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RANDOM ATTRACTOR FOR STOCHASTIC PARTIAL FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH FINITE DELAY

Honglian You* and Rong Yuan

Abstract. This paper deals with a class of stochastic partial functional differential
equations with finite delay. We give some sufficient conditions to guarantee the
existence of a unique random attractor which attracts any tempered random set in
the phase space.

1. INTRODUCTION

As is known to all, random attractor is a helpful tool to understand the dynamics of
stochastic systems, which was introduced in [5] as an extension to stochastic systems of
the theory of attractors for deterministic system [6]. Many works have been devoted to
the existence of random attractors for some stochastic PDEs, such as reaction-diffusion
equations and Navier-Stokes equations, see for example [3, 4, 10].

In this paper, we investigate the asymptotic behavior of solutions for the following
stochastic partial functional differential equations on a separable Banach space (E, ‖·‖)
(1.1) dx(t) = Ax(t)dt+ f(xt)dt+ σdW (t),

where A is a linear operator on E and f is a nonlinear operator satisfying the global
Lipschitz condition; σ ∈ D(A) and W (t) is a real-valued two-sided Winer process.
Note that, in the previous works concerned with random attractors, the authors mainly
focus their attentions on the case that the linear part is a densely defined operator.
As far as the linear part is not densely defined concerned, to our best knowledge, no
literature in this area can be found.

Motivated by the previous works on the random attractor of the explicit partial
differential equations, in the present paper, we consider the existence of random at-
tractors for a more general form of equation as Eq. (1.1), where the linear operator
A : D(A) ⊂ E → E is unnecessarily densely defined but satisfies the following
Hille-Yosida condition
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(H1) there exist two constants M ≥ 1 and ω ∈ R such that (ω,+∞) ⊂ ρ(A) and

‖(λI −A)−n‖L ≤ M

(λ− ω)n
, λ > ω,

where ρ(A) is the resolvent set of A and ‖ · ‖L denotes the operator norm.
In fact, operators with non-dense domain occurs in many situations due to restric-

tions on the space where the equations are considered. For example, periodic continu-
ous functions and Hölder continuous functions are not dense in the space of continuous
functions, we refer to [9] for more examples. Besides, the boundary conditions may
also give rise to operators with non-dense domains, e.g., the age-structured problem
given in the last section of the present paper.

Now we turn to Eq. (1.1). Since the linear part A is not densely defined, we could
not consider its random attractor via the theory of C0-semigroup directly. Fortunately,
it is known that the non-densely defined Hille-Yosida operator generates integrated
semigroup, which is introduced in [1] and more properties about which are established
later, for example [7, 11]. For the convenience, we study Eq. (1.1) on the space
C := C([−r, 0], E), the space of continuous functions from [−r, 0] to E with the
supreme norm.

The rest of the paper is organized as follows. In section 2, we present some basic
concepts and properties for integrated semigroup theory and random dynamical systems.
In section 3, we convert Eq. (1.1) to a deterministic equation with a random parameter.
In section 4, by proving the existence of random absorbing set and the asymptotic
compactness for the solution operator, we establish the existence of random attractor.
In the last section, as an application of our theory, we use the age-structured problem
with white noise to demonstrate our result.

2. PRELIMINARY RESULTS

In this section, we recall some basic definitions and theories about integrated semi-
group and general random dynamical systems, see [1, 2, 3, 7, 11].

Consider an abstract evolution equation on a general Banach space E

(2.1)
dx(t)
dt

= Ax(t) + f(xt), t > 0

with initial function x0 = ξ, where A is a Hille-Yosida operator, that is, A satisfies
(H1).

Definition 2.1. [1]. Let T > 0. A continuous function x : [−r, T ] → E is called
an integral solution of equation (2.1) if

(i)
∫ t

0

x(s)ds ∈ D(A) for t ∈ [0, T ];
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(ii) x(t) = ξ(0) +A(
∫ t

0
x(s)ds) +

∫ t

0
f(xs)ds;

(iii) x0 = ξ.

Remark 2.1. From (i) we know that if x is an integral solution of (2.1), then
xt(0) = x(t) ∈ D(A) for t ∈ [0, T ]. In particular, ξ(0) ∈ D(A), which is a necessary
condition for the existence of an integral solution.

Definition 2.2. [1] An integrated semigroup is a family S(t), t ≥ 0, of bounded
linear operators on E with the following properties:

(i) S(0) = 0;
(ii) t 	→ S(t) is strongly continuous;

(iii) S(s)S(t) =
∫ s

0
(S(t+ r) − S(r)) dr, for all t, s ≥ 0.

