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CONNECTED GRAPHS WITH A LARGE NUMBER
OF INDEPENDENT SETS

Min-Jen Jou

Abstract. For a simple undirected graph G = (V (G), E(G)), a subset I of V (G)
is said to be an independent set of G if any two vertices in I are not adjacent
in G. An empty set is also an independent set in G. The set of all independent
sets of a graph G is denoted by I(G) and its cardinality by i(G) (known as the
Merrifield-Simmons index in mathematical chemistry). Let h(n, x) be the x-th
largest number of independent sets among all connected n-vertex graphs. In this
paper, we determine the numbers h(n, x) for 1 ≤ x ≤ �n

2
�2−3 ·�n

2
�+3. Besides,

we also characterize the connected n-vertex graphs achieving these values.

1. INTRODUCTION AND PRELIMINARY

Given a graph G = (V (G), E(G)), a subset S ⊆ V (G) is called independent
set if no two vertices of S are adjacent in G. An empty set is also an independent
set in G. The set of all independent sets of a graph G is denoted by I(G) and its
cardinality by i(G). For a vertex v ∈ V (G), let I−v(G) = {S ∈ I(G) : v �∈ S}
and I+v(G) = {S ∈ I(G) : v ∈ S}. Their cardinalities are denoted by i−v(G) and
i+v(G), respectively. Note that i(G) = i−v(G)+ i+v(G). The study of the number of
independent sets in a graph has a long history. This number is also called theMerrifield-
Simmons index. The Merrifield-Simmons index was introduced by Merrifield and
Simmons [8] in 1989. In [4] Gutman first named its index the Merrifield-Simmons
index. This index is one of the most popular topological indices in mathematical
chemistry, there is a correlation between this index and boiling points. There are
researchers developed a topological approach to structural chemistry (see [5, 8, 11]).
Enumerating independent sets in a graph is well-studied problem arising in many

fields. Much recent research has focused on the problem of maximizing the number
of in a special graph with certain restrictions (see [1, 3]). Several papers deal with
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the characterization of the extremal graphs with respect to this number in some special
graphs. The problem was extensively studied for various classes of graphs, including
trees ([6, 13]), unicyclic graphs ([1, 9]), regular bipartite graphs [2] and (n, n + 2)-
graphs [5]. It is known [10] that the star K1,n−1 has the largest number of independent
sets and the path Pn has the smallest number of independent sets among all trees with
n vertices. The problems of determining the second largest and the second smallest
values of independent sets for a tree T with n vertices and those graphs achieving
these values were solved in [6] and [7], respectively. For 1 ≤ x, let h(n, x) be the
x-th largest number of independent sets among all connected n-vertex graphs. In this
paper, we determine the numbers h(n, x) for 1 ≤ x ≤ �n

2 �2 − 3 · �n
2 �+ 3. Besides, we

also characterize the connected n-vertex graphs achieving these values.
In order to state our results, we introduce some notation and terminology. For other

undefined terms we refer to [12]. We denote by G = (V (G), E(G)) a graph of order
n = |G|. The graph G is called null if |G| = 0. A maximal connected subgraph of
G is called a component of G. For a subset X ⊆ V (G), we define the neighborhood
NG(X) of X in G to be the set of all vertices adjacent to vertices in X and the closed
neighborhood NG[X ] = NG(X) ∪ X . For a vertex x ∈ V (G), let degG(x) denote its
degree. A leaf is a vertex of degree 1. For a subset A ⊆ V (G), the deletion of A from
G is the graph G − A obtained from G by removing all vertices in A and all edges
incident to these vertices. If A = {v}, we write G−v instead of G−{v}. For a subset
B ⊆ E(G), the edge-deletion of B from G is the graph G − B obtained from G by
removing all edges in B. If B = {e}, we write G − e instead of G − {e}. If a graph
G is isomorphic to another graph H , we denote G = H . nG is the short notation for
the union of n copies of disjoint graphs isomorphic to G. For n ≥ 1, Pn a path with
n vertices and K1,n−1 a star with n vertices. Note that K1,0 = P1. The following
useful lemmas and theorems which are needed in this paper.

