < Z Hx € Qus; M(|f;|* X3Q;) () > AjH

1

m 3n ,
<> ( [, dyj>
m 3 ,
=27 <f3% |£i(yi)I® dyj) 3@

!

m
<> 3" 2mAL ™ 3" |Qpl

A similar argument yields
|Qol < 2|Ey|.
Therefore we obtain (13). Let

Do(Qo) = {Q € D(Qo); m3q (fg)_ < 7014*} ,
and
D.i(Qo) = {Q € D(Qo); Q C Qr.i, 10AY < mag (J?S/>? < ’YoAlfH} :

Then these recover D(Qp):

ki

(17) D(Qo) = Do(Qo) U (U Dk,i(QO)) :
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We distinguish two cases:

Case l. ¢ > 1.
By duality, we have

Q=

([ 1o @] (w1 ) )

0

= Sup HIQ*,Oc,m(ffu7f31><w1wm>gHL1(Qo)
Il () =

So let g € L7(Qo), g(z) > 0 ae. z € Qo, supp(g) C Qo and lgll () =

Moreover let

@ = Y U@ mag ()7 [ e wn) @)
Q€EDo(Qo) @

and

W@ = > Qo (F) [ e wn) @),
Q€D ;(Qo) @

By (17), (18) and (19) we have

/Q o am(f0, o, £2)(@)] (w1 -+ w) (2)g(2)da
/ (w1 - w) (@) g (2)de
Q

=

<O,y D UQ mag (F)°
QeD(Qo)

=C HQ*HLS(gm,n) ( Z +Z Z )

Q€ED(Qo) kit QEDy,i(Qo)
1
<@ i (F)7 [ o) @)g(@)ds

= C Ul Lss, ) (I + Z H,m) .
ki

Next, we estimate 11 ;. By (12) and Holder’s inequality, we have

I <A Y U@ [ (e wn) gty
Q€D (Qo) @

< 20AEUQw)” [ () o)y

177
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L
57

< Aumsa, (F) T 1@u)" [ (- ) @hg(@)da

1

< A |Qral mag, (7)) UQe)" ( f, - -wm><y>“qdy>

k,i

By virtue of (13) we obtain

1

1 aq
ITy; < 2A,|Ey | msq,, (fs ) T U Qra)® <fQ (w1 - 'wm)(y)“qdy>
ki

o g\ ™
(£ lowl ay
Qk,i
N
SQA*/ UQk,i)*M3q; (f8>5 <f (w1'~~wm)<y)aqdy>
Ey; Qk,i

(aq) o
x f 9 dy | de
Qi

<24, [ 31 (P wn) @M [g0] ()77 da,

Ek,z

L
aq

where for the last inequality, we used (4):

V) ) = 0 Q) g () ( f - )ray)
S
Similarly, we obtain

I <2A, /EO Mg?s (f_: wy - - ~wm> (x) M [g(“q)/} (a:)wlTVda:

Therefore by the L(29)'-boundedness of the Hardy-Littlewood maximal function M, we
have
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where we used HgHLq/(QO) =1 as well for the last line. Therefore we have

HIQ*,Oc,m(fgu B f??z)(wl o 'wm>HLq(QO)

s (7o)

By Lemma 3 and the condition (3), we have the following:

<Ol s

(gm,n

L9(Qo)

Mg:zs(f: wi W) (z) < C [ujs/} :ﬂ M s(frwi, .., frnwm) ().

a P a,
N

By Lemma 5, we have the following inequality;

’M P flwh .. ~afmwm>

< Cl(frw, - -y frmwm) || pqpo -
MZO P

Hence, when ¢ > 1, we have the desired inequality:

e am (s fodwn - wp| yqao
L
<Oy g g 190 N1 i) gy
Case2. 0 < g <1.
Let q

L
57

L= Y 1@ mse ()" xe(@)
QeD(Qo)
Since 0 < g < 1, by (17), we have the following

q
L< > UQ mag ()7 xao(@)
QEeD( Qo)

R

= X X X U@ mao (7) xol).

Q€Do(Qo)  kyi QeDy,i(Qo)
Therefore we have

/ ’Igha,m(f?, e f%)(a:)’q (w1 - wp,) (z)?dz

<Ol | X Y D | U@ () /Q<w1~~~wm><x>qu

Qe€Do(Qo) ki QEDy i(Qo)

e

=C HQ*HLs(s,,W) I+ ZIIk,i )
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where

= Y @ (7)7 [ )y

Q€Do(Qo)
and .
= > Q) *msq (J?S/> . / (wy -
QEDk,i(Qo) @
We estimate /1 ;. By (12) and Holder’s inequality, we have

= Y 1@ g () /Q (w1 -+~ w) () dy

Q€D (Qo)

1@ (0A5) X [ e wn) )y

Q€D (Qo) @

< 1@t (104 )" [ (o) 0y

< AL Qi UQkyi) M m3qy, (J?S/> : <fQ (wy - - -

k,i

By virtue of (13) we have

e

Iy < 2A7 | Er | Qi) msq, (J?S/> ’

