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NO DICE THEOREM ON SYMMETRIC CONES

Sangho Kum*, Hosoo Lee and Yongdo Lim

Abstract. The monotonicity of the least squares mean on the Riemannian man-
ifold of positive definite matrices, conjectured by Bhatia and Holbrook and one
of key axiomatic properties of matrix geometric means, was recently established
based on the Strong Law of Large Number [14, 4]. A natural question concerned
with the S.L.L.N is so called the no dice conjecture. It is a problem to make a
construction of deterministic sequences converging to the least squares mean with-
out any probabilistic arguments. Very recently, Holbrook [7] gave an affirmative
answer to the conjecture in the space of positive definite matrices. In this paper,
inspired by the work of Holbrook [7] and the fact that the convex cone of positive
definite matrices is a typical example of a symmetric cone (self-dual homogeneous
convex cone), we establish the no dice theorem on general symmetric cones.

1. INTRODUCTION

The open convex cone P = Pm in the Euclidean space of m × m Hermitian
matrices is a Cartan-Hadamard Riemannian manifold, a simply connected complete
Riemannian manifold with non-positive sectional curvature (the canonical 2-tensor is
non-negative), equipped with the trace Riemannian metric ds = ‖A−1/2dA A−1/2‖2 =(
tr(A−1dA)2

)1/2
, where ‖ · ‖2 denotes the Frobenius norm. The Riemannian metric

distance between A and B is given by δ(A, B) = ‖ logA−1/2BA−1/2‖2 and the curve
t �→ A#tB is the unique (up to parametrization) geodesic line containing A and B
and its unique metric midpoint A#B is the geometric mean of A and B.
The least squares mean (Cartan mean, Karcher mean or Riemannian center of mass)

of positive definite matrices A1, . . . , An is defined to be the unique minimizer of the
sum of squares of the Riemannian trace metric distances to each of the Ai, i.e.,

Λ(A1, . . . , An) = arg min
X∈P

n∑
i=1

δ2(X, Ai).
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The least squares mean of positive definite matrices for the Riemannian trace metric
plays an important role in many applied areas involving averaging of positive definite
matrices. Actually, this mean was suggested independently by M. Moakher [19] and
Bhatia and Holbrook [3], and is regarded as a suitable extension of the geometric mean
of two positive definite matrices to n-variables. The monotonicity of the least squares
mean, conjectured by Bhatia and Holbrook [3] and one of key axiomatic properties
of matrix geometric means, was recently established by Lawson and Lim [14] via a
probabilistic convergence of approximations and by Bhatia and Karandikar [4] using
some probabilistic counting arguments, and both arguments depend heavily on basic
inequalities for the Riemannian metric. These two important results for the least squares
mean are based on Sturms’ theorem of Strong Law of Large Number [21]: Assign to
k ∈ {1, . . . , n} the probability 1/n and giving {1, 2, . . . , n}N the product probability,
we have

Λ(A1, . . . , An) = lim
k→∞

Sk(Aσ(1), . . . , Aσ(k))

for almost all σ ∈ {1, 2, . . . , n}N, where Sk(A1, . . . , Ak) is the inductive mean of
A1, . . . , Ak defined by S1(A1) = A1, Sk(A1, . . . , Ak) = Sk−1(A1, . . . , Ak−1)# 1

k
Ak.

Sturm’s result is theoretically important but it is of stochastic nature and so it does
not provide a deterministic sequence of points converging to the least squares mean. A
natural question concerned with the preceding S.L.L.N is the following, called the no
dice theorem;
Problem. Is it true that Λ(A1, . . . , An) = limk→∞ Sk(Aσ(1), . . . , Aσ(k)), where σ

is the periodic sequence defined by σ(nj + i) = i, 1 ≤ i ≤ n.

It is a problem to make a construction of deterministic sequences converging to the
least squares mean without any probabilistic arguments. Very recently, Holbrook [7]
gave an affirmative answer in the space of positive definite matrices P.
Inspired by the work of Holbrook [7] and the fact that the convex cone of positive

definite matrices is a typical example of a symmetric cone, a self-dual homogeneous
open convex cone (it is well known that the class of symmetric cones is precisely that
of Euclidean Jordan algebras), we establish the no dice theorem of the least squares
mean on general symmetric cones. To do so, the method by Holbrook [7] is adopted.
As is well-known [5, 22], the family of symmetric cones contains Lorenz cones (second
order cones) and the cones of positive definite matrices over real and complex numbers.
Moreover, the symmetric cone in a given Euclidean Jordan algebra is, in a unique way,
a direct sum of symmetric cones in the five types of simple Euclidean Jordan algebras.
(For the details, see Tao and Gowda [22].)

