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BOUNDEDNESS FOR SECOND ORDER DIFFERENTIAL EQUATIONS
WITH JUMPING p-LAPLACIAN AND AN OSCILLATING TERM

Xiao Ma, Daxiong Piao1,* and Yiqian Wang2

Abstract. In this paper, we are concerned with the boundedness of all the so-
lutions for a kind of second order differential equations with p-Laplacian and
an oscillating term (φp(x′))′ + aφp(x+) − bφp(x−) = Gx(x, t) + f(t), where
x+ = max(x, 0), x− = max(−x, 0), φp(s) = |s|p−2s, p ≥ 2, a and b are posi-
tive constants (a �= b), the perturbation f(t) ∈ C23(R/2πpZ), the oscillating term
G ∈ C21(R × R/2πpZ) satisfying |Di

xDj
t G(x, t)| ≤ C, 0 ≤ i + j ≤ 21.

1. INTRODUCTION

One of the most studied semilinear Duffing’s equations is

(1.1) x′′ + ax+ − bx− = f(x, t),

where x+ = max(x, 0), x− = max(−x, 0), f(x, t) is a smooth 2π-periodic function
on t, a and b are positive constants (a �= b).
If f(x, t) depends only on t, the equation (1.1) becomes

(1.2) x′′ + ax+ − bx− = f(t), f(t + 2π) = f(t),

which had been studied by Fucik [6] and Dancer [3] in their investigations of bound-
ary value problems associated to equations with “jumping nonlinearities”. For recent
developments, we refer to [7, 8, 11] and references therein.
In 1996, Ortega [20] proved the Lagrangian stability for the equation

(1.3) x′′ + ax+ − bx− = 1 + γh(t),
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if |γ| is sufficiently small and h ∈ C4(S1).
On the other hand, when 1√

a
+ 1√

b
∈ Q, Alonso and Ortega [2] proved that there

is a 2π-periodic function f(t) such that all the solutions of Eq. (1.2) with large initial
conditions are unbounded. Moreover for such a f(t), Eq. (1.2) has periodic solutions.
In 1999, Liu [16] removed the smallness assumption on |γ| in Eq. (1.3) when

1√
a

+ 1√
b
∈ Q and obtained the same result.

For the more general equation

(1.4) x′′ + ax+ − bx− + φ(x) = e(t),

Wang [23] and Wang [24] considered the Lagrangian stability when the perturbation
φ(x) is bounded. And Yuan [25] investigated the existence of quasiperiodic solutions
and Lagrangian stability when φ(x) is unbounded.
Fabry and Mawhin [5] investigated the equation

(1.5) x′′ + ax+ − bx− = f(x) + g(x) + e(t).

Under some appropriate conditions, they get the boundedness of all solutions.
For p ≥ 2, Yang [27] considered more complicated nonlinear equation with p-

Laplacian operator

(1.6) ((φp(x′))′ + (p− 1)[aφp(x+) − bφp(x−)] + f(x) + g(x) = e(t).

Using Moser’s small twist theorem, he proved that all the solutions are bounded
when 1

a
1
p

+ 1

b
1
p

= 2m
n , m, n ∈ N, f and g are bounded. For the case when 1

a
1
p

+ 1

b
1
p

=

2ω−1 with ω ∈ R+\Q and the perturbation f(x) is bounded, Yang [26] studied the
following equation

(1.7) (φp(x′))′ + aφp(x+) − bφp(x−) + f(x) = e(t).

and came to the conclusion that every solution of the equation is bounded.
In 2004, Liu [17] studied equation

(1.8) (φp(x′))′ + aφp(x+) − bφp(x−) = f(x, t), f(x, t + 2π) = f(x, t),

where p > 1, πp

a
1
p

+ πp

b
1
p

= 2π
n and f ∈ C(7,6)(R × R/2πZ) satisfying

(i) the following limits exists uniformly in t

lim
x→∞ f(x, t) = f±(t)