1

< QAZ/ MY, (f_: wy - - ~wm> (x)ldx,
Bl

where for the last line we used (4):

MZ, (J?, wy - - ~wm> (z) = sup 1(Q)*m3q (J?S/>i/ <fQ(w1 - ~wm>(y)qdy)

Q>
Similarly, we have

(fQ (-
@ —aarf (mk,i)amm (fs/)s_<fQ (-

(21) I< QAZ/ Mg’s (f_: wy - - ~wm> (x)dz.
Eo

(20) and (21) give us the following inequality:

I—i—ZII;m <C Mg’s(f, wy W) (x)da.

k,i Qo

Q=
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Hence we obtain the following inequality:

HIQ*,oc,m(f?r (R fgz) wy- - 'meLq(QO)SC HQ*HLS(Smm) ’Mg,s (f_: wy- - wm) ’

L9(Qo)

By Lemma 3 for a > 1 and the condition (3), we obtain the following pointwise
inequality:

Mg’s (J?, wy - - ~wm> (z) <C [7])'8/} ;/qo

By Lemma 5, for 0 < ¢ < 1, we obtain the desired inequality. ]

Lastly we prove Theorem 8.

Proof of Theorem 8. By ¢o < 7o, We have pyp < Z. Moreover, by ;—; <1, we

have % < m. Hence we obtain 1 < s’ < mp < mpy < ™. This implies that
0 < as’ < mn. By Lemma 8, we obtain the inequality.

S
57

’Mas/,m (ff/, e fﬁ;) v

@) |[Moam (7) 0], < €12l

MP
Meanwhile, we have
1
8/ 8/ o7 8/ 8/ 8/ o7
(23) HMas/vm (5 tm) ol = | Maan (575 8) 07|
MZO Mq/s/
Moreover since
L _ v 1 o g p/s no_To
/s po/s’ 1o/ n q/s po/s as’ s’

by Lemma 12, we have

s’ s s’
HMOCS/vm (fl s ey m) v

/x/
1 MZ?O;’ 1
(24) <c v, @ Al wd sl ) ||
- ’ 0 g P W Uml W )] wo/s!
PRV IVEIN IS/S/
1
1 el S
—C [vs 7“’5}2_0 o g NCWL - Frw) | pges

If we combine (22), (23) and (24), then we have the desired inequality. ]
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5. THE ProTOTYPICAL EXAMPLE

In [11], we gave an example concerning the multi-Morrey quantity. Here we give
another example of a function which does not belong to the product on m Morrey
spaces but multi-Morrey quantity is finite.

Example 1. Letn:1,m:2,o<po<oo,1<p1,p2<ooandpi:

3 (p1 + p2>. Moreover we take —-- < ) <Oand —-> <0 <0:

1/1 1
(25) 0 + 0o =—- <_+_)7
1
(26) 01 #—=—— or 0y #——0.
P1 2
Then we have

(Il o) € MES (RN (ME(R) x M2 (R)).

(p1,p2)

In fact, by (26), we have (|2 ,[21") & (M3P (R) x MGE*(R)). Let fi(z) =
|z|™ and fo(z) = |z|®. Then we have

I (f1, f2)HM‘(’g

1 P 1 b P2
— sup (b—a) ( / A an )" (72 [ 1)
I=(a,b) —a Jq
1
_l 1 0 E b 0 )
= sup (b—a) 2 / || P da / |z|"2P? dx
I=(a,b) a

By virtue of symmetry, it suffices to distinguish two cases as we shall do below.
Case 1. 0 <a <b. If wetake 0 <t = ¢ <1, then we have

(b—a) 2 </ |z Pt da </ |x|72P? dx
_ < 1 )E < )pz
 \1+6m 1+ 6apo
1@ —%(ﬁ-#i) . ar Opi+1\ o1 . ay Oapa+1\ P
' ( - 5) - (5) - (5)
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1

1 1
(1 = t>_%<%+é> (1 — t91p1+1> P1 (1 — t91p2+1> P2

where we used the condition 61,6, < 0 for the last inequality. Hence this quantity is

bounded by
< 1 )E < 1 )E
1+ 01p1 1 + Bopo .

Case2. a<0<b Ifwetake 0 <t = — % then we have

b 3T/ b 75
(b—a) 2 5rtes) (/ [P da:)m (/ \x\ewwx)”

1 m 1 s 11 1 1 1
p1 pp 1 1 1 1 1

= (1+¢t)ro »1 P (1 tp191+1> P1 (1 tp292+1> P2

<1—|—91p1) <1—|—92p2) (L tyrownv (14 T

When 0 < ¢ < 1, the above quantity is bounded by a constant. If ¢ > 1, then we have

1 1 1

1 L
(L4t)ro 717z (1 + tp191+1> m (1 + tp292+1> 2

1 1 1

L 1
< tpro p1 P2 (1 + tp191+1> Pl (1 + tp292+1> P2

1+ p101+1 ﬁ 14+ p202+1 %
- < $p101+1 ) < tp202+1 )
1 1
:<1+ 1 )m <1+ 1 )p2<2%+$<oo
toh-p1+1 t02-p2+1 = )
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