2. EUCLIDEAN JORDAN ALGEBRAS AND SYMMETRIC CONES

In this section, we briefly describe (following mostly [5]) some Jordan-algebraic
concepts pertinent to our purpose. A Jordan algebra V over R is a finite-dimensional
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commutative algebra satisfying x2(xy) = x(x2y) for all x, y ∈ V. For x ∈ V, let L(x)
be the linear operator defined by L(x)y = xy, and let P (x) = 2L(x)2 − L(x2). The
map P is called the quadratic representation of V. An element x ∈ V is said to be
invertible if there exists an element y (denoted by y = x−1) in the subalgebra generated
by x and e (the Jordan identity) such that xy = e.

The following appears at Proposition II.3.1 and Proposition II.3.3 of [5].

Proposition 2.1. Let V be a Jordan algebra.

(i) An element x in V is invertible if and only if P (x) is invertible. In this case:
P (x)−1 = P (x−1).

(ii) If x and y are invertible, then P (x)y is invertible and (P (x)y)−1 =
P (x−1)y−1.

(iii) For any elements x and y: P (P (x)y) = P (x)P (y)P (x).

A Jordan algebra V is said to be Euclidean if there exists an inner product 〈·, ·〉 such
that 〈xy, z〉 = 〈y, xz〉 for all x, y, z ∈ V. An element c ∈ V is called an idempotent if
c2 = c 	= 0. We say that c1, . . . , ck is a complete system of orthogonal idempotents if
c2
i = ci, cicj = 0, i 	= j, c1 + · · ·+ ck = e. An idempotent is primitive if it is non-zero
and cannot be written as the sum of two non-zero idempotents. A Jordan frame is a
complete system of orthogonal primitive idempotents.

Theorem 2.2. (Spectral theorem, first version [5, Theorem III.1.1]). Let V be
a Euclidean Jordan algebra. Given x ∈ V, there exist real numbers λ1, . . . , λk all
distinct and a unique complete system of orthogonal idempotents c1, . . . , ck such that

x =
k∑

i=1

λici.(2.1)

The numbers λi are called the eigenvalues and (2.1) is called the spectral decompo-
sition of x.

Theorem 2.3. (Spectral theorem, second version [5, Theorem III.1.2]). Any two
Jordan frames in a Euclidean Jordan algebra V have the same number of elements
(called the rank of V , denoted by rank(V )). Given x ∈ V, there exists a Jordan
frame c1, . . . , cr and real numbers λ1, . . . , λr such that x =

∑r
i=1 λici. The numbers

λi (with their multiplicities) are uniquely determined by x.

Definition 2.4. Let V be a Euclidean Jordan algebra of rank(V ) = r. The spec-
tral mapping λ : V → R

r is defined by λ(x) = (λ1(x), . . . , λr(x)), where λi(x)’s
are eigenvalues of x (with multiplicities) as in Theorem 2.3 in non-increasing or-
der λmax(x) = λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) = λmin(x). Furthermore, det(x) =∏r

i=1 λi(x) and tr(x) =
∑r

i=1 λi(x).
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Throughout this paper, we assume that V is a Euclidean Jordan algebra of rank
r and equipped with the trace inner product 〈x, y〉 = tr(xy). With the norm induced
by the trace inner product, we have the following non-expansive (Lipschitz) property
of the spectral mapping appearing in [1, 6] which is an immediate consequence of a
Jordan-algebraic version of von Neumann-Theobald inequality [2, 18, 15].

Theorem 2.5. For x, y ∈ V,

‖λ(x)− λ(y)‖2 ≤ ‖x − y‖

where ‖x‖ =
√

tr(x2) and ‖ · ‖2 denotes the usual Euclidean norm in Rr.

Let Q be the set of all square elements of V. Then Q is a closed convex cone of
V with Q ∩ −Q = {0}, and is the set of element x ∈ V such that L(x) is positive
semi-definite. It turns out that Q has non-empty interior Ω, and Ω is a symmetric cone,
that is, the group G(Ω) = {g ∈ GL(V ) | g(Ω) = Ω} acts transitively on it and Ω is
a self-dual cone with respect to the inner product 〈·, ·〉. Furthermore, for any a in Ω,
P (a) ∈ G(Ω) and is positive definite.
As mentioned in the introduction, any symmetric cone (self-dual, homogeneous

open convex cone) can be realized as an interior of squares in an appropriate Euclidean
Jordan algebra [5].