Lemma 2.1. [7]. The following assertions are equivalent:
(i) A is the generator of a locally Lipschitz continuous integrated semigroup;
(ii) A is a Hille-Yosida operator.

Now we introduce the part A0 of A in D(A):

A0 = A on D(A0) = {x ∈ D(A); Ax ∈ D(A) }.
Proposition 1. [11]. The part A0 of A in D(A) generates a strongly continuous

semigroup on D(A).

Now we turn to the random dynamical systems. Let (Ω,F , P) be a probability
space, where

Ω = {ω ∈ C(R,R) : ω(0) = 0},
F is the Borel σ-algebra on Ω generated by the compact open topology, and P is the
corresponding Wiener measure on F . (X, ‖ · ‖X) is a separable Banach space with
Borel σ-algebra B(X).

Definition 2.3. (Ω,F , P, (θt)t∈R) is called a metric dynamical systems, if θ :
R × Ω → Ω is (B(R) × F ,F ) measurable, θ0 = id, θt+s = θt ◦ θs, for all t, s ∈ R,
and θtP = P for all t ∈ R.

Definition 2.4. A continuous random dynamical system over (Ω,F , P, (θt)t∈R) is
a (B(R+) ×F × B(X),B(X))-measurable mapping

φ : R
+ × Ω ×X → X, (t, ω, x) 	→ φ(t, ω, x),

such that the following properties hold:
(1) φ(0, ω, x) = x for all ω ∈ Ω and x ∈ X ;
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(2) φ(t+ s, ω, ·) = φ(t, θsω, φ(s, ω, ·)) for all t, s ≥ 0 and ω ∈ Ω;
(3) φ is continuous in t and x.

Definition 2.5.
(1) A set-valued mapping ω 	→ D(ω) : Ω → 2X is said to be a random set if the

mapping ω 	→ d(x,D(ω)) is measurable for any x ∈ X . If D(ω) is also closed
(compact) for each ω ∈ Ω, the mapping ω 	→ D(ω) is called a random closed
(compact) set. A random set ω 	→ D(ω) is said to be bounded if there exist
x0 ∈ X and a random variable R(ω) > 0 such that

D(ω) ⊂ {x ∈ X : ‖x− x0‖X ≤ R(ω)} for all ω ∈ Ω.

(2) A random set ω 	→ D(ω) is called tempered provided for P-a.s. ω ∈ Ω,

lim
t→∞ e−βt sup{‖b‖X : b ∈ D(θtω)} = 0 for all β > 0.

(3) A random set ω 	→ B(ω) is said to be a random absorbing set if for any tempered
random set ω 	→ D(ω), there exists t0(ω) such that

φ(t, θ−tω,D(θ−tω)) ⊂ B(ω) for all t ≥ t0, ω ∈ Ω.

(4) A random set ω 	→ B1(ω) is said to be a random attracting set if for any tempered
random set ω 	→ D(ω), we have

lim
t→∞ d(φ(t, θ−tω,D(θ−tω)), B1(ω)) = 0, for all ω ∈ Ω.

(5) A random compact set ω 	→ A(ω) is said to be a random attractor if it is an
random attracting set and φ(t, ω, A(ω)) = A(θtω) for all ω ∈ Ω and t ≥ 0,

where d is the Hausdorff semi-metric given by d(Y, Z) = supy∈Y infz∈Z ‖y− z‖X for
any Y ⊂ X , Z ⊂ X .

Definition 2.6. φ is called pullback asymptotically compact on X if for P-a.e.
ω ∈ Ω, {φ(tn, θ−tnω, xn)}∞n=1 has a convergent subsequence in X whenever tn → ∞,
and xn ∈ B(θ−tnω) with ω 	→ B(ω) is tempered.

In what follows, we recall the definition of the Kuratowski’s measure of non-
compactness for a bounded set B of a Banach space E , which is defined as

(2.2) κ(B) = inf{d > 0 : B has a finite cover of diameter< d},
and plays an important role in proving the pullback asymptotically compact in section
4.
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Theorem 2.1. [3]. Let φ be a continuous random dynamical system over (Ω,F , P,
(θt)t∈R). Suppose that ω 	→ K(ω) is a closed random absorbing set, and φ is pullback
asymptotically compact on X . Then φ has a unique random attractor ω 	→ A(ω),
where

A(ω) =
⋂
τ≥0

⋃
t≥τ

φ(t, θ−tω,K(θ−tω)), ω ∈ Ω.