(ii) the following limits exists uniformly in t

lim
x→∞xm ∂m+n

∂xm∂tn
f(x, t) = f±,m,n(t)
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for (n, m) = (0, 6), (7, 0) and (7, 6). Moveover, f±,m,n(t) ≡ 0 for m = 6, n = 0, 7.
He concludes the boundedness of all solutions and the existence of quasi-periodic
solutions.
In 2012, Jiao, Piao and Wang [9] obtained the boundedness of equations

(1.9) x′′ + ω2x + φ(x) = Gx(x, t) + f(t),

and

(1.10) x′′ + ax+ − bx− = Gx(x, t) + f(t),

where f(t + 1) = f(t), ω or 1

a
1
2

+ 1

b
1
2
satisfies the Diophantine condition and the

oscillating term G satisfies (1.12) and (1.13).
Inspired by the above references, we are going to study the boundedness of all

solutions for the more general equation

(1.11) (φp(x′))′ + aφp(x+) − bφp(x−) = Gx(x, t) + f(t).

Our main results are as follows:

Theorem 1. Assume f(t) ∈ C23(R/2πpZ) with πp = 2π(p−1)
1
p

p sin π
p
, G ∈ C21(R ×

R/2πpZ) satisfying

(1.12) |Di
xDj

tG(x, t)| ≤ C, 0 ≤ i + j ≤ 21

for some C > 0. Moreover, there exists some function Ĝ such that ∂Ĝ
∂x = G and

(1.13) |Dj
t Ĝ| ≤ C, 0 ≤ j ≤ 21.

Let ω = 1
2 ( 1

a
1
p

+ 1

b
1
p
) ∈ R+\Q satisfy the Diophantine condition:

(1.14) |mω + n| ≥ γ

|m|τ , ∀ (m, n) �= (0, 0) ∈ Z2,

where 1 < τ < 2, γ > 0, and [f ] = 1
2πp

∫ 2πp

0 f(t)dt �= 0. Then equation (1.11)
possesses Lagrange stability, i.e. if x(t) is any solution of equation (1.11), then it
exists for all t ∈ R and supt∈R(|x(t)|+ |ẋ(t)|) < ∞.
Remark 1.1. Theorem 1 holds true when γ is any positive number. Thus our

statement holds true for ω in a set of full measure.

Remark 1.2. In Liu[17], it is required that f satisfies the limit conditions (i) and
(ii), which, in general, is not satisfied by the function G in Theorem 1. For example,
we can set G to be cosx or cosx · cos t. Thus our situation is more general.
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The main idea is as follows: By means of transformation theory the original system
outside of a large disc D = {(x, x′) ∈ R2 : x2 + x′2 ≤ r2} in (x, x′)-plane is
transformed into a perturbation of an integrable Hamiltonian system. The Poincaré
map of the transformed system is closed to a so-called twist map in R2\D. Then
Moser’s twist theorem guarantees the existence of arbitrarily large invariant curves
diffeomorphic to circles and surrounding the origin in the (x, x′)-plane. Every such
curve is the base of a time-periodic and flow-invariant cylinder in the extended phase
space (x, x′, t) ∈ R2 ×R, which confines the solutions in the interior and which leads
to a bound of these solutions.
The remain part of this paper is organized as follows. In section 2, we introduce

action-angle variables and exchange the role of time and angle variables. In section 3,
we construct canonical transformations such that the new Hamiltonian system is closed
to an integrable one. In section 4, we will prove the Theorem 1 by Moser’s twist
theorem.
Throughout this paper, F (x) =

∫ x
0 f(s)ds, F (0) = 0, c and C are some positive

constants without concerning their quantity.

2. SOME CANONICAL TRANSFORMATIONS

In this section, we will state some technical lemmas which will be used in the proof
of Theorem 1. Throughout this section, we assume the hypotheses of Theorem 1 hold.