Proposition 2.6. The symmetric cone Ω has the following properties:
(i) Ω = {x2 | x is invertible};
(ii) Ω = {x ∈ V | L(x) is positive definite}; and
(iii) Ω = {x ∈ V | λmin(x) > 0}.
We note that Ω = {x ∈ V | λi(x) ≥ 0, i = 1, . . . , r}. For x, y ∈ V , we define

x ≤ y if y − x ∈ Ω

and x < y if y − x ∈ Ω. Clearly Ω = {x ∈ V | x ≥ 0} and Ω = {x ∈ V | x > 0}.
Proposition 2.7. The inversion x → x−1 on Ω is order reverting. That is, a ≤ b

if and only if b−1 ≤ a−1 for any a, b ∈ Ω.

3. KARCHER MEANS ON SYMMETRIC CONES

It turns out [5] that the symmetric cone Ω admits a G(Ω)-invariant Riemannian
metric defined by

〈u, v〉x = 〈P (x)−1u, v〉, x ∈ Ω, u, v ∈ V.

The inversion j(x) = x−1 is an involutive isometry fixing e. It is a symmetric Rieman-
nian space of non-compact type with respect to its distance metric [10, 11, 16]. The
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unique geodesic curve joining a and b is t �→ a#tb := P (a1/2)(P (a−1/2)b)t and the
Riemannian distance δ(a, b) is given by

δ(a, b) =

(
r∑

i=1

log2 λi(P (a−1/2)b)

)1/2

.

The geodesic middle a#b := a#1/2b = P (a1/2)(P (a−1/2)b)1/2 is called the geometric
mean of a and b. An important property of the metric δ is the semiparallelogram law

δ2(z, x#y) ≤ 1
2
δ2(z, x) +

1
2
δ2(z, y)− 1

4
δ2(x, y)

and its general form is for any t ∈ [0, 1]

(3.1) δ2(z, x#ty) ≤ (1 − t)δ2(z, x) + tδ2(z, y)− t(1 − t)δ2(x, y).

The metric space (Ω, δ) is an important example of a Hadamard space, a complete
metric space satisfying the semiparallelogram law.
The Karcher mean, also called the least squares mean, of n elements a1, . . . , an

on Ω is defined as the unique minimizer of the sum of squares of the Riemannian trace
metric distances to each of the ai, i.e.,

(3.2) Λ(a1, . . . , an) = argmin
x∈Ω

n∑
i=1

δ2(x, ai).

Observe that the least squares mean exists and unique for any NPC spaces.
The inductive mean Sn(a1, . . . , an) is defined by

S1(a1) = a1, Sn(a1, . . . , an) = Sn−1(a1, . . . , an−1)# 1
n
an.

For a fixed n ∈ N, equipped {1, 2, . . . , n} with the point mass measure, the set Pn :=
{1, 2, . . . , n}N of all functions from N to {1, 2, . . . , n} is a probability space with
measure 1. By the Strong Law of Large Number in Sturm [21] (see also [14]), we have

Theorem 3.1. Let a1, . . . , an ∈ Ω. Then for almost all σ ∈ {1, 2, . . . , n}N,

Λ(a1, . . . , an) = lim
k→∞

S(aσ(1), . . . , aσ(k)).

As stated in the introduction, a natural question concerned with the preceding S.L.L.N
is the following, called the no dice theorem:

Problem. Is it true that Λ(a1, . . . , an) = limk→∞ Sk(aσ(1), . . . , aσ(k)), where
σ(nj + i) = i, 1 ≤ i ≤ n.

In the next section, we will prove the no dice theorem on symmetric cones.
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4. A PROOF OF NO DICE THEOREM

Proposition 4.1. Let V be a finite dimensional inner product space and T : V → V

be a positive (semi)definite linear operator. Then the (operator) norm ‖T‖ is the
maximum eigenvalue of T .

Proposition 4.2. Let V be a Euclidean Jordan algebra andD be a bounded subset
of V . Then the quadratic representation P : D → L(V, V ) is Lipschtz continuous.
Here L(V, V ) denotes the normed space of every (continuous) linear operator from V

to V .