3. PROBLEM TRANSFORMATION

In this section, we focus our attention on associating a continuous random dynamical
system with Eq. (1.1). To do this, we need to convert the stochastic equation into a
deterministic equation with a random parameter. In the sequel, we take

Ω = {ω ∈ C(R,R) : ω(0) = 0}
and identify ω(t) = W (t). Define the time shift by

θtω(·) = ω(· + t) − ω(t), ω ∈ Ω, t ∈ R.

Then (Ω,F , P, (θt)t∈R) is a metric dynamical system. Now, we first consider the
one-dimensional Ornstein-Uhlenbeck equation

dz̃ + z̃dt = dW (t).

It is obvious that its unique stationary solution can be described by

(3.1) z̃(θtω) = −
∫ 0

−∞
esω(t+ s)ds+ ω(t), t ∈ R.

Note that the random variable |z̃(ω)| is tempered and t 	→ log |z̃(θtω)| is P-a.e. con-
tinuous, it follows from [2, Proposition 4.3.3] that for any ε > 0, there is a tempered
random variable r̃(ω) > 0 such that

1
r̃(ω)

≤ |z̃(ω)| ≤ r̃(ω),

where r̃(ω) satisfies for P-a.s ω ∈ Ω,

(3.2) e−ε|t|r̃(ω) ≤ r̃(θtω) ≤ eε|t|r̃(ω).

Putting z(θtω) = σz̃(θtω). Then it solves

dz + zdt = σdW (t).

Moreover, the above analysis guarantees the following lemmas.
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Lemma 3.1. For any ε > 0, there is a tempered random variable r(ω) > 0 such
that

‖z(θtω)‖ ≤ eε|t|r(ω),

where r(ω) = ‖σ‖r̃(ω) satisfies for P-a.s ω ∈ Ω,

(3.3) e−ε|t|r(ω) ≤ r(θtω) ≤ eε|t|r(ω).

Lemma 3.2. For any ε > 0, there is a tempered random variable r′(ω) > 0 such
that

‖Az(θtω)‖ ≤ eε|t|r′(ω),

where r′(ω) = ‖Aσ‖r̃(ω) satisfies for P-a.s ω ∈ Ω,

(3.4) e−ε|t|r′(ω) ≤ r′(θtω) ≤ eε|t|r′(ω).

Let y(t) = x(t)−z(θtω). Then y(t) satisfies the following evolution equation with
random variable.

(3.5)
dy(t)
dt

= Ay(t) + F (θtω, yt),

with initial function

y0(s) = x0(s) − z(θsω), −r ≤ s ≤ 0,

where F (θtω, yt) := f(yt + z(θt+·ω)) + Az(θtω) + z(θtω). Therefore, in order to
study the asymptotic behavior of x in C, it suffices to investigate Eq. (3.5) with each
initial function y0 ∈ C.

According to the first part in section 2, if A satisfies (H1), then it generates an
integrated semigroup S(t), t ≥ 0, and its part A0 generates a C0-semigroup T0(t),
t ≥ 0. Moreover, the author in [11] gives the relationship between S(t) and T0(t):

(3.6) S(t)x = lim
λ→+∞

∫ t

0

T0(s)λ(λI − A)−1xds, for x ∈ E, t≥ 0.

On the other hand, if we denote Fω(t, ξ) := F (θtω, yt), it is easy to see that
Fω : R

+ × C → C is continuous in t and globally Lipschitz continuous in ξ for
each ω ∈ Ω. By the classical theory concerning the existence and uniqueness of the
solutions, we obtain that

Proposition 2. For P-a.e ω ∈ Ω and each y0 ∈ C, if y0(0) ∈ D(A), Eq.
(3.5) possesses a unique global integral solution y(·, ω, y0) ∈ C([−r,+∞), E) with
y(0, ω, ξ) = y0, which can be expressed as

(3.7)

y(t, ω, y0) =⎧⎨⎩T0(t)y0(0)+ lim
λ→+∞

∫ t

0
T0(t−τ)λ(λI−A)−1F (θτω, yτ (·, ω, y0))dτ, t>0,

y0(t), −r ≤ t ≤ 0.
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Here y0(0) ∈ D(A) is a necessary condition for the existence of integral solutions, see
Remark 2.1.

