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ROUGH SINGULAR INTEGRALS SUPPORTED BY SUBMANIFOLDS IN
TRIEBEL-LIZORKIN SPACES AND BESOVE SPACES

Feng Liu and Huoxiong Wu*

Abstract. This paper is devoted to studying the singular integral operators as-
sociated to polynomial mappings as well as the corresponding compound sub-
manifolds. By imposing a restrictive condition on the kernels of the operators
in the radial direction, the boundedness for such operators on Triebel-Lizorkin
spaces and Besov spaces are established, provided that the kernels satisfy a rather
weak size condition on the unit sphere, which is distinct from the Hardy space
functions. Some previous results are essentially improved and generalized.

1. INTRODUCTION

Let Rn, n ≥ 2, be the n-dimensional Euclidean space and Sn−1 denote the unit
sphere in Rn equipped with the induced Lebesgue measure dσ. Let Ω ∈ L1(Sn−1) be
a homogeneous function of degree zero and satisfy

(1.1)
∫

Sn−1
Ω(u)dσ(u) = 0.

For d ≥ 1, let P = (P1, · · · , Pd) and deg(P) = max{deg(Pj) : 1 ≤ j ≤ d}, where
Pj is a real-valued polynomial in Rn for 1 ≤ j ≤ d. For a suitable function h defined
on R+ = {t ∈ R : t > 0}, we define the singular integrals Th,Ω,P associated to
polynomial mappings P in Rd by

(1.2) Th,Ω,P(f)(x) := p.v.

∫
Rn

f(x− P(y))
Ω(y)h(|y|)

|y|n dy, x ∈ Rd.
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As is well known, the operators Th,Ω,P belong to the class of singular radon trans-
forms. The Lp-mapping properties of Th,Ω,P were first given by Stein (see [17],
[18, pp. 513-517]) under the stronger assumption that Ω ∈ C1(Sn−1) and h(t) ≡ 1.
Subsequently, the investigation on the boundedness of Th,Ω,P on function spaces ab-
stracted many attentions, for examples see [2, 4, 10, 16] et al. In particular, Fan and
Pan[10] showed that Th,Ω,P is bounded on Lp(Rd) for p with satisfying |1/p− 1/2| <
min{1/2, 1/γ ′} if Ω ∈ H1(Sn−1) and h ∈ Δγ(R+) for some γ > 1, where H1(Sn−1)
denotes the Hardy space on the unit sphere (see [5, 15]) and Δγ(R+) for γ > 1 denotes
the set of all measurable functions h on R+ satisfying the condition

‖h‖Δγ(R+) = sup
R>0

(
R−1

∫ R

0
|h(t)|γdt

)1/γ
<∞.

It is easy to check that Δ∞(R+) = L∞(R+) � Δγ2(R
+) � Δγ1(R

+) for 0 < γ1 <

γ2 <∞.
In 2010, Chen, Ding and Liu[4] generalized the result of [10] to the Triebel-Lizorkin

spaces and Besov spaces, which contain many important function spaces, such as
Lebesgue spaces, Hardy spaces, Sobolev spaces and Lipschitz spaces. The homoge-
neous Triebel-Lizorkin space Ḟ p,q

α (Rd) and homogeneous Besov space Ḃp,q
α (Rd) are

defined, respectively, by

(1.3)

Ḟ p,q
α (Rd) :=

{
f ∈ S′(Rd) : ‖f‖Ḟp,q

α (Rd)

=
∥∥∥( ∑

i∈Z

2−iαq|Ψi ∗ f |q
)1/q∥∥∥

Lp(Rd)
<∞

}

and

(1.4)

Ḃp,q
α (Rd) :=

{
f ∈ S′(Rd) : ‖f‖Ḃp,q

α (Rd)

=
( ∑

i∈Z

2−iαq‖Ψi ∗ f‖q
Lp(Rd)

)1/q
<∞

}
,

where α ∈ R, 0 < p, q ≤ ∞ (p 	= ∞), S′(Rd) denotes the tempered distribution
class on Rd, Ψ̂i(ξ) = φ(2iξ) for i ∈ Z and φ ∈ C∞

c (Rd) satisfies the conditions:
0 ≤ φ(x) ≤ 1; supp(φ) ⊂ {x : 1/2 ≤ |x| ≤ 2}; φ(x) > c > 0 if 3/5 ≤ |x| ≤ 5/3. It
is well known that

(1.5) Ḟ p,2
0 (Rd) = Lp(Rd)

for any 1 < p < ∞, see [9, 13, 19] for more properties of Ḟ p,q
α (Rd) and Ḃp,q

α (Rd).
Chen, Ding and Liu’s result in [4] can be stated as follows:
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Theorem A. (see [4]). Let α ∈ R and h ∈ Δγ(R+) for some γ > 1. Suppose that
Ω ∈ H1(Sn−1) and satisfies (1.1). Then there exists a constant C > 0 such that

(i) for max{|1/p− 1/2|, |1/q− 1/2|} < min{1/2, 1/γ′} and f ∈ Ḟ p,q
α (Rd),

‖Th,Ω,P(f)‖Ḟp,q
α (Rd) ≤ C‖Ω‖H1(Sn−1)‖f‖Ḟp,q

α (Rd);

(ii) for |1/p− 1/2| < min{1/2, 1/γ′}, 1 < q <∞ and f ∈ Ḃp,q
α (Rd),

‖Th,Ω,P(f)‖Ḃp,q
α (Rd) ≤ C‖Ω‖H1(Sn−1)‖f‖Ḃp,q

α (Rd).

The constant C = C(n, d, h, p, q, α,deg(P)) is independent of the coefficients of Pj

for 1 ≤ j ≤ d.

On the other hand, for P(y) = (y1, y2, · · · , yd) and n = d, we denote Th,Ω,P by
Th,Ω which has been studied by many authors (see [1, 6, 11, 12, 14] etc.). In 2006,
Al-Qassem[1] showed that Th,Ω is bounded on Lp(Rn) for all 1 < p < ∞ provided
that Ω ∈ L(log+ L)1/γ′

(Sn−1) and h ∈ Hγ(R+) for some 1 < γ ≤ ∞ (also see [12]
for the generalization in non-isotropic setting). Here Hγ(R+), γ > 0, is the set of all
measurable functions h on R+ satisfying

‖h‖Hγ(R+) =
( ∫ ∞

0
|h(t)|γdt/t

)1/γ
<∞,

and L(log+ L)α(Sn−1), α > 0, denote the space of all those functions Ω on Sn−1,
which satisfy ∫

Sn−1

|Ω(θ)| logα(2 + |Ω(θ)|)dσ(θ)<∞.