Proof. First observe that for all x, y ∈ D,

(4.1)

‖L(x)L(x)− L(y)L(y)‖ = ‖(L(x)− L(y))L(y) + L(x)(L(x)− L(y))‖
≤ (‖L(x)‖+ ‖L(y)‖)‖L(x)− L(y)‖
≤ ‖L‖2(‖x‖ + ‖y‖)‖x− y‖
≤ M1‖x − y‖ for some M1

where ‖L‖ denotes the norm of the linear operator L : V → L(V, V ) defined by
x �→ L(x). Moreover, for all x, y ∈ D,

(4.2)
‖L(x2)−L(y2)‖=‖L(x2−y2)‖ ≤ ‖L‖‖x2−y2‖≤‖L‖2‖x+y‖‖x−y‖

≤ M2‖x − y‖ for some M2.

The second inequality follows from the observation ‖xy‖ = ‖L(x)y‖ ≤ ‖L‖‖x‖‖y‖
for all x, y ∈ V . The definition of P (x) = 2L2(x) − L(x2) together with (4.1) and
(4.2) yields the conclusion.

Definition 4.3. Let x, y ∈ Ω ⊂ V . The geodesic distance between x and y is
defined to be δ(x, y) = ‖ logP (x− 1

2 )y‖. Given ak ∈ Ω, (k = 1, · · · , m), we define,
for each x ∈ Ω and each positive integer n,

ss(x) =
m∑

k=1

δ2(x, ak),

ϕn(x) = x# 1
n
ak = P (x

1
2 )(P (x− 1

2 )ak)
1
n with k ≡ n (mod m),

Lk(x) = logP (x− 1
2 )ak, S(x) =

m∑
k=1

Lk(x).

In addition, the Karcher mean of ai’s is defined to be the unique minimizer of ss(x) =∑m
k=1 δ2(x, ak) over Ω.
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Proposition 4.4. [9, 17]. We have the following gradient formula:

∇ss(x) = 2P (x− 1
2 )
( m∑

k=1

logP (x
1
2 )a−1

k

)
= −2P (x− 1

2 )S(x).

Lemma 4.5. For two positive numbers α and β, let D = {x ∈ V | αe ≤ x ≤ βe}
contain {a1, · · · , am}. Then there exists M < ∞ such that for all x ∈ D and all n,
we have

(4.3) ‖ϕn(x)− x − 1
n

P (x
1
2 )Lk(x)‖ ≤ M

n2
,

where k ≡ n (mod m) and

(4.4) ‖ϕn(x)− x‖ ≤ M

n
.

Proof. Let x =
∑r

i=1 λici ∈ D. Since 1
n log a = log a

1
n for all a ∈ Ω, we get

exp
(

1
n

logP (x− 1
2 )ak

)
= exp

(
log(P (x− 1

2 )ak)
1
n

)
= (P (x− 1

2 )ak)
1
n

and
ϕn(x) = P (x

1
2 )(P (x− 1

2 )ak)
1
n

= P (x
1
2 ) exp

(
1
n

logP (x− 1
2 )ak

)
= P (x

1
2 ) exp

(
Lk(x)

n

)
.

This implies that

ϕn(x)− x = P (x
1
2 )
(

exp
(

Lk(x)
n

)
− e

)

= P (x
1
2 )
(

e +
Lk(x)

n
+

1
2!

(
Lk(x)

n

)2

+ · · · − e

)

= P (x
1
2 )
(

Lk(x)
n

)
+ E =

1
n

P (x
1
2 )Lk(x) + E

where

E = P (x
1
2 )
( ∞∑

j=2

1
j!

(
Lk(x)

n

)j)
.

So

(4.5) ‖E‖ =
∥∥∥∥P (x

1
2 )
( ∞∑

j=2

1
j!

(
Lk(x)

n

)j)∥∥∥∥≤ ‖P (x
1
2 )‖
∥∥∥∥

∞∑
j=2

1
j!

(
Lk(x)

n

)j∥∥∥∥.
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As P (x
1
2 ) is a positive definite linear operator from V to V itself, by Proposition 4.1,

‖P (x
1
2 )‖ is κ = max{√λiλj | λi, λj are eigenvalues of x} because the eigenvalues

of P (x) are of the form λiλj [20, Theorem 3.1]. Since ∀i, α ≤ λi ≤ β, we may
assume that there is a constant M1 such that

(4.6) ‖P (x)‖, ‖P (x
1
2 )‖, ‖P (x− 1

2 )‖ ≤ M1 for all x ∈ D.

On the other hand, αe ≤ ak ≤ βe so that

αP (x− 1
2 ) e ≤ P (x− 1

2 )ak ≤ βP (x− 1
2 ) e, that is, αx−1 ≤ P (x− 1

2 )ak ≤ βx−1.