Denote
X = {ξ ∈ C : ξ(0) ∈ D(A)},

which is also a separable Banach space. Then Eq. (3.5) generates a random dynamical
system φ over (Ω,F , P, (θt)t∈R), where

(3.8) φ(t, ω, y0) = yt(·, ω, y0), ∀(t, ω, y0) ∈ R
+ × Ω ×X.

Define ϕ : R × Ω ×X → X by

(3.9) ϕ(t, ω, x0) = xt(·, ω, x0) = yt(·, ω, y0)+z(θt+·ω), ∀(t, ω, ξ) ∈ R
+×Ω×X.

Then ϕ is a continuous random dynamical systems associated with Eq. (1.1) on X .
Note that the two random dynamical systems are equivalent. It is easy to check

that ϕ has a random attractor provided φ possesses a random attractor. Then, we only
need to consider the random dynamical system φ.

4. EXISTENCE OF RANDOM ATTRACTORS

In this section, we establish the existence of random attractor by proving the exis-
tence of random absorbing set and the asymptotic compactness for φ. To this end, we
suppose the nonlinear function f : C → E satisfies

(H2) there exists a constant L > 0 such that

‖f(φ1) − f(φ2)‖ ≤ L‖φ1 − φ2‖C , for any φ1, φ2 ∈ C;

and we need the following assumption on the C0-semigroup T0(t) (generated by the
part A0 of A), t ≥ 0.

(H3) ‖T0‖L ≤ e−αt, for some α > 0.

Lemma 4.1. For 0 ≤ τ ≤ t, we have

‖F (θτ−tω, 0)‖ ≤ (L+ 1)eε(t−τ )r(ω) + ‖f(0)‖.
Proof. Let ε < γ , where ε is the one in (3.4). By the definition of F , we obtain

the following estimation

‖F (θτ−tω, 0)‖ = ‖f(z(θτ−t+·ω)) +Az(θτ−tω) + z(θτ−tω)‖
≤ ‖f(z(θτ−t+·ω)) − f(0)‖+ ‖f(0)‖+ ‖Az(θτ−tω)‖+ ‖z(θτ−tω)‖
≤ L‖z(θτ−t+·ω)‖C + ‖f(0)‖+ ‖Az(θτ−tω)‖+ ‖z(θτ−tω)‖
= L sup

−r≤s≤0
‖z(θτ−t+sω)‖ + ‖f(0)‖+ eε|τ−t|r′(ω) + eε|τ−t|r(ω)

≤ (Leεr + 1)eε(t−τ )r(ω) + eε(t−τ )r′(ω) + ‖f(0)‖.
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Lemma 4.2. Assume (H1)-(H3) holds. For P-a.s ω ∈ Ω, we have

‖yt(·, θ−tω, y0(θ−tω))‖C

≤
(
eαr‖y0‖C +

L(Leεr + 1)e2αr

(α− Leαr)(ε− Leαr)
r(ω)

+
Le2αr

(α− Leαr)(ε− Leαr)
r′(ω)− eαr

α − Leαr
‖f(0)‖

)
e(Leαr−α)t

+
( ε(Leεr + 1)eαr

(α− ε)(Leαr − ε)
r(ω) +

εeαr

(α− ε)(Leαr − ε)
r′(ω)

)
e(ε−α)t

+
( α(Leεr + 1)eαr

(α− ε)(α− Leαr)
r(ω) +

αeαr

(α− ε)(α− Leαr)
r′(ω) +

eαr

α− Leαr
‖f(0)‖

)
.

where ε is the one in (3.4), Leαr �= ε, α �= ε, α �= Leαr.

Proof. For 0 ≤ t ≤ r, from (3.7) we deduce that

‖eα·yt(·, θ−tω, y0(θ−tω))‖C = sup
−r≤s≤0

‖eαsy(t+ s, θ−tω, y0(θ−tω))‖

≤ max
{

sup
−t<s≤0

eαs
(
‖T (t+ s)y0(0)‖

+ lim
λ→+∞

∫ t+s

0

‖T (t+ s − τ)λ(λI − A)−1F (θτ−tω, yτ (·, θ−tω, y0(θ−tω))‖dτ
)
,

sup
−r≤s≤−t

eαs‖y0(t+ s)‖
}
.

For simplicity, we take M = 1 in (H1), i.e.,

‖(λI − A)−1‖L ≤ 1
λ− ω

for any λ > ω.