2.1. Action-angle variables

Borrowing the idea from Liu [17] and Yang [26], we introduce a new variables y
as y = −ϕp(ωx) and let q be the conjugate exponent of p : p−1 + q−1 = 1. Then
(1.11) is changed into the form

(2.1) x′ = −ω−1ϕq(y), y′ = ω−1[a1ϕp(x+) − b1ϕp(x−)]− ωp−1[Gx(x, t) + f(t)]

where a = ω−pa1, b = ω−pb1 and a1, b1 satisfy

(2.2) a
− 1

p

1 + b
− 1

p

1 = 2,

which is a planar non-autonomous Hamiltonian system

(2.3) x′ = −∂H

∂y
(x, y, t), y′ =

∂H

∂y
(x, y, t)

where

H(x, y, t) =
ω−1

q
|y|q +

ω−1

p
(a1|x+|p + b1|x−|p)− ωp−1[G(x, t) + f(t)x].
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Let C(t) = sinp t be the solution of the following initial value problem

(2.4) (ϕp(C′(t)))′ + ϕp(C(t)) = 0, C(0) = 0, C′(0) = 1.

Then it follows from [16] that C(t) = sinp(t) is a 2πp-period C2 odd function with
sinp(πp − t) = sinp(t), for t ∈ [0,

πp

2 ] and sinp(2πp− t) = − sinp(t), for t ∈ [πp, 2πp].
Moreover for t ∈ (0,

πp

2 ), C(t) > 0, C′(t) > 0, and C : [0,
πp

2 ] → [0, (p− 1)
1
p ] can be

implicitly given by ∫ sinp t

0

ds

(1 − sp

p−1 )
1
p

= t.

Lemma 2.1. For p ≥ 2 and for any (x0, y0) ∈ R2, t0 ∈ R, the solution

z(t) = (x(t, t0, x0, y0), y(t, t0, x0, y0))

of (2.1) satisfying the initial condition z(t0) = (x0, y0) is unique and exists on the
whole t-axis.

The proof of uniqueness can be obtained similarly as the proof of Proposition 2
in [17], the global existence result can be proved similarly as Lemma 3.1 in [10].
Consider an auxiliary equation

(φp(x′))′ + a1φp(x+) − b1φp(x−) = 0

Let v(t) be the solution with initial condition: (v(0), v′(0)) = ((p − 1)
1
p , 0). Setting

φp(v′) = u, then (v, u) is a solution of the following planar system:

x′ = φq(y), y′ = −a1φp(x+) + b1φp(x−)

where q = p/(p− 1) > 1. It is not difficult to prove that:
(i) q−1|u|q + p−1(a1|v+|p + b1|v−|p) ≡ a1

q ;
(ii) v(t) and u(t) are 2πp-periodic functions.
(iii) v(t) can be given by

(2.5) v(t) =

⎧⎪⎪⎨
⎪⎪⎩

sinp(a
1
p

1 t + πp

2 ), 0 ≤ t ≤ πp

2a
1
p
1

,

−(a1
b1

)
1
p sinp b1

1
p (t − πp

2a
1
p
1

), πp

2a
1
p
1

< t ≤ πp.

(2.6) v(2πp − t) = v(t), t ∈ [πp, 2πp].

Lemma 2.2. Let Ip =
∫ πp

2
0 sinp tdt. Then

Ip =
(p − 1)

2
p

p
B(

2
p
, 1− 1

p
),
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where B(r, s) =
∫ 1
0 tr−1(1− t)s−1dt for r > 0, s > 0.

From the expression of v(t) in (2.5), we obtain

(2.7)
∫ πp

2a

1
p
1

0
v(t)dt =

Ip

a
1
p

1

,

(2.8)
∫ πp

πp

2a

1
p
1

v(t)dt = −a
1
p

1 Ip

b
2
p

1

.