Hence, we have
α

e

β
≤ αx−1 ≤ P (x− 1

2 )ak ≤ βx−1 ≤ β
e

α

which, in turn, leads to

log
α

β
e ≤ logP (x− 1

2 )ak ≤ log
β

α
e.

So
− log

β

α
≤ logμi ≤ log

β

α
⇔ | logμi| ≤ log

β

α

where μi’s are the eigenvalues of P (x− 1
2 )ak. Therefore, we get

r∑
i=1

(logμi)2 ≤ r

(
log

β

α

)2

where r = rankV . This implies that

(4.7) ‖Lk(x)‖ = ‖ logP (x− 1
2 )ak‖ =

( r∑
i=1

(logμi)2
)1

2

≤ √
r log

β

α
.

Moreover,

(4.8)
∞∑

j=2

1
j!

(‖Lk(x)‖
n

)j

≤ 1
2

(‖Lk(x)‖
n

)2

exp
(‖Lk(x)‖

n

)
.

By (4.5), (4.6) and (4.8), we see

‖E‖ ≤ M1

∞∑
j=2

1
j!

(‖Lk(x)‖
n

)j

≤ M1

2

(‖Lk(x)‖
n

)2

exp
(‖Lk(x)‖

n

)

≤ M1
r log2 β

α

2n2

(
β

α

)√
r

n

≤ M1r log2 β
α

2n2

(
β

α

)√
r

=
M

n2
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where the first inequality comes from the fact that ∀a ∈ V, ‖a‖n ≥ ‖an‖. Conse-
quently, by (4.3), (4.6) and (4.7), we have

‖ϕn(x) − x‖ ≤ M

n2
+

1
n
‖P (x

1
2 )‖‖Lk(x)‖ ≤ M

n2
+

M

n
≤ M

n
.

This completes the proof.

Lemma 4.6. Let D be as in Lemma 4.5. Then there exists M < ∞ such that for
all x, y ∈ D, we have

(4.9) ‖x 1
2 − y

1
2‖ ≤ M‖x− y‖,

(4.10) ‖Lk(x) − Lk(y)‖ ≤ M‖x − y‖,

(4.11) ‖P (x
1
2 )Lk(x) − P (y

1
2 )Lk(y)‖ ≤ M‖x − y‖.

Proof. By Sun and Sun [20, Theorem 13], the map x → x
1
2 is continuously

differentiable on D because the real valued function f(x) =
√

x is continuously dif-
ferentiable on the interval [α, β]. Since D is a compact convex set, we see that the
map x → x

1
2 is Lipschtz continuous on D by the mean value theorem. This entails

(4.9). In addition,

‖Lk(x)− Lk(y)‖ = ‖ logP (x− 1
2 )ak − logP (y−

1
2 )ak‖

≤ M1‖P (x− 1
2 )ak − P (y−

1
2 )ak‖ for some M1

≤ M2‖P (x
1
2 )a−1

k − P (y
1
2 )a−1

k ‖ for some M2

≤ M2‖P (x
1
2 ) − P (y

1
2 )‖‖a−1

k ‖
≤ M3‖x

1
2 − y

1
2‖ for some M3

≤ M‖x − y‖ for some M.

The first and second inequalities come from Sun and Sun [20, Theorem 13] and the
mean value theorem repeatedly to the maps x → log x and x → x−1 (the corresponding
real-valued functions are f(x) = logx and g(x) = 1

x on the positive interval [
α
β , β

α ]).
The fourth and the last follow from Proposition 4.2 and (4.9), respectively. For (4.11),
note that

‖P (x
1
2 )Lk(x)− P (y

1
2 )Lk(y)‖

= ‖P (x
1
2 )(Lk(x) − Lk(y)) + (P (x

1
2 ) − P (y

1
2 ))Lk(y)‖

≤ ‖P (x
1
2 )‖‖Lk(x) − Lk(y)‖+ ‖(P (x

1
2 )− P (y

1
2 ))Lk(y)‖

≤ M4‖x − y‖+ M5‖x 1
2 − y

1
2‖‖Lk(y)‖ ∃M4 and M5

≤ M‖x− y‖.
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The second inequality is due to (4.6), (4.10) and Proposition 4.2. The third is from
(4.9) and (4.7). This completes the proof.

Lemma 4.7. Let D be as in Lemma 4.5. Then there exists M < ∞ such that,
whenever x and x + ty (0 ≤ t ≤ 1) belong to D,

(4.12) |ss(x + y) − ss(x) − 〈∇ss(x), y〉| ≤ M‖y‖2.