In fact, this can be done if we employ the renorming lemma in [8, Page 17] to introduce
an equivalent norm in E . Therefore,

‖eα·yt(·, θ−tω, y0(θ−tω))‖C

≤ max
{
sup−t<s≤0 e

αse−α(t+s)‖y0(0)‖+ sup−t<s≤0 e
αse−α(t+s)∫ t+s

0 eατ (L‖yτ (·, θ−tω, y0(θ−tω))‖C + ‖F (θτ−tω, 0)‖)dτ, e−αt‖y0‖C

}
≤ max

{
e−αt‖y0(0)‖+ Le−αt

∫ t
0 e

ατ‖yτ (·, θ−tω, y0(θ−tω))‖Cdτ

+e−αt
∫ t
0 e

ατ
(
Leεr + 1)eε(t−τ )r(ω) + eε(t−τ )r′(ω) + ‖f(0)‖

)
dτ, e−αt‖y0‖C

}
≤ e−αt‖y0‖C + Le−αt

∫ t
0 e

ατ‖yτ (·, θ−tω, y0(θ−tω))‖Cdτ

+
Leεr + 1
α − ε

e−αt(eαt − eεt)r(ω) +
1

α− ε
e−αt(eαt − eεt)r′(ω)

+
1
α
e−αt(eαt − 1)‖f(0)‖.
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For t ≥ r, we have

‖eα·yt(·, θ−tω, y0(θ−tω))‖C = sup
−r≤s≤0

‖eαsy(t+ s, θ−tω, y0(θ−tω))‖

≤ sup
−r≤s≤0

eαs
(
‖T (t+ s)y0(0)‖

+ lim
λ→+∞

∫ t+s

0

‖T (t+ s − τ)λ(λI − A)−1F (θτ−tω, yτ (·, θ−tω, y0(θ−tω))‖dτ
)

≤ e−αt‖y0(0)‖+ e−αt

∫ t

0
eατ (L‖yτ (·, θ−tω, y0(θ−tω))‖C + ‖F (θτ−tω, 0)‖)dτ

≤ e−αt‖y0‖C + Le−αt

∫ t

0
eατ‖yτ (·, θ−tω, y0(θ−tω))‖Cdτ

+e−αt

∫ t

0

eατ
(
Leεr + 1)eε(t−τ )r(ω) + eε(t−τ )r′(ω) + ‖f(0)‖

)
dτ

≤ e−αt‖y0‖C + Le−αt

∫ t

0
eατ‖yτ (·, θ−tω, y0(θ−tω))‖Cdτ

+
Leεr + 1
α− ε

e−αt(eαt − eεt)r(ω) +
1

α− ε
e−αt(eαt − eεt)r′(ω)

+
1
α
e−αt(eαt − 1)‖f(0)‖.

Since

sup
−r≤s≤0

‖eαsy(t+ s, θ−tω, y0(θ−tω))‖ = sup
−r≤s≤0

eαs‖y(t+ s, θ−tω, y0(θ−tω))‖

≥ e−αr‖yt(·, θ−tω, y0(θ−tω))‖C,

then for any t ≥ 0,

eαt‖yt(·, θ−tω, y0(θ−tω))‖C

≤ eαr‖y0‖C +
(Leεr + 1)eαr

α − ε
(eαt − eεt)r(ω) +

eαr

α− ε
(eαt − eεt)r′(ω)

+
eαr

α
(eαt − 1)‖f(0)‖

+ Leαr

∫ t

0
eατ‖yτ (·, θ−tω, y0(θ−tω))‖Cdτ.

By the generalized Gronwall inequality, we obtain that

eαt‖yt(·, θ−tω, y0(θ−tω))‖C

≤ eαr‖y0‖C +
(Leεr + 1)eαr

α − ε
(eαt − eεt)r(ω) +

eαr

α− ε
(eαt − eεt)r′(ω)

+
eαr

α
(eαt − 1)‖f(0)‖

+ Leαr

∫ t

0

(
eαr‖y0‖C +

(Leεr + 1)eαr

α− ε
(eαs − eεs)r(ω)
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+
eαr

α− ε
(eαs − eεs)r′(ω) +

eαr

α
(eαs − 1)‖f(0)‖

)
eLeαr(t−s)ds

≤
(
eαr‖y0‖C +

L(Leεr + 1)e2αr

(α− Leαr)(ε− Leαr)
r(ω)

+
Le2αr

(α− Leαr)(ε− Leαr)
r′(ω) − eαr

α − Leαr
‖f(0)‖

)
eLeαrt

+
( ε(Leεr + 1)eαr

(α− ε)(Leαr − ε)
r(ω) +

εeαr

(α− ε)(Leαr − ε)
r′(ω)

)
eεt

+
( α(Leεr + 1)eαr

(α− ε)(α− Leαr)
r(ω) +

αeαr

(α− ε)(α− Leαr)
r′(ω) +

eαr

α− Leαr
‖f(0)‖

)
eαt,

which implies the conclusion.