It is easy to check that for 0 < γ < ∞, Hγ(R+) � Δγ(R+) and H∞(R+) =
Δ∞(R+) = L∞(R+). Also, the following proper inclusions hold:

(1.6) L(log+ L)β(Sn−1) � L(log+ L)α(Sn−1), if 0 < α < β;

(1.7) L(log+ L)α(Sn−1) � H1(Sn−1), for any α ≥ 1;

(1.8) L(log+ L)α(Sn−1) � H1(Sn−1), for any 0 < α < 1.

Recently, Le[14] generalized the result of [1] as follows.

Theorem B. (see [14]). Let α ∈ R and 1 < p < ∞. Suppose that Ω ∈
L(log+ L)vq(Sn−1) and satisfies (1.1). Then Th,Ω is bounded on Ḟ p,q

α (Rn) provided
that one of the following conditions holds:
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(i) vq = 1/q, h ∈ Hq′(R+) and 1 < q ≤ 2;
(ii) vq = 1/2, h ∈ H2(R+) and q > 2.

Comparing Theorem A with Theorem B, a natural question is the following:

Question. Is Th,Ω,P bounded on Ḟ p,q
α (Rd) if Ω ∈ L(log+ L)α(Sn−1) for some

α ∈ (0, 1) and h ∈ Hγ(R+) for some γ > 1?

The main purpose of this paper is to address this question above. Our main results
can be formulated as follows:

Theorem 1.1. Let Ω ∈ L(log+ L)1/γ′
(Sn−1) with satisfying (1.1) and h ∈

Hγ(R+) for some γ > 1. Then for α ∈ R and max{|1/p − 1/2|, |1/q − 1/2|} <
min{1/2, 1/γ ′}, there exists a constant C > 0 such that

‖Th,Ω,P(f)‖Ḟp,q
α (Rd) ≤ C‖Ω‖L(log+ L)1/γ′

(Sn−1)‖f‖Ḟp,q
α (Rd),

where C = C(n, d, p, q, h, α,deg(P)) is independent of the coefficients of Pj for
1 ≤ j ≤ d.

Theorem 1.2. Let Ω ∈ L(log+ L)1/γ′
(Sn−1) with satisfying (1.1) and h ∈

Hγ(R+) for some γ > 1. Then for α ∈ R, 1 < q < ∞ and |1/p − 1/2| <
min{1/2, 1/γ ′}, there exists a constant C > 0 such that

‖Th,Ω,P(f)‖Ḃp,q
α (Rd) ≤ C‖Ω‖L(log+ L)1/γ′

(Sn−1)‖f‖Ḃp,q
α (Rd),

where C = C(n, d, p, q, h, α,deg(P)) is independent of the coefficients of Pj for
1 ≤ j ≤ d.

Remark 1.3. Obviously, the range of q given in Theorem 1.1 is the full range
(1,∞) when γ ≥ 2. Thus Theorem 1.1 improves the results of Theorem B(i), even in
the special case: P(y) = (y1, y2, · · · , yd) and n = d. We also remark that Theorems
1.1 and 1.2 are not true, if replacing h ∈ Hγ(R+) by h ∈ Δγ(R+) for γ > 1,
because of that L∞(R+) ⊂ Δγ(R+), L log+ L(Sn−1) � L(log+ L)α(Sn−1) for any
0 < α < 1, and Calderon-Zygmund’s celebrated result in [3]. In addition, by (1.8),
Theorems 1.1 and 1.2 are distinct from Theorem A.

Furthermore, by Theorems 1.1 and 1.2, and a switched method followed from
[7], we can establish the corresponding results for the more general singular integral
operators Th,Ω,P ,ϕ supported by the compound sub-manifolds as follows.

Theorem 1.4. Let Ω ∈ L(log+ L)1/γ′
(Sn−1) with satisfying (1.1) and h ∈

Hγ(R+) for some γ > 1. Suppose that ϕ is a nonnegative (or non-positive) and
monotonic C1 function on (0,∞) such that Γ(t) := ϕ(t)

tϕ′(t) with |Γ(t)| ≤ C, where C
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is a positive constant which depends only on ϕ. Then for α ∈ R and max{|1/p −
1/2|, |1/q− 1/2|} < min{1/2, 1/γ ′}, there exists a constant C > 0 such that

‖Th,Ω,P ,ϕ(f)‖Ḟp,q
α (Rd) ≤ C‖Ω‖L(log+ L)1/γ′

(Sn−1)‖f‖Ḟp,q
α (Rd),

where
Th,Ω,P ,ϕ(f)(x) := p.v.

∫
Rn

f(x− P(ϕ(|y|)y′))Ω(y)h(|y|)
|y|n dy,

y′ = y/|y| ∈ Sn−1 and C = C(n, d, p, q, h, α, ϕ,deg(P)) is independent of the
coefficients of Pj for 1 ≤ j ≤ d.

Theorem 1.5. Let Ω ∈ L(log+ L)1/γ′
(Sn−1) with satisfying (1.1) and h ∈

Hγ(R+) for some γ > 1. Suppose that ϕ is a nonnegative (or non-positive) and
monotonic C1 function on (0,∞) such that Γ(t) := ϕ(t)

tϕ′(t) with |Γ(t)| ≤ C, where C
is a positive constant which depends only on ϕ. Then for α ∈ R, 1 < q < ∞ and
|1/p− 1/2| < min{1/2, 1/γ ′}, there exists a constant C > 0 such that

‖Th,Ω,P ,ϕ(f)‖Ḃp,q
α (Rd) ≤ C‖Ω‖L(log+ L)1/γ′

(Sn−1)‖f‖Ḃp,q
α (Rd),

where C = C(n, d, p, q, h, α, ϕ,deg(P)) is independent of the coefficients of Pj for
1 ≤ j ≤ d.