Proof. First note that

d

dt
ss(x + ty) = 〈∇ss(x + ty), y〉.

Thus

(4.13) ss(x + y) − ss(x) =
∫ 1

0
〈∇ss(x + ty), y〉 dt = 〈∇ss(x), y〉+ E

where

E =
∫ 1

0
〈∇ss(x + ty) −∇ss(x), y〉 dt.

By Proposition 4.4, we have ∇ss(x) = −2P (x− 1
2 )S(x). Hence for any z ∈ D,

(4.14)

‖∇ss(z) −∇ss(x)‖
= 2‖P (z−

1
2 )S(z)− P (x− 1

2 )S(x)‖
= 2‖P (z−

1
2 )(S(z)− S(x)) + (P (z−

1
2 ) − P (x− 1

2 ))S(x)‖
≤ 2‖P (z−

1
2 )‖‖S(z)− S(x)‖+ 2‖(P (z−

1
2 )− P (x− 1

2 ))S(x)‖
≤ M1‖z − x‖ + M2‖z− 1

2 − x− 1
2‖ for some M1 and M2

≤ M‖z − x‖.

The second inequality follows from (4.6), (4.10), (4.7) and Proposition 4.2. Also the
third one is derived from using Sun and Sun [20, Theorem 13] and the mean value
theorem to the map x → x− 1

2 (the corresponding real-valued function is f(x) = 1√
x

on the positive interval [α, β]). So, by (4.14), when we put z = x + ty ∈ D,

|E| ≤ max
0≤t≤1

‖∇ss(x + ty) −∇ss(x)‖‖y‖ ≤ M‖y‖2.

Therefore, we obtain from (4.13) that

|E| = |ss(x + y) − ss(x) − 〈∇ss(x), y〉| ≤ M‖y‖2.
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This completes the proof.

For positive integers a, d, let

ϕa,d = ϕa+d−1 ◦ ϕa+d−2 ◦ · · · ◦ ϕa.

Lemma 4.8. Given x, a1, · · · , am ∈ Ω, let

r = max{δ(Λ, x), δ(Λ, a1), · · · , δ(Λ, am)} and
Kx = {y ∈ Ω | δ(Λ, y) ≤ r} ⊇ {x, a1, · · · , am}

where Λ is the Cartan centroid of ai’s. Then there exists M < ∞ such that for all
y ∈ Kx and n ∈ N,

(4.15) ‖ϕn,m(y) − y − 1
n

P (y
1
2 )S(y)‖ ≤ M

n2
.

Proof. Since Kx is compact, there exist two positive numbers α and β such that
D = {y ∈ Ω | αe ≤ y ≤ βe} contains Kx. Note that for any y ∈ Kx and n, d ∈ N,
ϕn(y) and ϕn,d(y) always belong to Kx by definition. So replacing n by n + 1 and y
by ϕn(y) in (4.3) yields that

(4.16) ‖ϕn,2(y)− ϕn(y)− 1
n + 1

P (ϕn(y)
1
2 )(Lk+1(ϕn(y)))‖ ≤ M

(n + 1)2

where k + 1 is computed modulo m. Moreover, by (4.11), we see, for some M < ∞,

(4.17)
‖ 1
n+1

P (ϕn(y)
1
2 )(Lk+1(ϕn(y)))

− 1
n+1

P (y
1
2 )(Lk+1(y))‖≤ M

n + 1
‖ϕn(y)−y‖.

Hence we have, for some M < ∞,
‖ϕn,2(y) − y − 1

n
P (y

1
2 )(Lk(y) + Lk+1(y))‖

≤ ‖ϕn,2(y) − ϕn(y) − 1
n

P (y
1
2 )(Lk+1(y))‖+ ‖ϕn(y)− y − 1

n
P (y

1
2 )(Lk(y))‖

≤ M

n2
+ ‖ϕn,2(y)− ϕn(y)− 1

n + 1
P (ϕn(y)

1
2 )(Lk+1(ϕn(y)))‖

+ ‖ 1
n + 1

P (ϕn(y)
1
2 )(Lk+1(ϕn(y)))− 1

n
P (y

1
2 )(Lk+1(y))‖

≤ M

n2
+

M

(n + 1)2
+ ‖ 1

n + 1
P (ϕn(y)

1
2 )(Lk+1(ϕn(y)))− 1

n + 1
P (y

1
2 )(Lk+1(y))‖

+
(

1
n
− 1

n + 1

)
‖P (y

1
2 )(Lk+1(y))‖

≤ M

n2
+

M

(n + 1)2
+

M

n2
+

1
n2

‖P (y
1
2 )(Lk+1(y))‖ ≤ M

n2
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by means of (4.3), (4.16), (4.17), (4.6) and (4.7). Proceeding in this way for m-steps,
we get the conclusion (4.15).

