TAIWANESE JOURNAL OF MATHEMATICS

Vol. 18, No. 1, pp. 27-37, February 2014

DOI: 10.11650/tjm.18.2014.2747

This paper is available online at http://journal.taiwanmathsoc.org.tw

MEROMORPHIC SOLUTIONS OF DIFFERENCE EQUATION

$$f(z+1) = R \circ f(z)$$

Zhang Jie

Abstract. In this paper, we investigate the solutions of difference equation $f(z+1)=R\circ f(z)$ by utilizing Nevanlinna theory, where R(z) is a rational function. And we also research the quantity of zeroes, poles, fixed points, and Borel exceptional values of the solutions.

1. Introduction and Main Results

In this paper, a meromorphic function always means that it is meromorphic in the whole complex plane \mathbb{C} . We assume that the reader is familiar with the standard notations in the Nevanlinna theory. We use the following standard notations in value distribution theory (see[1, 2, 3, 4]):

$$T(r, f), m(r, f), N(r, f), \overline{N}(r, f), \cdots$$

And we denote any quantity by S(r, f) satisfying

$$S(r, f) = o\{T(r, f)\}, \text{ as } r \to \infty,$$

possibly outside of a set E with finite linear measure, not necessarily the same at each occurrence. We use $\lambda(f)$ and $\lambda(\frac{1}{f})$ to denote the exponents of convergence of zeros and poles of f(z) respectively. We also use $\tau(f)$ to denote the exponent of convergence of fixed points of f(z), which is defined as

$$\tau(f) = \overline{\lim}_{r \to \infty} \frac{\log N(r, \frac{1}{f-z})}{\log r}.$$

Yanagihara [5] proved the following theorem with purpose to investigate the solutions of non-linear difference equation y(x+1) = R(x, y(x)).

Received December 14, 2012, accepted June 21, 2013.

Communicated by Der-Chen Chang.

2010 Mathematics Subject Classification: 30D35, 34M10.

Key words and phrases: Uniqueness, Difference equation, Order.

The research was supported by the Fundamental Research Funds for the Central Universities (No. 2011QNA25).

Theorem A. [5]. Any nontrivial meromorphic solution y(z) of equation

$$f(z+1) = R \circ f(z)$$

is transcendental unless $\deg_R = 1$.

The author also said that the equation y(x+1) = R(x,y(x)) may have rational solutions. E.g.,

$$y(x+1) = \frac{(x^4+1)(-2y^3(x) + y(x) + 2x^6 + 2x - 1)}{y^2(x) + 1}$$

and

$$y(x+1) = \frac{(y^3(x) + 2x^5 + x^4)}{x^4}$$

have the solution $y(x) = x^2$. This makes natural questions to ask that what can be said to the solutions of equation $f(z+1) = R \circ f(z)$ provided $\deg_R = 1$, and can any solution be $y(x) = x^2$ as in the examples above too? In this paper, we give a negative answer to the questions and obtain the following theorem.

Theorem 1. Let R(z) be a non-constant rational function. For the following difference equation

$$(1) f(z+1) = R \circ f(z),$$

- (1) suppose it admits a non-constant rational solution f(z), then both R(z) and f(z)are fractional linear functions;
- (2) suppose it admits a transcendental meromorphic function f(z) of finite order $\sigma(f)$, then R(z) is a fractional linear function, and it is denoted by

$$R(z) = \frac{az+b}{cz+d},$$

- where $ad-bc \neq 0$, furthermore: (2.1) if $bc \neq 0$, then $\lambda(f) = \lambda(\frac{1}{f}) = \tau(f) = \sigma(f)$; (2.2) if $R \neq id$ and $\sigma(f) > 0$, then
- (2.2.1) f(z) has at most one finite Borel exceptional value provided $(d-a)^2+4b=0$ when $c \neq 0$;
- (2.2.2) if f(z) has Borel exceptional value ∞ , then f(z) has at most one finite Borel exceptional value $\frac{b}{1-a}$.