Remark 1.6. Under the assumptions on ϕ in Theorem 1.4, the following facts
are obvious (see [7]):

(i) limt→0 ϕ(t) = 0 and limt→∞ |ϕ(t)| = ∞ if ϕ is nonnegative and increasing, or
non-positive and decreasing;

(ii) limt→0 |ϕ(t)| = ∞ and limt→∞ ϕ(t) = 0 if ϕ is nonnegative and decreasing, or
non-positive and increasing.

Moreover, the inhomogeneous versions of Triebel-Lizorkin space and Besov spaces,
which are denoted by F p,q

α (Rd) and Bp,q
α (Rd), respectively, are obtained by adding the

term ‖Φ ∗ f‖Lp(Rd) to the right hand side of (1.3) or (1.4) with
∑

j∈Z
replaced by∑

j≥1, where Φ ∈ S(Rd), supp(Φ̂) ⊂ {ξ : |ξ| ≤ 2}, Φ̂(x) > c > 0 if |x| ≤ 5/3. The
following properties are well known (see [9, 13], for example):

(1.9)
F p,q

α (Rd) ∼ Ḟ p,q
α (Rd)

⋂
Lp(Rd)and

‖f‖Fp,q
α (Rd) ∼ ‖f‖Ḟ

p,q
α (Rd) + ‖f‖Lp(Rd) (α > 0);

(1.10)
Bp,q

α (Rd) ∼ Ḃp,q
α (Rd)

⋂
Lp(Rd)and

‖f‖Bp,q
α (Rd) ∼ ‖f‖Ḃp,q

α (Rd) + ‖f‖Lp(Rd) (α > 0).
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Hence, by (1.5), (1.9)-(1.10) and Theorems 1.4-1.5, we get the following conclusion
immediately.

Corollary 1.7. Under the same conditions of Theorems 1.4 and 1.5 with α > 0, the
operator Th,Ω,P ,ϕ defined as in Theorem 1.4 is bounded on F p,q

α (Rd) and Bp,q
α (Rd),

respectively.
The paper is organized as follows. In Section 2, we will present some general

vector-valued norm inequalities (see Propositions 2.2 and 2.3). In Section 3 we recall
some notations and establish some necessary lemmas. Finally, the proofs of main results
will be given in Section 4.

Throughout the paper, we let p′ denote the conjugate index of p, which satisfies
1/p+ 1/p′ = 1. The letter C or c, sometimes with certain parameters, will stand for
positive constants not necessarily the same one at each occurrence, but are independent
of the essential variables.

2. VECTOR-VALUED NORM INEQUALITIES

In this section we will recall and establish some important vector-valued norm
inequalities, which will play the key roles in the proof of Theorem 1.1. The following
result obtained by Chen, Ding and Liu in [4] is an extension of the famous result on
the Lp(
q) boundedness of the Hardy-Littlewood maximal operator.

Lemma 2.1. (see [4, Theorem 1.4]). Let P = (P1, · · · , Pd) with Pj being
real-valued polynomials on Rn. For 1 < p, q <∞, the operator MP given by

MP(f)(x) = sup
r>0

1
rn

∫
|y|≤r

|f(x− P(y))|dy

satisfies the following Lp(
q) inequality∥∥∥(∑
i∈Z

|MP(fi)|q
)1/q∥∥∥

Lp(Rd)
≤ C(p, q)

∥∥∥( ∑
i∈Z

|fi|q
)1/q∥∥∥

Lp(Rd)
,

where the positive constant C(p, q) is independent of the coefficients of Pj for 1 ≤
j ≤ d.

Proposition 2.2. Let Φ ∈ S(Rn) and {ak}k∈Z be a lacunary sequence of positive
numbers satisfying infk∈Z ak+1/ak ≥ a > 1. Define the Littlewood-Paley operator
Δk associated with Φ by

Δk(f)(x) = Φk ∗ f(x)

for all x ∈ Rn, where Φk(x) = a−n
k Φ(x/ak). Then for 1 < p, q < ∞ and arbitrary

functions {fj} ∈ Lp(
q,Rn), there exists a positive constant C(n, a) such that∥∥∥( ∑
j∈Z

( ∑
k∈Z

|Δk(fj)|2
)q/2)1/q∥∥∥

Lp(Rn)
≤ C(n, a)

∥∥∥(∑
j∈Z

|fj|q
)1/q∥∥∥

Lp(Rn)
.
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Proof. The idea of proving this proposition comes from the proof of [13, Theorem
5.1.2]. First we introduce two Banach spaces B1 = C and B2 = 
2 and define an
operator

�T (f) = {Δk(f)}k∈Z.

It is clear that �T (f) can be written by

(2.1) �T (f)(x) =
∫

Rn

�K(y)(f(x− y))dy,

where �K is a bounded linear operator form B1 to B2 given by
�K(x)(g) = {Φk(x)g}k∈Z.

It is easy to see that ‖ �K(x)‖B1→B2
= (

∑
k∈Z

|Φk(x)|2)1/2. In what follows, we will
verify the following inequality

(2.2)
∫
|x|≥2|y|

‖ �K(x− y)− �K(x)‖B1→B2dx ≤ C, y 	= 0.

Since Φ ∈ S(Rn), there exists a constant C > 0, which depends only on n, such that
(2.3) |Φ(x)|+ |∇Φ(x)| ≤ C(1 + |x|)−n−1.

This together with the mean value theorem of derivative implies

(2.4) |Φk(x− y) − Φk(x)| ≤ C
1

an+1
k

(
1 +

|x|
2ak

)−n−1|y|, |x| ≥ 2|y|.

In addition, it follows from (2.3) that

(2.5) |Φk(x− y) − Φk(x)| ≤ C
1
an

k

(
1 +

|x|
2ak

)−n−1
, |x| ≥ 2|y|.

Thus by the geometric mean of (2.4) and (2.5), we get

(2.6) |Φk(x− y) − Φk(x)| ≤ C|y|1/2 1

a
n+1/2
k

(
1 +

|x|
2ak

)−n−1
.

This together with (2.4) yields

‖ �K(x− y) − �K(x)‖B1→B2
=

( ∑
k∈Z

|Φk(x− y) − Φk(x)|2
)1/2

≤
∑
k∈Z

|Φk(x− y) − Φk(x)|

≤ C|y|
∑

ak>|x|/2

1
an+1

k

(
1 +

|x|
2ak

)−n−1

+ C|y|1/2
∑

ak≤|x|/2

1

a
n+1/2
k

(
1 +

|x|
2ak

)−n−1

≤ C(n, a)
(2n+1|y|
|x|n+1

+
|y|1/2

|x|n+1/2

)
,
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which implies (2.2). Furthermore, �T obviously maps Lq(B1,Rn) to Lq(B2,Rn). Ap-
plying [13, Proposition 4.6.4] yields Proposition 2.2.