Lemma 4.9. Let Kx and D be as in Lemma 4.8. Then there exists M < ∞ such
that for all z ∈ Kx and n ∈ N,

(4.18) ss(ϕn,m(z))− ss(z) +
1
n
‖S(z)‖2 ≤ −1

n
‖S(z)‖2 +

M

n2
.

Proof. Put x = z, y = ϕn,m(z)− z in Lemma 4.7. Clearly z + ty = (1− t)z+
tϕn,m(z) ∈ D, ∀t ∈ [0, 1] because D is convex. Thus Lemma 4.7 is available so that

|ss(ϕn,m(z)) − ss(z) − 〈∇ss(z), ϕn,m(z) − z〉| ≤ M‖y‖2 for some M < ∞.

Since (4.15) implies ‖y‖ ≤ 1
n‖P (z

1
2 )S(z)‖+ M

n2 ≤ M
n for some M < ∞, by (4.6) and

(4.7), we obtain

|ss(ϕn,m(z))− ss(z) − 〈∇ss(z), ϕn,m(z) − z〉| ≤ M

n2
for some M < ∞.

Hence, for some M < ∞,

|ss(ϕn,m(z))− ss(z) − 〈∇ss(z),
1
n

P (z
1
2 )S(z)〉|

≤ M

n2
+ ‖∇ss(z)‖‖ϕn,m(z)− z − 1

n
P (z

1
2 )S(z)〉‖ ≤ M

n2
+

M

n2
≤ M

n2

by (4.15), (4.6) and (4.7). That is,

(4.19) |ss(ϕn,m(z)) − ss(z) +
2
n
‖S(z)‖2| ≤ M

n2

because

〈∇ss(z),
1
n

P (z
1
2 )S(z)〉 = −2

n
〈P (z−

1
2 )S(z), P (z

1
2 )S(z)〉

= −2
n
〈S(z), P (z−

1
2 )P (z

1
2 )S(z)〉 = −2

n
‖S(z)‖2.

It follows immediately from (4.19) that (4.18) holds.

Theorem 4.10. We have

ϕ1,d(x) → Λ as d → ∞.

Proof. Given ε > 0, let

Kε = {z ∈ Kx | ss(z) ≥ ss(Λ) + ε}
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and
μ = inf{‖S(z)‖2 | z ∈ Kε}.

Since ∇ss(·) vanishes only at Λ and Kε is compact, μ > 0 is attained by Proposition
4.4. Let z ∈ Kx.

Step 1. For n with n ≥ M
μ (M in (4.18)), the sequence {ϕn,d(z) | d ∈ N} has

infinitely many elements not contained in Kε.

Case (i) z ∈ Kε.
As n ≥ M

μ , from (4.18) we obtain

(4.20) ss(ϕn,m(z))− ss(z) ≤ −1
n
‖S(z)‖2 ≤ −μ

n
.

Suppose that ϕn,d(z) ∈ Kε for all d ∈ N. As ϕn,lm(z) = ϕn+(l−1)m,m(ϕn,(l−1)m(z))
for all l ≥ 2, from (4.20) we get

ss(ϕn,lm(z))− ss(ϕn,(l−1)m(z)) = ss(ϕn+(l−1)m,m(ϕn,(l−1)m(z)))− ss(ϕn,(l−1)m(z))

≤ − μ

n + (l − 1)m
.

Hence

(4.21)

ss(ϕn,lm(z))− ss(Λ)

= ss(ϕn,lm(z))− ss(ϕn,(l−1)m(z)) + · · ·+ ss(ϕn,m(z)) − ss(Λ)

≤ −μ

(
1

n + m
+ · · ·+ 1

n + (l − 1)m

)
+ ss(ϕn,m(z)).

The RHS of (4.21) tends to −∞ as l → ∞, which implies that for sufficiently large
l ∈ N,

ss(ϕn,lm(z)) < ss(Λ).