This method has been used in [8].
We introduce the action and angle variables via the solution (v(t), u(t)) as follows.

x = d
1
p r

1
p v(θ), y = d

1
q r

1
q u(θ)

where d = pa−1
1 . This transformation is called a generalized symplectic transformation

as its Jacobian is 1. Under this transformation, the system (2.1) is changed to

(2.9) θ′ =
∂h

∂r
(r, θ, t), r′ = −∂h

∂θ
(r, θ, t)

with the Hamiltonian function

(2.10) h(r, θ, t) = ω−1r − f1(r, θ, t)− ωp−1d
1
p r

1
p v(θ)f(t)

where f1(r, θ, t) = ωp−1G(d
1
p r

1
p v(θ), t).

For any function f(·, θ), we denote by [f ](·) the average value of f(·, θ) over
Sp � R/2πpZ, that is,

[f ](·) :=
1

2πp

∫ 2πp

0
f(·, θ)dθ.

For the above function f1(r, θ, t) in (2.10) we have

Lemma 2.3. The following conclusion holds true:

(2.11) |Di
rD

j
tf1(r, θ, t)| ≤ C · r− i

q , 0 ≤ i + j ≤ 21.

Proof. The proof of this lemma can get directly from the definition of f1 and the
conditions in Theorem 1.

The following technique lemma will be used to refine the estimates on [f1](r, t).
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Lemma 2.4. Assume f ∈ C1(R/2πpZ),G(x, t) ∈ C1(R1×R/2πpZ) andG′
x(x, t) =

g(x, t). Suppose there are two positive constants Ḡ and ḡ such that |G(x, t)| ≤ Ḡ,
|g(x, t)| ≤ ḡ for any (x, t). Let A(r, θ) ∈ C2(R1 × R/2πpZ) be of the form A(r, θ) =

(r + h(r, θ))
1
p with

(2.12) h,
∂h

∂θ
,
∂2h

∂θ2
= O(r

1
p )

for r 
 1.

Then for any constant δ0 ∈ (0, 1
10 ) it holds that

(2.13)
∣∣∣∣
∫ 2πp

0
f(θ)g(Av(θ), t)dθ

∣∣∣∣ ≤ C · r−δ0 , r 
 1,

where C depends only on Ḡ, ḡ and ‖f‖C0 .

Proof. Let [0, 2πp] = I1
⋃

I2, where I1 = [0, r−2δ0]
⋃

[πp − r−2δ0, πp +
r−2δ0]

⋃
[2πp − r−2δ0, 2πp] and I2 = [r−2δ0, πp − r−2δ0]

⋃
[πp + r−2δ0, 2πp − r−2δ0].

Then ∫ 2π

0
f(θ)g(Av(θ), t)dθ =

∫
I1

f(θ)g(Av(θ), t)dθ +
∫

I2

f(θ)g(Av(θ), t)dθ.

Obviously, |I1| ≤ C · r−2δ0 , where | · | denotes the Lesbegue measure. Then from the
boundedness of g(x, t), it is easy to see that∣∣∣∣

∫
I1

f(θ)g(Av(θ), t)dθ

∣∣∣∣ ≤ C · r−2δ0.

To estimate the integral on I2, we first estimate the integral on the interval I21 =
[r−2δ0, πp − r−2δ0].
Consider Dθ(Av(θ)) = A′

θv(θ) − Av′(θ). From (2.12), it holds that |Av′(θ)| ≥
c · r 1

p
−2δ0 and A′

θ · v(θ) = O(1) for θ ∈ I21, which implies

(2.14) |Dθ(Av(θ))| ≥ c · r 1
p
−2δ0.

Similarly from the definition of A and the condition (2.12), we have

(2.15) D2
θ(Av(θ)) = D2

θA · v(θ) + 2DθA · v′(θ) + Av′′(θ) = O(r
1
p ).