Proposition 2.3. Let 0 < M ≤ N and H : RM → RM , G : RN → RN

be two nonsingular linear transformations. Let {ak}k∈Z be a lacunary sequence
of positive numbers satisfying infk∈Z ak+1/ak ≥ a > 1. Let Φ(ξ) ∈ S(RM) and
Φk(ξ) = a−M

k Φ(ξ/ak). Define the transformations J and Xk by

J(f)(x) = f(Gt(H t ⊗ idRN−M )x)

and
Xk(f)(x) = J−1((Φk ⊗ δRN−M ) ∗ J(f))(x).

Here we shall use δRn to denote the Dirac delta function on Rn, J−1 denote the
inverse transform of J and Dt denote the transpose of the linear transformation D.
Then there exists a positive constant C(M, a) such that

(2.7)
∥∥∥( ∑

j∈Z

( ∑
k∈Z

|Xk(fj)|2
)q/2)1/q∥∥∥

Lp(RN )
≤ C(M, a)

∥∥∥( ∑
j∈Z

|fj|q
)1/q∥∥∥

Lp(RN)

for arbitrary functions {fj} ∈ Lp(
q,RN) and 1 < p, q <∞;

(2.8)

∥∥∥(∑
j∈Z

(∑
k∈Z

|Xk(gk,j)|2
)q/2)1/q∥∥∥

Lp(RN )

≤ C(M, a)
∥∥∥( ∑

j∈Z

( ∑
k∈Z

|gk,j|2
)q/2)1/q∥∥∥

Lp(RN )

for arbitrary functions {gk,j} ∈ Lp(
q(
2),RN) and 1 < p, q <∞.

Proof. For convenience we denote ξ = (ξ1, ξ2) with ξ1 = (ξ1, · · · , ξM) and
ξ2 = (ξM+1, · · · , ξN). Then using Proposition 2.2 and the change of the variables, we
have ∥∥∥( ∑

j∈Z

( ∑
k∈Z

|Xk(fj)|2
)q/2)1/q∥∥∥p

Lp(RN)

=
∫

RN

( ∑
j∈Z

( ∑
k∈Z

|J−1((Φk ⊗ δRN−M ) ∗ J(fj))(ξ)|2
)q/2)p/q

dξ

≤ C|J|
∫

RN

(∑
j∈Z

(∑
k∈Z

|((Φk ⊗ δRN−M ) ∗ J(fj))(ξ)|2
)q/2)p/q

dξ

≤ C|J|
∫

RN−M

∫
RM

(∑
j∈Z

(∑
k∈Z

|[Φk ∗ J(fj)(·, ξ2)](ξ1)|2
)q/2)p/q

dξ1dξ2
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≤ C(M, a)|J|
∫

RN−M

∫
RM

( ∑
j∈Z

|J(fj)(ξ1, ξ2)|q
)p/q

dξ1dξ2

≤ C(M, a)
∥∥∥( ∑

j∈Z

|fj|q
)1/q∥∥∥p

Lp(RN )
,

where |J| denotes the Jacobian of the transformation J . Then (2.7) holds. Next we
prove (2.8). Let MM be the Hardy-Littlewood maximal function on RM . Note that

|Xkf(x)| ≤ C(M, a)[J−1 ◦ (MM ⊗ δRN−M ) ◦ J](f)(x).

(2.8) follows from the following equality∥∥∥( ∑
j∈Z

(∑
k∈Z

|Xk(gk,j)|2
)q/2)1/q∥∥∥p

Lp(RN )

≤ C(M, a)
∫

RN

( ∑
j∈Z

(∑
k∈Z

|(J−1 ◦ (MM ⊗ δRN−M ) ◦ J)gk,j(ξ)|2
)q/2)p/q

dξ

≤ C(M, a)|J|
∫

RN−M

∫
RM

( ∑
j∈Z

(∑
k∈Z

|MM(J(gk,j)(·, ξ2))(ξ1)|2
)q/2)p/q

dξ1dξ2

≤ C(M, a)|J|
∫

RN−M

∫
RM

( ∑
j∈Z

(∑
k∈Z

|J(gk,j)(ξ1, ξ2)|2
)q/2)p/q

dξ1dξ2

≤ C(M, a)
∥∥∥(∑

j∈Z

(∑
k∈Z

|gk,j|2
)q/2)1/q∥∥∥p

Lp(RN)
.

This proves Proposition 2.3.

3. AUXILIARY LEMMAS

Following from [10], we first recall some notations. For l, n ∈ Z+, we denote
Vn,l as the space of real-valued homogeneous polynomials of degree l on Rn and An

denote the class of polynomials of n variables with real coefficients. Let P(x) =
(P1(x), · · · , Pd(x)) with Pj ∈ An for j = 1, · · · , d. Then there are integers 0 <
l1 < l2 < · · · < lN ≤ deg(P), and polynomials Qu

j ∈ Vn,lu ⊂ An, Rj ∈ A1 with
deg(Rj) ≤ deg(P) for 1 ≤ u ≤ N , 1 ≤ j ≤ d such that

P(x) =
N∑

u=1

Qu(x) + R(|x|),

where Qu(x) = (Qu
1(x), Qu

2(x), · · · , Qu
d(x)) and R(t) = (R1(t), R2(t), · · · , Rd(t));

Zlu(Qu
j ) = Qu

j for 1 ≤ u ≤ N and 1 ≤ j ≤ d.

For j = 1, · · · , d and 1 ≤ u ≤ N , write
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Qu
j (x) =

∑
|β|=lu

bujβx
β =

d(u)∑
s=1

b′ujsx
β(u,s),

where d(u) = dim(Vn,lu). For 1 ≤ u ≤ N , we define the linear transformations
Iu : Rd → Rd(u) by

Iu(ξ) = (
d∑

s=1

b′uj1ξj, · · · ,
d∑

s=1

b′ujd(u)ξj).