This is a contradiction to the definition of Λ. Thus, there is d0 such that ϕn,d0(z) is
not contained in Kε. Assume that there are only finitely many ϕn,d0(z), · · · , ϕn,dp(z)
not contained in Kε. Put h = max{d0, · · · , dp}. Then ϕn,h+d(z) ∈ Kε for all d ∈ N.
Taking d = lm and repeating the similar argument above, we see that for sufficiently
large l ∈ N,

ss(ϕn,h+lm(z)) < ss(Λ),

which contradicts the definition of Λ. Hence, there are infinitely many elements of
{ϕn,d(z) | d ∈ N} not contained in Kε.

Case (ii) z ∈ Kc
ε .

Then either ϕn,1(z) ∈ Kε or ϕn,1(z) ∈ Kc
ε . If ϕn,1(z) ∈ Kε, the sequence

{ϕn,d+1(z) = ϕn+1,d(ϕn,1(z)) | d ∈ N} has infinitely many elements not contained
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in Kε by the same argument as Case (i). When ϕn,1(z) ∈ Kc
ε , either ϕn,2(z) ∈ Kε or

ϕn,2(z) ∈ Kc
ε . Repeating the same procedure to ϕn,2(z), ϕn,3(z), . . . as in the case

of ϕn,1(z), we can conclude that the sequence {ϕn,d(z) | d ∈ N} has infinitely many
elements not contained in Kε.
Step 2. The sequence {ϕ1,d(z) | d ∈ N} has infinitelymany elements not contained

in Kε.

Indeed, we may assume that d ≥ n ≥ M
μ . Since ϕ1,d(z) = ϕn,d−n+1(ϕ1,n−1(z)), by

Step 1, the sequence {ϕ1,d(z) | d ∈ N} has infinitely many elements not contained in
Kε.
Step 3. For sufficiently large k, we have ss(ϕ1,k(z)) < ss(Λ) + 2ε.

Let n ≥ max{M
μ , mM2

ε } (M satisfyng (4.4), (4.18)). By Step 2, we can choose positive
integers k1 > k0 > n such that ϕ1,k0(z), ϕ1,k1(z) ∈ Kc

ε , (i.e., ss(ϕ1,ki(z)) < ss(Λ)+ε

for i = 1, 2) and ϕ1,k(z) ∈ Kε for all k0 < k < k1. We will show that

(4.22) ss(ϕ1,k(z)) < ss(Λ) + 2ε, for all k0 < k < k1.

(i) k0 < k ≤ k0 + m. Then, by (4.4), we have

‖ϕ1,k(z) − ϕ1,k0(z)‖ ≤
k−k0∑
j=1

‖ϕ1,k0+j(z) − ϕ1,k0+j−1(z)‖

=
k−k0∑
j=1

‖ϕk0+j(ϕ1,k0+j−1(z))− ϕ1,k0+j−1(z)‖

≤ mM

n

We may assume M ≥ maxz∈D ‖∇ss(z)‖ (D in Lemma 4.8). By the mean value
theorem,

|ss(ϕ1,k(z))− ss(ϕ1,k0(z))| ≤ M‖ϕ1,k(z) − ϕ1,k0(z)‖ ≤ mM2

n

so that

ss(ϕ1,k(z)) ≤ ss(ϕ1,k0(z)) +
mM2

n
≤ ss(Λ) + ε +

mM2

n
≤ ss(Λ) + 2ε.

(ii) k = k0 + m + 1 < k1. From (4.20) and (i) above we obtain

ss(ϕ1,k(z)) = ss(ϕk0+2,m(ϕ1,k0+1(z))) ≤ ss(ϕ1,k0+1(z)) ≤ ss(Λ) + 2ε.

Using this argument in a similar way, we get the assertion (4.22). As ki → ∞
increasingly by Step 2, Step 3 holds true.
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Since ε > 0 is arbitrary, by taking z = x, we conclude that

lim
d→∞

ss(ϕ1,d(x)) = ss(Λ),

equivalently,
ϕ1,d(x) → Λ as d → ∞.

This completes the proof.

Remark. Since the work of Lawson and Lim [14], the Karcher mean has sprung
up in time as the most attractive averaging in many applied areas among other multi-
variable geometric means. In fact, a currently active research topic in linear algebra is
understanding, finding properties of, and computing efficiently the least squares mean.
The ALM and BMP means on symmetric cones [12, 13] are not effective and less
interesting in computational aspects because they are inductively constructed and need
to compute their means in each step via symmetrization procedures. Various numerical
methods for the solution of the Karcher equation have been introduced in the litera-
ture: optimization algorithms like Newton’s method or a gradient descent method, and
iterative methods where the choice of an initial point close to the Karcher mean with
geometric mean properties plays a key role [8].
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