Lemma 4.3. Let (H1)-(H3) holds and α > Leαr. Then there exists a tempered
random set ω 	→ K(ω) attracting any tempered random set ω 	→ B(ω), that is, for
P-a.e ω ∈ Ω, there is TB(ω) > 0 such that

φ(t, θ−tω, B(θ−tω) ⊂ K(ω), ∀t ≥ TB(ω).

Proof. For y0(θ−tω) ∈ B(θ−tω), by Lemma 4.2 we have

‖φ(t, θ−tω, y0(θ−tω))‖C = ‖yt(·, θ−tω, y0(θ−tω))‖C

≤
(
eαr‖y0‖C +

L(Leεr + 1)e2αr

(α− Leαr)(ε− Leαr)
r(ω)

+
Le2αr

(α− Leαr)(ε− Leαr)
r′(ω)− eαr

α− Leαr
‖f(0)‖

)
e(Leαr−α)t

+
( ε(Leεr + 1)eαr

(α− ε)(Leαr − ε)
r(ω) +

εeαr

(α− ε)(Leαr − ε)
r′(ω)

)
e(ε−α)t

+
( α(Leεr + 1)eαr

(α− ε)(α− Leαr)
r(ω) +

αeαr

(α− ε)(α− Leαr)
r′(ω) +

eαr

α − Leαr
‖f(0)‖

)
.

Take ε < α, then there exists TB(ω) > 0 such that for all t ≥ TB(ω),

‖φ(t, θ−tω, y0(θ−tω))‖C ≤ c1r(ω) + c2r
′(ω) + c3,

where
c1 =

α(Leεr + 1)eαr

(α− ε)(α − Leαr)
+ 1, c2 =

αeαr

(α− ε)(α− Leαr)
+ 1,

and
c3 =

eαr

α− Leαr
‖f(0)‖+ 1.
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Given ω ∈ Ω, we denote by

K(ω) = {ξ ∈ Cγ : ‖ξ‖C ≤ c1r(ω) + c2r
′(ω) + c3}.

Then ω 	→ K(ω) is a tempered random set because r(ω) and r′(ω) are tempered.
Moreover, it is absorbing.

Lemma 4.4. For any y01, y02 ∈ B(ω), where ω 	→ B(ω) is a tempered random
set, we have

(4.1) ‖φ(t, ω, y01) − φ(t, ω, y02)‖C ≤ eαre(Leαr−α)t‖y01 − y02‖C , ∀t ≥ 0, ω ∈ Ω.

Proof. By (3.8) and (3.7), for 0 ≤ t ≤ r, we have

‖eα·(yt(·, ω, y01) − yt(·, ω, y02))‖C

≤ max
{

sup
−t<s≤0

eαs‖T0(t+ s)(y01(0) − y02(0))‖

+ sup
−t<s≤0

eαs lim
λ→+∞

∫ t+s

0
‖T0(t+ s− τ)λ(λI −A)−1(F (θτω, yτ (·, ω, y01))

− F (θτω, yτ (·, ω, y02)))‖dτ, sup
−r≤s≤−t

eαs‖y01(t+ s) − y02(t+ s)‖
}

≤ e−αt‖y01 − y02‖C + Le−αt

∫ t

0
eατ‖yτ (·, ω, y01) − yτ (·, ω, y02)‖Cdτ.

For t > r, one easily deduces that

‖φ(t, ω, y01) − φ(t, ω, y01)‖C = ‖yt(·, ω, y01) − yt(·, ω, y02)‖C

≤ sup
−r≤s≤0

‖T0(t+ s)(y01(0)− y02(0))‖

+ sup
−r≤s≤0

lim
λ→+∞

∫ t+s

0
‖T0(t+ s − τ)λ(λI −A)−1(F (θτω, yτ (·, ω, y01))

− F (θτω, yτ (·, ω, y02)))‖dτ

≤e−αteαr‖y01 − y02‖C + Le−αteαr

∫ t

0

eατ‖yτ (·, ω, y01) − yτ (·, ω, y02)‖Cdτ.

Then
eαt‖yt(·, ω, y01) − yt(·, ω, y02)‖C

≤ eαr‖y01 − y02‖C + Leαr

∫ t

0
eατ‖yτ (·, ω, y01) − yτ (·, ω, y02)‖Cdτ.