For 1 ≤ η ≤ N , we define

Γη(x) =
η∑

u=1

Qu(x) + R(|x|) and Γ0(x) = R(|x|).

Let Ω ∈ L(log+ L)α(Sn−1) for α > 0 and satisfy (1.1). Employing the notation
in [2], let Em = {y′ ∈ Sn−1 : 2m < |Ω(y′)| ≤ 2m+1} for m ∈ Z and E0 = {y′ ∈
Sn−1 : |Ω(y′)| < 2}. Set N (Ω) = {m ∈ N : σ(Em) > 2−4m} and for m ≥ 1,

Ωm(y′) = Ω(y′)χEm(y′) − σ(Sn−1)−1

∫
Em

Ω(y′)dσ(y′),

and Ω0(y′) = Ω(y′)− ∑
m∈N(Ω) Ωm(y′). It is easy to check that

(3.1)
∫

Sn−1

Ωm(y′)dσ(y′) = 0, for m ∈ N (Ω) ∪ {0};

(3.2) ‖Ω0‖L2(Sn−1) ≤ C, ‖Ω0‖L1(Sn−1) ≤ C;

(3.3)
‖Ωm‖L2(Sn−1) ≤ C22m‖Ω‖L1(Em), ‖Ωm‖L1(Sn−1)

≤ C‖Ω‖L1(Em), for m ∈ N (Ω);

(3.4) Ω(y′) =
∑

m∈N(Ω)∪{0}
Ωm(y′);

(3.5)
∑

m∈N(Ω)∪{0}
(m+ 1)α‖Ω‖L1(Em) ≤ C‖Ω‖L(log+ L)α(Sn−1), for α > 0.

It is clear that

(3.6) Th,Ω,P(f)(x) =
∑

m∈N(Ω)∪{0}
Th,Ωm,P (f)(x).

For k ∈ Z and m ∈ N (Ω) ∪ {0}, let Dk = {x ∈ Rn : 2(m+1)k ≤ |x| < 2(m+1)(k+1)}.
For 1 ≤ η ≤ N , we define the measures {σk,Γη}k∈Z by
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∫
Rd
fdσk,Γη =

∫
Dk

f(Γη(x))
h(|x|)Ωm(x)

|x|n dx.

Obviously,

(3.7) Th,Ωm,P(f)(x) =
∑
k∈Z

f ∗ σk,ΓN (x).

For convenience, for γ > 1, we denote γ̃ = max{2, γ ′} and A = (m + 1)1/γ′

‖Ω‖L1(Em)‖|h|‖γ, where

‖|h|‖γ = sup
k∈Z

( ∫ 2(m+1)(k+1)

2(m+1)k
|h(t)|γ dt

t

)1/γ
.

We have the following lemmas.

Lemma 3.1. For k ∈ Z, m ∈ N (Ω) ∪ {0}, ξ ∈ Rd and 1 ≤ η ≤ N , there exists
a constant C > 0 such that

(3.8) |σ̂k,Γη(ξ)− σ̂k,Γη−1(ξ)| ≤ CA|2(m+1)(k+1)lηIη(ξ)|1/(4(m+1)lηγ̃);

(3.9) |σ̂k,Γη(ξ)| ≤ CAmin{1, |2(m+1)(k+1)lηIη(ξ)|−1/(4(m+1)lηγ̃)}.

The constant C is independent of m and γ .

Proof. By the change of variables, we have

(3.10)

|σ̂k,Γη(ξ)− σ̂k,Γη−1(ξ)|

=
∣∣∣ ∫ 2(m+1)(k+1)

2(m+1)k

∫
Sn−1

Ωm(y′)(e−2πiξ·Γη(ry′)

−e−2πiξ·Γη−1(ry′))dσ(y′)h(r)dr
r

∣∣∣
≤ C|2(m+1)(k+1)lηIη(ξ)|‖Ωm‖L1(Sn−1)

∫ 2(m+1)(k+1)

2(m+1)k
|h(r)|dr

r
≤ CA|2(m+1)(k+1)lηIη(ξ)|.

On the other hand,

(3.11) |σ̂k,Γη(ξ)− σ̂k,Γη−1(ξ)| ≤ CA.

Interpolating between (3.10) and (3.11) implies (3.8). Below we prove (3.9). It is easy
to see that

(3.12) |σ̂k,Γη(ξ)| ≤ CA.



138 Feng Liu and Huoxiong Wu

Moreover, by Hölder’s inequality we have

(3.13) |σ̂k,Γη(ξ)| =
∣∣∣ ∫ 2(m+1)(k+1)

2(m+1)k

∫
Sn−1

Ωm(y′)e−2πiξ·Γη(ry′)dσ(y′)h(r)
dr

r

∣∣∣
≤ ‖|h|‖γHm,k(ξ),

where

Hm,k(ξ) :=
(∫ 2(m+1)(k+1)

2(m+1)k

∣∣∣ ∫
Sn−1

Ωm(y′)e−2πiξ·Γη(ry′)dσ(y′)
∣∣∣γ′ dr

r

)1/γ′
.

Applying [10, Corollary 4.3] with ε = 1/(8lη) and p = 2, we have for any r > 0,

(3.14)

(∫ 2r

r

∣∣∣ ∫
Sn−1

Ωm(y′)e−2πiξ·Γη(ty′)dσ(y′)
∣∣∣2 dt
t

)1/2

≤ C‖Ωm‖L2(Sn−1)|rlηIη(ξ)|−1/(8lη).

Since γ ≥ 2 implies 1 < γ ′ ≤ 2, by (3.2)-(3.3), (3.14) and Hölder’s inequality we have

Hm,k(ξ)

≤ (m+1)1/γ′−1/2
(∫ 2(m+1)(k+1)

2(m+1)k

∣∣∣ ∫
Sn−1

Ωm(y′)e−2πiξ·Γη(ry′)dσ(y′)
∣∣∣2 dr
r

)1/2

≤ (m+1)1/γ′−1/2
( m∑

i=0

∫ 2(m+1)(k+1)+i+1

2(m+1)k+i

∣∣∣∫
Sn−1

Ωm(y′)e−2πiξ·Γη(ry′)dσ(y′)
∣∣∣2 dr
r

)1/2

≤ C(m+1)1/γ′−1/2(m+ 1)1/2‖Ωm‖L2(Sn−1)|2(m+1)klηIη(ξ)|−1/(8lη)

≤ C(m+1)1/γ′
22m‖Ω‖L1(Em)|2(m+1)klηIη(ξ)|−1/(8lη),

which combining with (3.13) implies

(3.15) |σ̂k,Γη(ξ)| ≤ CA22m|2(m+1)klηIη(ξ)|−1/(8lη), for γ ≥ 2.