Lemma 1.1. ([6, 7]) Given a graph G = (V (G), E(G)) and v ∈ V (G), then
i(G) = i−v(G) + i+v(G) = i(G − v) + i(G− N [v]).

Lemma 1.2. ([6]) If H is an edge-deletion of G, then i(G) < i(H).

Lemma 1.3. ([6]) If G is the union of G1, G2, . . . , Gk, then i(G) = Πk
j=1i(Gj).

Lemma 1.4. ([6, 7]) For an integer n ≥ 2, i(Pn) = i(Pn−1) + i(Pn−2), where
i(P0) = 1 and i(P1) = 2.

Lemma 1.5. ([6]) For an integer n ≥ 5, i(Cn) = i(Cn−1) + i(Cn−2), where
i(C3) = 4 and i(C4) = 7.

Theorem 1.6. ([6, 7]) If T is a tree of order n ≥ 1, then i(T ) ≤ 2n−1 + 1.
Furthermore, the equality holds if and only if T = K1,n−1.
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2. n-VERTEX GRAPHS

Let g(n, x) be the x-th largest number of independent sets among all n-vertex graphs
and G(n, x) be the n-vertex graphs achieving the number g(n, x). In this section, we
determine the numbers g(n, x) for 1 ≤ x ≤ n. Moreover, we also characterize the
n-vertex graphs achieving these values.

Lemma 2.1. Let G be a n-vertex graph.

(i) If G has at least one cycle, then i(G) ≤ 2n−1.
(ii) If G has a component which is not a star, then i(G) ≤ 2n−1.
(iii) If G have at least two nontrivial components such that G �= 2P2 ∪ (n − 4)P1,

then i(G) < 2n−1.

Proof. (i) If G has a cycle Ck , where k ≥ 3, then Ck ∪ (n − k)P1 is an edge-
deletion of G. By Lemma 1.5 and an induction, i(Ck) ≤ 2k−1. Then, by Lemmas 1.2
and 1.3, i(G) ≤ i(Ck ∪ (n−k)P1) ≤ 2k−12n−k = 2n−1. (ii) If G has a component H
which is not a star, then C3∪ (n−3)P1 or P4∪ (n−4)P1 is an edge-deletion of G. By
Lemmas 1.2 and 1.3, i(G) ≤ min{i(C3∪(n−3)P1), i(P4∪(n−4)P1)} = 2n−1, since
i(C3) = 4 and i(P4) = 8. (iii) If G have at least three nontrivial components, then
3P2∪(n−6)P1 is an edge-deletion of G. By Lemma 1.2, i(G) ≤ i(3P2∪(n−6)P1) =
27 · 2n−6 < 2n−1. Assume that G have exactly two nontrivial components. Note that
G �= 2P2 ∪ (n− 4)P1, then P3 ∪P2 ∪ (n− 5)P1 is an edge-deletion of G. By Lemma
1.2 , i(G) ≤ i(P3 ∪ P2 ∪ (n − 5)P1) = 15 · 2n−5 < 2n−1.

Note that i(2P2 ∪ (n − 4)P1) = 9 · 2n−4 > 2n−1 and i(K1,x−1 ∪ (n − x)P1) =
2n−1 + 2n−x > 2n−1, where 1 ≤ x ≤ n. If i(G) ≥ 2n−1 + 1, where |G| = n, by
Lemma 2.1, then G = 2P2 ∪ (n − 4)P1 or K1,x−1 ∪ (n − x)P1.

Theorem 2.2. For 1 ≤ x ≤ n, g(n, x) = (2x−1 + 1)2n−x = 2n−1 + 2n−x and

G(n, x) =

{
K1,3 ∪ (n − 4)P1 or 2P2 ∪ (n − 4)P1, if x = 4 ;

K1,x−1 ∪ (n − x)P1, if x �= 4.