Example 1. Equation $f(z+1)=\frac{1}{2-z}\circ f(z)$ admits a fractional linear solution $\frac{z-1}{z}$.

Example 1 shows that the fractional linear solution does exist in (1) of Theorem 1.

Example 2. Equation $f(z+1) = (2-z) \circ f(z)$ admits a solution $e^{\pi iz} + 1$, which satisfies $\lambda(\frac{1}{f}) < \sigma(f)$.

Example 3. Equation $f(z+1) = \frac{-z}{z+1} \circ f(z)$ admits a solution $\frac{-2e^{\pi iz}}{e^{\pi iz}-1}$, which satisfies $\lambda(f) < \sigma(f)$ and has two finite Borel exceptional values 0, -2.

Examples 2-3 show that the condition $bc \neq 0$ is necessary in (2.1) of Theorem 1. Example 3 also shows that the conclusion may be not valid if $(d-a)^2 + 4b \neq 0$ when $c \neq 0$ in (2.2.1) of Theorem 1. And Example 2 shows the case that f(z) has Borel exceptional value ∞ and $\frac{b}{1-a}$ may happen in (2.2.2) of Theorem 1.

In addition, comparing with many papers [6, 7] researched complex difference Riccati equation, there is only few paper [8] dealing with the properties of solutions of complex difference Riccati equation, thus we put our effort on it. Take paper [8] for example, the authors obtained the following theorem.

Theorem B. [8]. Let $\delta = \pm 1$ be a constant and $A(z) = \frac{m(z)}{n(z)}$ be an irreducible non-constant rational function, where m(z) and n(z) are polynomials with deg m(z)m and deg n(z) = n. If f(z) is a transcendental finite order meromorphic solution of

$$f(z+1) = \frac{A(z) + \delta f(z)}{\delta - f(z)},$$

then,

(i) if $\sigma(f) > 0$, then f has at most one Borel exceptional value;

(ii)
$$\lambda(\frac{1}{f}) = \lambda(f) = \sigma(f)$$
;

(iii) if $A(z) \not\equiv -z^2 - z + 1$, then the exponent of convergence of fixed points of f satisfies $\tau(f) = \sigma(f)$.

In this paper, we consider the more general case and obtain the following theorem.

Theorem 2. Let b(z), c(z) be two non-constant rational functions. Suppose the following difference equation

(2)
$$f(z+1) = \frac{af(z) + b(z)}{c(z)f(z) + d}$$

admits a transcendental meromorphic function f(z) of finite order, then

(i)
$$\lambda(f) = \lambda(\frac{1}{f}) = \sigma(f)$$
:

(ii)
$$\tau(f) = \sigma(f)$$
 provided $(zc(z) + d)(z+1) - az - b(z) \not\equiv 0$.

(i) $\lambda(f) = \lambda(\frac{1}{f}) = \sigma(f)$; (ii) $\tau(f) = \sigma(f)$ provided $(zc(z) + d)(z + 1) - az - b(z) \not\equiv 0$. Furthermore, if $\frac{b(z)}{c(z)}$ is not any constant and $\sigma(f) > 0$, then f(z) has at most one Borel exceptional value.

2. Some Lemmas

To prove our results, we need some lemmas as follows.

Lemma 1. (see [3]). Let f(z) be a non-constant meromorphic function in the complex plane and

$$R(f) = \frac{p(f)}{q(f)},$$

where $p(f) = \sum_{k=0}^{p} a_k f^k$ and $q(f) = \sum_{j=0}^{q} b_j f^j$ are two mutually prime polynomials in f(z). If the coefficients a_k, b_j are small functions of f(z) and $a_k(z) \not\equiv 0, b_j(z) \not\equiv 0$, then

$$T(r, R(f)) = \max\{p, q\}T(r, f) + S(r, f).$$

Lemma 2. (see [9]). Let $c_1, \ldots c_n$ be non-zero constants and suppose that f(z) is a non-rational meromorphic solution of a difference equation of the form