By the classical Gronwall inequality, we arrive at

eαt‖yt(·, ω, y01) − yt(·, ω, y02)‖C ≤ eαreLeαrt‖y01 − y02‖C ,

which implies the conclusion.
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Lemma 4.5. Let (H1)-(H3) hold and α > Leαr. Then φ is pullback asymptotically
compact.

Proof. We need to prove that for every sequence tn → +∞ and P-a.e ω ∈ Ω, the
sequence {φ(tn, θ−tnω, y0(θ−tnω))}+∞

n=1 has a convergent subsequence as tn → +∞,
where y0(θ−tnω) ∈ B(θ−tnω) with ω 	→ B(ω) tempered. To this end, we show that
the Kuratowski’s measure of non-compactness satisfies the following

κ
(
φ(tn, θ−tnω, B(θ−tnω))

)
→ 0, tn → +∞.

Replacing t by tn and ω by θ−tnω in (4.1), it follows that, for any y01(θ−tnω),
y02(θ−tnω) ∈ B(θ−tnω) and

‖φ(tn, θ−tnω, y01(θ−tnω))− φ(tn, θ−tnω, y02(θ−tnω))‖C

≤ eαre(Leαr−α)t‖y01(θ−tnω))− y02(θ−tnω))‖C.

Since ω 	→ B(ω) is tempered, for any ε > 0 and each ω ∈ Ω, there exist tempered
random sets Bi(θ−tnω), i = 1, 2, · · · , m, such that B(θ−tnω) ⊂ ⋃m

i=1 Bi(θ−tnω) and

diam(Bi(θ−tnω)) ≤ κ(B(θ−tnω)) + ε, i = 1, 2, · · · , m.
For any u, v ∈ φ(tn, θ−tnω, Bi(θ−tnω)), there exist u0, v0 ∈ Bi(θ−tnω) such that
u = φ(tn, θ−tnω, u0) and v = φ(tn, θ−tnω, v0). Thus,

‖u− v‖C = ‖φ(tn, θ−tnω, u0) − φ(tn, θ−tnω, v0)‖C

≤ eαre(Leαr−α)tn‖u0 − v0‖C

≤ eαre(Leαr−α)tndiam(Bi(θ−tnω))

≤ eαre(Leαr−α)tnκ(B(θ−tnω)) + ε,

which implies that

diam(φ(tn, θ−tnω, Bi(θ−tnω)) ≤ eαre(Leαr−α)tnκ(B(θ−tnω)) + ε.

Therefore,

κ
(
φ(tn, θ−tnω, Bi(θ−tnω)

)
≤ eαre(Leαr−α)tnκ(B(θ−tnω)) + ε,

and hence

κ
(
φ(tn, θ−tnω, B(θ−tnω)

)
≤ eαre(Leαr−α)tnκ(B(θ−tnω)) + ε.

By the arbitrary of ε, we obtain that

κ
(
φ(tn, θ−tnω, B(θ−tnω)

)
≤ eαre(Leαr−α)tnκ(B(θ−tnω)) → 0, tn → +∞.

As a consequence of Theorem 2.1, Lemmas 4.3 and 4.5, we have already proved
the main result of this paper.
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Theorem 4.1. Suppose that (H1)-(H3) hold. If α > Leαr, the continuous random
dynamical system φ defined in (3.8) possesses a unique random attractor ω 	→ A(ω) ⊂
X , where

(4.2) A(ω) =
⋂
τ≥0

⋃
t≥τ

φ(t, θ−tω,K(θ−tω)), ω ∈ Ω,

with K(ω) given in Lemma 4.3.

Corrollary 4.1. Suppose that (H1)-(H3) hold. If α > Leαr, the continuous ran-
dom dynamical system ψ associated with (1.1) possesses a unique random attractor
ω 	→ A(ω) + z(θ·ω) ⊂ X , where A(ω) is given in (4.2), z(θsω) = σz̃(θsω), s ≤ 0,
with z̃ is given in (3.1)

5. EXAMPLE

As an application of Theorem 4.1, we consider the following age-structured model
with white noise

(5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂tu + ∂au = −μ(a)u(t, a)

+
∫ +∞

0

f(a, b, u(t− r, b))dbds+ δ(a)dW (t), t > 0, a > 0,

u(t, 0) = β

∫ +∞

0

u(t, a)da, t > 0,

u(s, a) = u0(s, a), a > 0

with u(t, ·) ∈ L1(0,+∞), the space of Lebesgue integrable functions with values in
R; μ ∈ L1(0,+∞) with nonnegative values; δ ∈ H1(0,+∞), δ(0) = 0; β ≥ 0 and
W (t) being the white noise. For the information about Eq. (5.1) without the white
noise, we refer the reader to the book [12].