3. CONNECTED n-VERTEX GRAPHS

Let h(n, x) be the x-th largest number of independent sets among all connected
n-vertex graphs and H(n, x) be the connected n-vertex graphs achieving the number
h(n, x). In this section, we determine the numbers h(n, x) for 1 ≤ x ≤ �n

2 �2 − 3 ·
�n

2 �+3. Moreover, we also characterize the connected n-vertex graphs achieving these
values. For 1 ≤ k ≤ �n

2 �−2, let Ik
n be the interval [2n−2 +2n−k−2 +1, 2n−2+2n−k−1]

and let k
n be the collection of all connected n-vertex graphs H having i(H) ∈ Ik

n .

Theorem 3.1. For n ≥ 1, h(n, 1) = 2n−1 + 1 and H(n, 1) = K1,n−1.



2014 Min-Jen Jou

Proof. Suppose G is a connected n-vertex graph such that i(G) as large as
possible, by Lemma 1.2, H(n, 1) contains just a tree. By Theorem 1.6, H(n, 1) =
K1,n−1 and h(n, 1) = 2n−1 + 1.

For 2 ≤ x ≤ �n
2 �2 − 3 · �n

2 � + 3, we characterize the graphs H(n, x) in Theorem
3.2. For this purpose, define graphs H1(n, k, a) and H2(n, k, a), see Figure 1. For
0 ≤ a ≤ k ≤ n − 2, the graphs H1(n, k, a) is the n-vertex graph containing an edge
uv such that u and v have a common neighbors of degree 2, u has k − a private
neighbors of degree 1 and v has n − k − 2 private neighbors of degree 1. The graph
H2(n, k, a) = H1(n, k, a)− uv.

Fig. 1. The graphs H1(n, k, a) and H2(n, k, a).

Theorem 3.2. Let n and x be two nonnegative integers such that 2 ≤ x ≤
�n

2 �2 − 3 · �n
2 � + 3 . Suppose that k = 
−1+

√
4x−3

2 � and t = x − (k2 − k + 1), then

h(n, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2n−2 + 2n−k−2 + 2(k− t−1
2

), if 1 ≤ t ≤ 2k − 1 is odd ;

2n−2 + 2n−k−2 + 2(k− t
2
) + 1, if 2 ≤ t ≤ 2k − 2 is even ;

2n−2 + 2n−k−2 + 1, if t = 2k;

and

H(n, x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H1(n, k, t−1
2 ), if 1 ≤ t ≤ 2k − 3 is odd ;

H2(n, k, t
2 ), if 2 ≤ t ≤ 2k − 2 is even ;

H1(n, k, k− 1) or H2(n, k, k), if t = 2k − 1 ;

H1(n, k, k), if t = 2k.

The graphs in Figure 2 are the exceptional cases of H(n, 10), H(n, 12) and H(n, 13).

We prove the Theorem 3.2 by establishing the following lemmas.
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Fig. 2. The exceptional cases of H(n, 10), H(n, 12) and H(n, 13).

Lemma 3.3. For 1 ≤ k ≤ �n
2 � − 2, if H ∈ Hk

n and v is a vertex of maximum
degree in H such that H − v �= 2P2 ∪ (n − 5)P1, then we have the following results.
(i) H − v = G(n − 1, k + 1).
(ii) H − N [v] = sP1 (0 ≤ s ≤ k) or K1,t (1 ≤ t ≤ k − 1).
(iii) i(H − N [v]) = 2k, 2k−1 + 1, 2k−1, 2k−2 + 1, . . . , 21 + 1, 21 = 20 + 1, 1.