(3)
$$\Pi_{i=1}^n f(z+c_i) = \frac{a_0(z) + a_1(z)f(z) + \dots + a_p(z)f^p(z)}{b_0(z) + b_1(z)f(z) + \dots + b_t(z)f^t(z)}$$

with meromorphic coefficients $a_i(z), b_j(z)$ of growth S(r, f) such that $a_p(z), b_t(z) \not\equiv 0$. If

$$\max{\{\lambda(f),\lambda(\frac{1}{f})\}} < \sigma(f),$$

then equation (3) is form of

$$\Pi_{i=1}^{n} f(z+c_i) = c(z) f^k(z),$$

where c(z) is meromorphic, T(r,c) = S(r,f) and $k \in \mathbb{Z}$.

Lemma 3. (see [10]). Let w(z) be a transcendental meromorphic solution of finite order of difference equation

$$P(z, w) = 0,$$

where P(z, w) is a difference polynomial in w(z). If $P(z, a) \not\equiv 0$ for a meromorphic function $a \in S(r, w)$, then

$$m(r, \frac{1}{w-a}) = S(r, w).$$

Lemma 4. (see [10]). Let f(z) be a transcendental meromorphic solution of finite order ρ of a difference equation of the form

$$H(z, f)P(z, f) = Q(z, f),$$

where H(z,f), P(z,f), Q(z,f) are difference polynomials in f(z) such that the total degree of H(z,f) in f(z) and its shifts is n and that the corresponding total degree of Q(z,f) is at most n. If H(z,f) just contains one term of maximal total degree, then for any $\varepsilon > 0$, holds

$$m(r, P(z, f)) = O(r^{\rho - 1 + \varepsilon}) + S(r, f)$$

possible outside of an exceptional set of finite logarithmic measure.

Lemma 5. (see [11]). Let f(z) be a meromorphic function with finite order σ and η be a nonzero complex number, then for each $\varepsilon > 0$, we have

$$T(r, f(z+\eta)) = T(r, f) + O(r^{\sigma - 1 + \varepsilon}) + O(\log r).$$

3. The Proofs

3.1. Proof of Theorem 1.

(1) Suppose Equation (1) admits a non-constant rational solution f(z). Then, by Lemma 1, we obtain

$$T(r,f(z+1)) = \deg_f \log r + O(1) = T(r,R \circ f(z)) = \deg_R \deg_f \log r + O(1).$$

Thus we get $\deg_R \leq 1$, and then R(z) is a fractional linear function. We divide the proof into two distinguish cases as follows.

Case 1.1. c=0, we assume d=1 without loss of generality, then Equation (1) becomes

$$(4) f(z+1) = af(z) + b.$$

We suppose that f(z) has a pole z_0 , then by Equation (4), we obtain that $z_0 + 1$, $z_0 + 2$, \cdots are also poles, which means f(z) is transcendental. Then we obtain a contradiction. Thus f(z) is a polynomial. Noting the following fact that

$$a = \frac{f(z+1) - b}{f(z)} \rightarrow 1$$
, as $z \rightarrow \infty$,

we obtain a = 1, and then Equation (1) becomes

$$f(z+1) = f(z) + b$$
, i.e., $f'(z+1) = f'(z)$.

Thus f'(z) is a constant otherwise it is a non-constant period function, i.e., it is a transcendental meromorphic function, which is a contradiction that f is a non-constant rational solution. So we obtain that both f(z) and R are linear functions.