On the other hand, for 1 < γ < 2, we have γ ′ > 2. Then

Hm,k(ξ)

≤ C‖Ωm‖1−2/γ′
L1(Sn−1)

( ∫ 2(m+1)(k+1)

2(m+1)k

∣∣∣ ∫
Sn−1

Ωm(y′)e−2πiξ·Γη(ry′)dσ(y′)
∣∣∣2 dr
r

)1/γ′

≤ C(m + 1)1/γ′‖Ω‖1−2/γ′
L1(Em)

24m/γ′‖Ω‖2/γ′
L1(Em)

|2(m+1)klηIη(ξ)|−1/(4lηγ′)

≤ C(m + 1)1/γ′‖Ω‖L1(Em)2
4m/γ′|2(m+1)klηIη(ξ)|−1/(4lηγ′).

Then for 1 < γ < 2,

(3.16) |σ̂k,Γη(ξ)| ≤ CA24m/γ′ |2(m+1)klηIη(ξ)|−1/(4lηγ′).
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Interpolating between (3.15)-(3.16) and (3.12) yields

(3.17) |σ̂k,Γη(ξ)| ≤ CA|2(m+1)klηIη(ξ)|−1/(4(m+1)lηγ̃).

(3.9) follows from (3.12) and (3.17). This completes the proof of Lemma 3.1.

Lemma 3.2. Let A be as above and m ∈ N (Ω)∪ {0}. For any 1 ≤ η ≤ N and
arbitrary functions {gk,j}k,j ∈ Lp(
q(
2),Rd), there exists a constant C > 0 which is
independent of m and γ such that

(3.18)

∥∥∥(∑
j∈Z

(∑
k∈Z

|σk,Γη ∗ gk,j|2
)q/2)1/q∥∥∥

Lp(Rd)

≤ C
∥∥∥( ∑

j∈Z

( ∑
k∈Z

|gk,j|2
)q/2)1/q∥∥∥

Lp(Rd)

for max{|1/p− 1/2|, |1/q− 1/2|} < min{1/2, 1/γ ′}.

Proof. Since ‖|h|‖2 ≤ (m + 1)1/2−1/γ‖|h|‖γ when γ ≥ 2, we may assume that
1 < γ ≤ 2. By duality, it suffices to prove (3.18) for 2 < p, q < 2γ/(2− γ). Given
functions {fj} with ‖{fj}‖L(p/2)′(	(q/2)′ ,Rd) ≤ 1. By the similar arguments as in getting
(7.7) in [10], we have

(3.19)

∫
Rd

|σk,Γη ∗ gk,j(x)|2fj(x)dx

≤ C‖Ω‖L1(Em)‖|h|‖γ
γ

∫
Rd

|gk,j(x)|2MΓη(fj)(x)dx,

where

MΓη(f)(x) =
∫ 2(m+1)(k+1)

2(m+1)k

∫
Sn−1

|f(x+ Γη(ty′))||Ωm(y′)|dσ(y′)|h(t)|2−γ dt

t
.

By Hölder’s inequality we have

MΓη(f)(x)

≤ ‖|h|‖2−γ
γ

∫
Sn−1

( ∫ 2(m+1)(k+1)

2(m+1)k
|f(x+ Γη(ty′))|γ′/2 dt

t

)2/γ′
|Ωm(y′)|dσ(y′)

≤ ‖|h|‖2−γ
γ

∫
Sn−1

( m∑
i=0

∫ 2(m+1)(k+1)+i+1

2(m+1)k+i
|f(x+ Γη(ty′))|γ′/2dt

t

)2/γ′
|Ωm(y′)|dσ(y′)

≤ (m+ 1)2/γ′‖|h|‖2−γ
γ

∫
Sn−1

|Ωm(y′)|

×
(

sup
r>0

1
r

∫
|t|<r

|f(x+ Γη(ty′))|γ′/2dt
)2/γ′

dσ(y′).
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By Lemma 2.1 and Minkowski’s inequality, we have for γ ′/2 < u, v <∞,

(3.20)

∥∥∥( ∑
j∈Z

|MΓη(fj)|v
)1/v∥∥∥

Lu(Rd)

≤ (m+ 1)2/γ′‖|h|‖2−γ
γ ‖Ω‖L1(Em)

∥∥∥( ∑
j∈Z

|fj|v
)1/v∥∥∥

Lu(Rd)
.

Thus by (3.19)-(3.20), we get∥∥∥( ∑
j∈Z

( ∑
k∈Z

|σk,Γη ∗ gk,j|2
)q/2)1/q∥∥∥2

Lp(Rd)

= sup
‖{fj}‖

L(p/2)′ (�(q/2)′ ,Rd)
≤1

∫
Rd

∑
j∈Z

∑
k∈Z

|σk,Γη ∗ gk,j(x)|2fj(x)dx

≤ C‖Ω‖L1(Em)‖|h|‖γ
γ sup
‖{fj}‖

L(p/2)′ (�(q/2)′ ,Rd)
≤1

∫
Rd

∑
j∈Z

∑
k∈Z

|gk,j(x)|2MΓη(fj)(x)dx

≤ C‖Ω‖L1(Em)‖|h|‖γ
γ sup
‖{fj}‖

L(p/2)′ (�(q/2)′ ,Rd)
≤1

∥∥∥(∑
j∈Z

|MΓη(fj)|v
)1/v∥∥∥

Lu(Rd)

×
∥∥∥( ∑

j∈Z

( ∑
k∈Z

|gk,j|2
)q/2)1/q∥∥∥2

Lp(Rd)

≤ C(m+ 1)2/γ′‖Ω‖2
L1(Em)

‖|h|‖2
γ

∥∥∥( ∑
j∈Z

( ∑
k∈Z

|gk,j|2
)q/2)1/q∥∥∥

Lp(Rd)
,

where we take u = (p/2)′ and v = (q/2)′. Then we prove (3.18) for 1 < γ ≤ 2.
When γ > 2, since (m+ 1)1/2‖|h|‖2 ≤ (m+ 1)1/γ′‖|h|‖γ, therefore (3.18) holds for
γ > 2. Lemma 3.2 is proved.