Let
E = R × L1(0,+∞)

with the usual product norm of R × L1(0,+∞). Define A : D(A) ⊂ E → E as
following

(5.2) A

(
0
φ

)
=
( −φ(0)

−φ′ − μφ

)
,

(
0
φ

)
∈ D(A),

where

D(A) = {0}R × {φ ∈ L1(0,+∞) : φ′ ∈ L1(0,+∞), φ(0) = 0}.
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Clearly E0 = D(A) = {0}R × L1(0,+∞) �= E . Denote by C = R × C([−r, 0],
L1(0,+∞)) with the norm∥∥∥( a

φ

)∥∥∥
C

= |a|+ sup
−r≤s≤0

‖φ(s)‖L1,

and define the nonlinear term F : C → E as following

(5.3) F
(( 0

φ

))
=

(
β
∫ +∞
0 φ(0)(a)da∫ +∞

0 f(a, b, φ(−r)(b))db

)
.

Set v(t) =
(

0
u(t, ·)

)
∈ E0, vt =

(
0
ut

)
∈ C and

(
0
ξ

)
= v0 ∈ C where

ξ(s)(a) = u0(s, a), and σ =
(

0
δ

)
∈ D(A), then Eq. (5.1) can be written as

(5.4)

{
dv(t) = Av(t)dt+ F (vt)dt+ σdW (t), t > 0,

v(0) = v0 ∈ C.

Proposition 3. Suppose that there exists a constant μ > 0, such that

(5.5) μ(a) > μ, ∀a ≥ 0.

Then we have
(i) The operator A defined in (5.2) is a Hille-Yosida operator with (−μ,+∞) ⊂

ρ(A) and

‖(λI −A)−1‖L ≤ 1
λ+ μ

, ∀λ > −μ;

(ii) the C0-semigroup T0(t), generated by A0 on X0, satisfies that

‖T0(t)‖L ≤ e−μt, ∀t ≥ 0.

Proof. (i) From (5.2), we know that

(λI −A)
(

0
φ

)
=
(

φ(0)
φ′ + (λ+ μ)φ

)
.

Set y = φ(0) and ψ = φ′ + (λ+ μ)φ. Then

(5.6) φ(a) = e−λa−∫ a
0 μ(s)dsy +

∫ a

0
e−λ(a−s)−∫ a

s μ(τ−s)dτψ(s)ds.
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By (5.5), φ ∈ L1(0,+∞) provided that λ > −μ. Therefore, for any λ > −μ,

(λI −A)−1

(
y
ψ

)
=
(

0
φ

)
if and only if (5.6) holds. A simple calculation shows that

‖(λI −A)−1‖L ≤ 1
λ+ μ

, ∀λ > −μ.

(ii) The C0-semigroup T0(t), generated by A0 on E0, possesses the following form

(5.7) T0(t)
(

0
φ

)
=
(

0
T̃0(t)φ

)
,

where

(5.8) T̃0(t)φ =

{
0, a < t,

φ(a− t)e−
∫ a
a−t μ(τ )dτ , a ≥ t.

Then ∥∥∥T0(t)
(

0
φ

)∥∥∥ = ‖T̃0(t)φ‖L1

=
∫ +∞

t
|φ(a− t)e−

∫ a
a−t μ(τ )dτ |da

=
∫ +∞

0
|φ(a)|e−

∫ a+t
a μ(τ )dτda

≤ e−μt‖φ‖L1,

which implies that ‖T0(t)‖L ≤ e−μt, ∀t ≥ 0.

In order to obtain the existence of random attractor of Eq. (5.1), we need the
following assumptions on f .

(Hf ) There exists a nonnegative function L(·) ∈ L1(0,∞) such that∫ +∞

0
|f(a, b, φ1(s)(b))−f(a, b, φ2(s)(b))|db≤ L(a)‖φ1(s)−φ2(s)‖L1, ∀a ≥ 0.

Then F is globally Lipschitz continuous with Lipschitzian constant β + ‖L‖L1 .

Theorem 5.1. Suppose that (Hf ) and (5.5) hold true with

μ > (β + ‖L‖L1)eμr,

then Eq. (5.1) has a random attractor.
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