Case 1.2. $c \neq 0$, we assume c = 1 without loss of generality, then Equation (1) becomes

(5)
$$f(z+1) - a = \frac{b - ad}{f(z) + d}.$$

Let A=b-ad, $(\neq 0)$, $f(z)=\frac{m(z)}{n(z)}$ and $m=\deg_{m(z)}, n=\deg_{n(z)}$, where m(z), n(z) are two mutually prime polynomials. If m>n, then Equation (5) implies

$$o(1) = \frac{b - ad}{f(z) + d} = f(z + 1) - a \to \infty, \text{ as } z \to \infty,$$

which is impossible. Thus $m \le n$. Substituting $f(z) = \frac{m(z)}{n(z)}$ into Equation (5), we obtain

(6)
$$(m(z+1) - an(z+1))(m(z) + dn(z)) = An(z)n(z+1).$$

Since m(z), n(z) are two mutually prime polynomials, we obtain that m(z)+dn(z), n(z) are two mutually prime polynomials. In the similar way, we obtain that m(z+1), n(z+1) are two mutually prime polynomials, and then m(z+1)-an(z+1), n(z+1) are two mutually prime polynomials. Thus by Equation (6), we obtain

$$n(z)|m(z+1) - an(z+1)|$$
 and $n(z+1)|m(z) + dn(z)$.

Noting $m \leq n$, then \exists a constant C such that

(7)
$$m(z+1) - an(z+1) = Cn(z)$$
 and $C(m(z) + dn(z)) = An(z+1)$.

It is obvious that $C \neq 0$. By eliminating m(z) in Equation (7), we obtain that

(8)
$$C^{2}n(z) + (aC + Cd)n(z+1) = An(z+2).$$

Rewriting Equation (8) as the following form

$$C^2 + (aC + Cd) \leftarrow C^2 + \frac{(aC + Cd)n(z+1)}{n(z)} = \frac{An(z+2)}{n(z)} \to A, \text{ as } z \to \infty,$$

we obtain $A = C^2 + aC + Cd$. Then Equation (8) becomes

(9)
$$C^{2}(n(z+2) - n(z)) + (aC + Cd)(n(z+2) - n(z+1)) = 0.$$

Set g(z) = n(z+1) - n(z), then Equation (9) becomes

(10)
$$C^{2}(g(z+1)+g(z))+(aC+Cd)g(z+1)=0.$$

From Equation (10), we obtain $2C^2 + (aC + Cd) = 0$ via a similar method. Thus Equation (10) becomes g(z+1) = g(z), then g(z) = n(z+1) - n(z) is a constant, i.e., n(z) is a linear function. Noting $m \le n$ once again, we obtain that f(z) is a fractional linear function.

(2) Suppose Equation (1) admits a transcendental meromorphic function f(z) of finite order. Then, by Lemma 5, we obtain that

$$T(r,f(z+1)) = T(r,f) + O(r^{\sigma-1+\varepsilon}) + O(\log r) = \deg_R T(r,f) + S(r,f).$$

Thus we get $\deg_R \leq 1$, then R(z) is a fractional linear function.

(2.1) We assume c=1 without loss of generality, and rewrite Equation (1) as the following form

(11)
$$f(z)f(z+1) = af(z) + b - df(z+1).$$

By Equation (11) and Lemma 4, we obtain

$$m(r, f) = S(r, f).$$

Thus

$$N(r, f) = T(r, f) + S(r, f),$$

and then $\lambda(\frac{1}{f}) = \sigma(f)$. Noting $b \neq 0$, by Equation (11) and Lemma 3, we obtain

$$m(r, \frac{1}{f}) = S(r, f).$$

Thus

$$N(r, \frac{1}{f}) = T(r, f) + S(r, f),$$

and then $\lambda(f)=\sigma(f)$. Setting f(z)=y(z)+z and substituting it into Equation (11), we obtain

$$T(r, f) = T(r, y) + O(\log r)$$

and

(12)
$$P(z,y): = y(z)y(z+1) + y(z)(z+1-a) + y(z+1)(z+d) + (z+1)(z+d) - az - b = 0.$$

Since $P(z,0)=(z+1)(z+d)-az-b\not\equiv 0$, from Equation (12) and Lemma 3, we obtain

$$m(r, \frac{1}{y}) = S(r, y).$$

Thus

$$N(r, \frac{1}{y}) = T(r, y) + S(r, y) = T(r, f) + S(r, f),$$

and then $\tau(f) = \sigma(f)$.