Lemma 3.3. Let Γ, ϕ be as in Theorem 1.4. Suppose that h ∈ Hγ(R+) for
some γ > 1, then h(ϕ−1)Γ(ϕ−1) ∈ Hγ(R+). Precisely,

‖h(ϕ−1)Γ(ϕ−1)‖Hγ(R+) ≤ C‖h‖Hγ (R+),

where the constant C > 0 depends only on ϕ.

Proof. We only prove the lemma in the case where ϕ is positive and increasing,
since in the other case one can prove similarly. By the change of variables t = ϕ(r)
and Remark 1.6 (i) we have∫ ∞

0
|h(ϕ−1(t))Γ(ϕ−1(t))|γ dt

t
=

∫ ∞

0
|h(r)Γ(r)|γϕ

′(r)
ϕ(r)

dr ≤ C‖h‖γ
Hγ(R+)

.

This completes the proof of Lemma 3.3.
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Lemma 3.4. Let Γ and ϕ be as in Theorem 1.4. Then

(i) if ϕ is nonnegative and increasing, Th,Ω,P ,ϕ(f) = Th(ϕ−1)Γ(ϕ−1),Ω,P(f);

(ii) if ϕ is nonnegative and decreasing, Th,Ω,P ,ϕ(f) = −Th(ϕ−1)Γ(ϕ−1),Ω,P(f);

(iii) if ϕ is non-positive and decreasing, Th,Ω,P ,ϕ(f) = Th(ϕ−1)Γ(ϕ−1),Ω̃,P(f);

(iv) if ϕ is non-positive and increasing, Th,Ω,P ,ϕ(f) = −Th(ϕ−1)Γ(ϕ−1),Ω̃,P(f),
where Ω̃(y) = Ω(−y).

Proof. We can get this lemma by Remark 1.6 and the similar arguments as in [7,
Lemma 2.3]. The details are omitted.

4. PROOFS OF MAIN RESULTS

For η ∈ {1, · · · ,N}, we denote s(η) = rank(Iη). By [10, Lemma 6.1] (see in
[10, (7.35)]), there are two nonsingular linear transformations Hη : Rs(η) → Rs(η) and
Gη : Rd → Rd such that

(4.1) |Hηπ
d
s(η)Gηξ| ≤ |Iη(ξ)| ≤ Λη|Hηπ

d
s(η)Gηξ|.

For a function φ ∈ C∞
0 (R) such that φ(t) ≡ 1 for |t| ≤ 1/2 and φ(t) ≡ 0 for |t| ≥ 1.

Let ψ(t) = φ(t2) and define the measures {τk,η} by

(4.2)

τ̂k,η(ξ) = σ̂k,Γη(ξ)
∏

η<j≤N
ψ

(
|2(m+1)(k+1)ljHjπ

d
s(j)Gjξ|

)
−σ̂k,Γη−1(ξ)

∏
η−1<j≤N

ψ
(
|2(m+1)(k+1)ljHjπ

d
s(j)Gjξ|

)
for k ∈ Z and 1 ≤ η ≤ N , where we use convention Πj∈∅aj = 1. It is easy to check
that

(4.3) σk,ΓN =
N∑

η=1

τk,η.

In addition, we can obtain the following estimates by (3.8)-(3.9):

(4.4)
|τ̂k,η(ξ)|

≤ CA
[
min{2(m+1)(k+1)lηΛ−1

η |Iη(ξ)|, (2(m+1)(k+1)lη Λ−1
η |Iη(ξ)|)−1}

]1/(4(m+1)lηγ̃)

.

Now we are in a position to prove our main results.

Proof of Theorem 1.1. Let A and N (Ω) be as in Section 3. By (3.6)-(3.7) and
(4.3), we have

(4.5) Th,Ω,P (f)(x) =
N∑

η=1

∑
m∈N(Ω)∪{0}

∑
k∈Z

τk,η ∗ f(x) :=
N∑

η=1

∑
m∈N(Ω)∪{0}

Bη(f)(x).
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By (3.5) and the fact that ‖|h|‖γ ≤ C‖h‖Hγ(R+), to prove Theorem 1.1, it suffices to
prove that for any 1 ≤ η ≤ N and α ∈ R,

(4.6) ‖Bη(f)‖Ḟp,q
α (Rd) ≤ CA‖f‖Ḟp,q

α (Rd)

for max{|1/p−1/2|, |1/q−1/2|}< min{1/2, 1/γ′}, where C = C(n, d, h, p, q, α, ϕ,
deg(P)) is independent of the coefficients of Pj for 1 ≤ j ≤ d and m.

Let λ ∈ S(R+) satisfying

0 ≤ λ(t) ≤ 1, supp(λ) ⊂ [2−(m+1)lηΛη, 2(m+1)lηΛη],

and
∑

k∈Z
λ2

k(t) = 1 with λk(t) = λ(2(m+1)klηt). Define the operator Sk by

Ŝkf(ξ) := λk(|πd
s(η)ξ|)f̂(ξ).

Observe that we can write
(4.7)
Bη(f) =

∑
k∈Z

τk,η ∗
(∑

j∈Z

Sj+kSj+kf
)

=
∑
j∈Z

∑
k∈Z

Sj+k(τk,η ∗ Sj+kf) :=
∑
j∈Z

Bj
η(f).

When Iη = πd
s(η), invoking the Littlewood-Paley theory and Plancherel’s theorem, we

get

‖Bj
η(f)‖2

L2(Rd) ≤ C
∑
k∈Z

∫
Ej+k

|τ̂k,η(ξ)|2|f̂(ξ)|2dξ,

where

Ej+k = {ξ ∈ Rd : 2−(j+k+1)(m+1)lηΛη ≤ |πd
s(η)ξ| ≤ 2−(j+k−1)(m+1)lηΛη}.

This together with (4.4) yields

‖Bj
η(f)‖L2(Rd) ≤ 2−|j|/(4γ̃)CA‖f‖L2(Rd),

in other words (by (1.5)),

(4.8) ‖Bj
η(f)‖Ḟ 2,2

0 (Rd) ≤ 2−|j|/(4γ̃)CA‖f‖Ḟ 2,2
0 (Rd).