Proof. Since i(H) ≤ 2n−2 + 2n−k−1 and i(H − N [v]) ≥ 1, by Lemma
1.1, i(H − v) = i(H) − i(H − N [v]) ≤ 2n−2 + 2n−k−1 − 1. By Theorem 2.2,
H − v = G(n − 1, x), where x ≥ k + 1. Since H − v �= 2P2 ∪ (n − 5)P1, H − v =
G(n− 1, x) = K1,x−1 ∪ (n − 1 − x)P1 for some x ≥ k + 1.

Claim. x = k + 1. Assume that x ≥ k + 2, then n − x ≤ n − k − 2. Let
|NH(v) ∩ L(K1,x−1)| = a, where L(K1,x−1) is the set of leaves in K1,x−1. So
i(H−NH [v]) ≤ 2x−1−a+1. Since v is a vertex of maximum degree in H , this implies
that x− 1 ≤ n− 1−x + a. Thus x− 1− a ≤ n− 1−x. Thus 2n−2 + 2n−k−2 + 1 ≤
i(H) = i(H − v) + i(H − NH [v]) ≤ (2x−1 + 1) · 2n−1−x + 2x−1−a + 1 = 2n−2 +
2n−1−x+2x−1−a +1 ≤ 2n−2+2 ·2n−1−x +1 = 2n−2 +2n−x +1 ≤ 2n−2+2n−k−2 +1,
the equalities hold. Thus we got three equalities, x = k + 2, x − 1 − a = n − 1 − x

and i(H −NH [v]) = 2x−1−a + 1. Since i(H −NH [v]) = 2x−1−a + 1, this means that
u, the center of K1,x−1, is not adjacent to v in H . By the connection property of H ,
so a ≥ 1. Thus n − 1 − (k + 2) = n − 1 − x = x − 1 − a ≤ (k + 2) − 1 − 1, then
n − 3 ≤ 2k ≤ 2 · (�n

2 � − 2) ≤ n − 4. This is a contradiction, hence x = k + 1.
Then H − v = G(n − 1, k + 1) = K1,k ∪ (n − k − 2)P1 and H − N [v] = sP1

(0 ≤ s ≤ k) or K1,t (1 ≤ t ≤ k − 1). So i(H − N [v]) = 2k, 2k−1 + 1, 2k−1, 2k−2 +
1, . . . , 21 + 1, 21 = 20 + 1, 1.

Suppose H − v = 2P2 ∪ (n − 5)P1, then k = 3 and i(H − NH [v]) = 1, 2 or 4.
Hence H ∈ H3

n, so H ∈ H(n, 10), H(n, 12) or H(n, 13). The graphs in Figure 2
have the tenth, eleventh and thirteenth largest numbers of independent sets among all
connected n-vertex graphs.

Lemma 3.4. For k ≥ 1, let c(n, k) = |{i(H); H ∈ Hk
n, H−v �= 2P2∪(n−5)P1}|.

Then |Hk
n| = 2k + 1 and c(n, k) = 2k.

Proof. By Lemma 3.3, we obtain that |Hk
n| = 2k + 1. Note that i(H − N [v]) =

i(P1) = i(K1,0) = 2. Then i(H−N [v]) = 2k, 2k−1+1, 2k−1, 2k−2+1, . . . , 21+1, 21 =
20 + 1, 1. Hence c(n, k) = 2k.
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Lemma 3.5. Let n and x be two nonnegative integers such that x ≤ �n
2 �2 − 3 ·

�n
2 � + 3. Suppose that H(n, x) ∈ Hk

n, then k = 
−1+
√

4x−3
2 �.

Proof. By Lemma 3.4, | ∪k−1
j=1 Hj

n| = Σk−1
j=1c(n, j) = k2 − k and | ∪k

j=1 Hj
n| =

Σk
j=1c(n, j) = k2 + k. Note that K1,n−1 is the connected n-vertex graph having the
largest number of independent sets. If H(n, x) ∈ Hk

n, then k2−k+1 < x ≤ k2+k+1.
Hence k = 
−1+

√
4x−3

2 �.
Theorem 3.2 then follows from Lemmas 3.3 to 3.5.
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