(2.2.1.) Suppose that f(z) has two finite Borel exception values $A, B, (A \neq B)$. Set

(13)
$$g(z) = \frac{f(z) - A}{f(z) - B}.$$

Then T(r, f) = T(r, g) + O(1) and

$$\lambda(g) = \lambda(f - A) < \sigma(g), \quad \lambda(\frac{1}{g}) = \lambda(f - B) < \sigma(g).$$

From Equation (13), we get

(14)
$$f(z) = \frac{A - Bg(z)}{1 - g(z)}.$$

We consider two cases as follows.

Case 2.2.1.1. c=0, we assume d=1 without loss of generality again. Substituting Equation (14) into Equation (4), we obtain

(15)
$$g(z+1) = \frac{A - aA - b + (aB - A + b)g(z)}{B - aA - b + (aB + b - B)g(z)}.$$

It is obvious that B-aA-b, aB+b-B can not be zero synchronously. From Lemma 2, we obtain

(16)
$$g(z+1) = c(z)g^k(z),$$

where c(z) is meromorphic, T(r,c) = S(r,g) and $k \in \mathbb{Z}$. From Lemma 5, we obtain k=1. And substituting g(z+1)=c(z)g(z) into Equation (15), we get

$$c(z)g^{2}(aB + b - B) = A - aA - b + (aB - A + b - c(z)(B - aA - b))g.$$

Thus we get

$$aB + b - B = A - aA - b = 0.$$

It implies that $A=B=\frac{b}{1-a}$ or R=id, which is a contradiction. Case 2.2.1.2. $c\neq 0$, we assume c=1. Substituting Equation(14) into Equation (5) and using the similar method in Case 2.2.1.1, we get

$$g(z+1) = \frac{A^2 + Ad - Aa - b - (AB + Ad - Ba - b)g(z)}{AB + Bd - Aa - b - (B^2 + Bd - Ba - b)g(z)}$$

and

(17)
$$B^2 + Bd - Ba - b = A^2 + Ad - Aa - b = 0.$$

But Equation(17) implies that A = B provided $(d - a)^2 + 4b = 0$, which is a contrac-

(2.2.2.) For the case, f(z) has Borel exceptional value ∞ and one finite Borel exceptional value A, we set g(z) = f(z) - A, then T(r,g) = T(r,f) + O(1) and $\lambda(g) < \sigma(g), \lambda(\frac{1}{g}) < \sigma(g)$. We consider two following cases.

Case 2.2.2.1. $c \neq 0$, we assume c = 1. Using the similar method in Case 2.2.1.1, we get

$$g(z+1) = \frac{Aa - Ad - A^2 + b + (a-A)g(z)}{A + d + g(z)} = c(z)g(z),$$

where c(z) is meromorphic such that T(r,c) = S(r,g). It is impossible obviously. Case 2.2.2.2. c = 0, we assume d = 1. Using the similar method in Case 2.2.1.1, we get

$$q(z + 1) = aq(z) + Aa - A + b = c(z)q(z),$$

where c(z) is meromorphic such that T(r,c) = S(r,g). Thus Aa - A + b = 0, which means $A = \frac{b}{1-a}$ provided $R \neq id$. The proof of Theorem 1 is completed.

3.2. Proof of Theorem 2.

We rewrite Equation (2) as the following form

(18)
$$c(z)f(z)f(z+1) = af(z) + b(z) - df(z+1).$$

From Equation (18) and Lemma 4, noting $c(z) \not\equiv 0$, we obtain

$$m(r, f) = S(r, f).$$

Thus

$$N(r, f) = T(r, f) + S(r, f),$$

and then $\lambda(\frac{1}{f}) = \sigma(f)$. Noting $b(z) \not\equiv 0$, From Equation (18) and Lemma 3, we obtain

$$m(r, \frac{1}{f}) = S(r, f).$$

Thus

$$N(r, \frac{1}{f}) = T(r, f) + S(r, f),$$

and then $\lambda(\frac{1}{f}) = \sigma(f)$. Setting f(z) = y(z) + z and substituting it into Equation (18), we obtain

$$T(r, f) = T(r, y) + O(\log r)$$

and

(19)
$$P(z,y) := c(z)y(z)y(z+1) + y(z)(zc(z)+c(z)-a) + y(z+1)(zc(z)+d) + (zc(z)+d)(z+1)-az-b(z) = 0.$$