Next, it remains only to show that

(4.9) ‖Bj
η(f)‖Ḟp,q

α (Rd) ≤ CA‖f‖Ḟp,q
α (Rd)

for max{|1/p− 1/2|, |1/q− 1/2|} < min{1/2, 1/γ ′}, α ∈ R, j ∈ Z and 1 ≤ η ≤ N .
To prove (4.9), it suffices to prove that

(4.10)
∥∥∥( ∑

i∈Z

|Bj
η(gi)|q

)1/q∥∥∥
Lp(Rd)

≤ CA
∥∥∥(∑

i∈Z

|gi|q
)1/q∥∥∥

Lp(Rd)
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for max{|1/p− 1/2|, |1/q− 1/2|} < min{1/2, 1/γ ′} and {gi} ∈ Lp(
q,Rd), where
C is independent of j and m. In fact, (4.10) implies (4.9), that is,

‖Bj
η(f)‖Ḟp,q

α (Rd) =
∥∥∥( ∑

i∈Z

2−iαq|Ψi ∗Bj
η(f)|q

)1/q∥∥∥
Lp(Rd)

≤
∥∥∥( ∑

i∈Z

|Bj
η(2−iαΨi ∗ f)|q

)1/q∥∥∥
Lp(Rd)

≤ CA
∥∥∥( ∑

i∈Z

2−iαq|Ψi ∗ f |q
)1/q∥∥∥

Lp(Rd)

= CA‖f‖Ḟp,q
α (Rd).

In what follows, we show (4.10). Using Proposition 2.3, Lemma 3.2, the definition of
τk,η and the similar argument in getting [4, Propostion 2.3], one can check that

(4.11)

∥∥∥( ∑
i∈Z

( ∑
k∈Z

|τk,η ∗ gk,i|2
)q/2)1/q∥∥∥

Lp(Rd)

≤ C
∥∥∥( ∑

i∈Z

( ∑
k∈Z

|gk,i|2
)q/2)1/q∥∥∥

Lp(Rd)

for max{|1/p−1/2|, |1/q−1/2|}< min{1/2, 1/γ′}. Let Ψ̂k(ξ1) = Ψ̂(2(m+1)klηξ1) =
λk(|πd

s(η)ξ|), where ξ = (ξ1, ξ2) with ξ1 = (ξ1, · · · , ξs(η)) and ξ2 = (ξs(η)+1, ξs(η)+2,

· · · , ξd). It is clear that Ψ ∈ S(Rs(η)). By the definition of Sk , we have

Sk(f)(x) = Ψk ⊗ δd−s(η) ∗ f(x).

Using Proposition 2.3 again, for 1 < p, q < ∞ and arbitrary functions {gi}i∈Z ∈
Lp(
q,Rd), we have

(4.12)
∥∥∥( ∑

i∈Z

(∑
k∈Z

|Sk(gi)|2
)q/2)1/q∥∥∥

Lp(Rd)
≤ C

∥∥∥( ∑
i∈Z

|gi|q
)1/q∥∥∥

Lp(Rd)
.

By duality and using (4.11)-(4.12), we get∥∥∥(∑
i∈Z

|Bj
η(gi)|q

)1/q∥∥∥
Lp(Rd)

= sup
‖{fi}‖Lp′ (�q′ ,Rd)

≤1

∣∣∣ ∫
Rd

∑
i∈Z

∑
k∈Z

Sj+k(τk,η ∗ Sj+k(gi))(x)fi(x)dx
∣∣∣

≤ C sup
‖{fi}‖Lp′(�q′ ,Rd)

≤1

∥∥∥( ∑
i∈Z

( ∑
k∈Z

|S∗
j+k(fi)|2

)q′/2)1/q′∥∥∥
Lp′(Rd)

×
∥∥∥( ∑

i∈Z

( ∑
k∈Z

|τk,η ∗ Sj+k(gi)|2
)q/2)1/q∥∥∥

Lp(Rd)
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≤ CA
∥∥∥( ∑

i∈Z

( ∑
k∈Z

|Sj+k(gi)|2
)q/2)1/q∥∥∥

Lp(Rd)

≤ CA
∥∥∥( ∑

i∈Z

|gi|q
)1/q∥∥∥

Lp(Rd)
.

This proves (4.10). Then by interpolation (see [8, 13]) between (4.8) and (4.9) implies
that there exists ε > 0 such that for max{|1/p−1/2|, |1/q−1/2|} < min{1/2, 1/γ′},
α ∈ R and 1 ≤ η ≤ N .

(4.13) ‖Bj
η(f)‖Ḟ

p,q
α (Rd) ≤ 2−|j|ε/(4γ̃)CA‖f‖Ḟ

p,q
α (Rd),

which together with (4.7) implies (4.6) and completes the proof of Theorem 1.1.

Proof of Theorem 1.2. The proof of Theorem 1.2 is to copy the arguments in proving
[4, Theorem 1.2]. By Theorem 1.1 and (1.5), for |1/p−1/2| < min{1/2, 1/γ ′}, there
exists a constant C > 0 such that

(4.14) ‖Th,Ω,P(f)‖Lp(Rd) ≤ C‖Ω‖L(log+ L)1/γ′
(Sn−1)‖f‖Lp(Rd).

Then for |1/p− 1/2| < min{1/2, 1/γ ′}, 1 < q <∞ and α ∈ Z, we have

‖Th,Ω,P(f)‖Ḃp,q
α (Rd) =

( ∑
i∈Z

2−iαq‖Ψi ∗ Th,Ω,P(f)‖q
Lp(Rd)

)1/q

=
( ∑

i∈Z

‖Th,Ω,P(2−iαΨi ∗ f)‖q
Lp(Rd)

)1/q

≤ C‖Ω‖L(log+ L)1/γ′(Sn−1)

(∑
i∈Z

2−iαq‖Ψi ∗ f‖q
Lp(Rd)

)1/q

= C‖Ω‖L(log+ L)1/γ′
(Sn−1)‖f‖Ḃp,q

α (Rd).

Theorem 1.2 is proved.

Proofs of Theorems 1.4 and 1.5. Using Lemmas 3.3–3.4 and Theorem 1.1, we get
Theorem 1.4. Also, Theorem 1.5 follows from Lemmas 3.3–3.4 and Theorem 1.2.
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