Since $P(z,0)=(zc(z)+d)(z+1)-az-b(z)\not\equiv 0$, From Equation (19) and Lemma 3, we obtain

$$m(r, \frac{1}{y}) = S(r, y).$$

Thus

$$N(r, \frac{1}{y}) = T(r, y) + S(r, y) = T(r, f) + S(r, f),$$

and then $\tau(f) = \sigma(f)$. Suppose f(z) has two finite Borel exception values $A, B, (A \neq B)$. Set

$$g(z) = \frac{f(z) - A}{f(z) - B}$$
, i.e., $f(z) = \frac{A - Bg(z)}{1 - g(z)}$,

and substitute it into Equation (2), we obtain

$$\lambda(g) = \lambda(f(z) - A) < \sigma(g), \ \lambda(\frac{1}{g}) = \lambda(f(z) - B) < \sigma(g)$$

and

(20)
$$g(z+1) = \frac{A^2c(z) + Ad - Aa - b(z) - (ABc(z) + Ad - Ba - b(z))g(z)}{ABc(z) + Bd - Aa - b(z) - (B^2c(z) + Bd - Ba - b(z))g(z)}$$

From Equation (20) and Lemma 2, we obtain $B^2c(z)-b(z)=0$, $A^2c(z)-b(z)=0$ in the similar way, which contradict our condition that $\frac{b(z)}{c(z)}$ is not any constant. If f(z) has one finite Borel exception value A and ∞ , then set g(z)=f(z)-A and substitute it into Equation (2), we obtain

(21)
$$g(z+1) = \frac{Aa + b(z) - A^2c(z) - Ad + (a - Ac(z))g(z)}{Ac(z) + d + c(z)g(z)}.$$

From Equation (21) and Lemma 2, we obtain c(z) = 0 in the similar way, which is also a contradiction. The proof of Theorem 2 is completed.

ACKNOWLEDGMENT

The author would like to thank the referee for his/her comments and suggestions.

REFERENCES

- 1. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
- 2. I. Laine, *Nevanlinna Theory and Complex Differential Equations*, Studies in Math, de Gruyter, Berlin, 1993, p. 15.
- 3. C. C. Yang and H. X. Yi, *Uniqueness Theory of Meromorphic Functions*, Science Press, Beijing, Second Printed in 2006.
- 4. L. Yang, Value Distribution Theory, Springer-Verlag & Science Press, Berlin, 1993.
- 5. Niro Yanagihara, Meromorphic solutions of some difference equations, *Funkcialaj. Ekvacioj.*, **23** (1980), 309-326.
- 6. J. H. Zheng, A note on the Riccati equation, J. Math. Anal. Appl, 190 (1995), 285-193.
- 7. Z. X. Chen, On the hyper-order of solutions of some second order linear differential equations, *Acta Mathematica Sinica*, English series, **18(1)** (2002), 79-88.
- 8. Z. X. Chen and K. H. Shon, Some Results on Difference Riccati Equations, *Acta Mathematica Sinica*, English series, **27(6)** (2011), 1091-1100.
- 9. J. Heittokangas, R. Korhonen and I. Laine, Complex difference equation of Malmquist type, *Comput. Methods Funct. Theory*, **1** (2001), 27-39.

- 10. I. Laine and C. C. Yang, Clunie theorem for difference and *q*-difference polynomials, *J. London Math. Soc.*, **76**(3) (2007), 556-566.
- 11. Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, *Ramanujian J.*, **16** (2008), 105-129.

Zhang Jie College of Science China University of Mining and Technology Xuzhou 221116 P. R. China E-mail:zhangjie1981@cumt.edu.cn