By direct computation, we have

Dθ(f(θ)(Dθ(Av(θ)))−1) = f ′ · (Dθ(Av(θ)))−1 +f · (Dθ(Av(θ)))−2 · (−D2
θ(Av(θ))).
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Thus from (2.14) and (2.15), we obtain the estimate

(2.16) |Dθ(f(θ)(Dθ(Av(θ)))−1)| ≤ C · r4δ− 1
p .

By integration by parts, we have that∫
I21

f(θ)g(Av(θ), t)dθ =
∫

I21

f(θ)(Dθ(Av(θ)))−1dG(Av(θ), t)

= (Dθ(Av(θ)))−1f(θ)G(Av(θ), t)|πp−r−2δ0

r−2δ0

−
∫

I21

G(Av(θ), t)Dθ(f(θ)Dθ((Av(θ)))−1)dθ.

From (2.14) and (2.16) , for θ ∈ I21 it holds that∣∣(Dθ(Av(θ)))−1f(θ)G(Av(θ), t)|θ=r−2δ0

∣∣ ,∣∣∣(Dθ(Av(θ)))−1f(θ)G(Av(θ), t)|θ=πp−r−2δ0

∣∣∣ ≤ C · r4δ0− 1
p

and ∣∣G(Av(θ), t) · Dθ(f(θ)Dθ((Av(θ)))−1)
∣∣ ≤ C · r4δ0− 1

p .

Similarly, we can have the same estimate for the other parts of I2.
Hence from the fact 0 < δ0 < 1

10 , we obtain (2.7). The proof of this lemma is
completed.

For [f1](r, t), we have the following result:

Corollary 2.1. The following conclusion holds true:

(2.17) |Di
rD

j
t [f1](r, t)| ≤ C · r−δ1− i

p , 0 ≤ i + j ≤ 21,

where the constant δ1 is in (0, 1
10 ).

Proof. From the definition of f1, we have [f1](r, t) = 1
2πp

∫ 2πp

0 G(r
1
p v(θ), t)dθ.

From (1.12) and (1.13), we know that G and Ĝ are bounded. Thus for i+j = 0, (2.17)
is deduced from lemma 2.2 where we set f ≡ 1 and A(r, θ) = r

1
p . For i + j ≥ 1, it

can be easily seen that ∂i+j

∂ri∂tj
G are the sum of the term like

∂k+j

∂xk∂tj
G(r

1
p v(θ), t)(r

1
p )(i1) · · · (r 1

p )(ik) · (v(θ))k,

where i1 + · · · ik = i. Thus (2.17) is implied from lemma 2.2 for the function
∂k+j

∂xk∂tj
G(r

1
p v(θ), t) and (1.12). This ends the proof of the lemma.
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2.2. Exchange of the roles of time and angle variables

According to Levi [12], the equality

rdθ − hdt = −(hdt − rdθ),

means if we can solve r = r(h, t, θ) from Eq.(2.9) as a function of h, t and θ, then we
have

(2.18)
dh

dθ
= −∂r

∂t
(h, t, θ),

dt

dθ
=

∂r

∂h
(h, t, θ),

i.e., Eq.(2.18) is a Hamiltonian system with Hamiltonian function r = r(h, t, θ) and
now the action, angle and time variables are h, t, and θ, respectively.
From Eq.(2.10) and lemmas, it follows that

lim
r→+∞

h

r
= ω−1 > 0

and for r 
 1

∂h

∂r
= ω−1 − ∂

∂r
f1(r, θ)− 1

p
f(t)ωp−1d

1
p r

1
p
−1

v(θ) > 0.

By the implicit function theorem, we know that there is a function R = R(h, t, θ) such
that

(2.19) r(h, t, θ) = ωh − R(h, t, θ).

Moreover, for h 
 1,
|R(h, t, θ)| ≤ ωh/2

and R(h, t, θ) is C19 in h and t.
From (2.10), it holds that

(2.20) R = ωf1(ωh − R, t, θ)− ωpd
1
p (ωh − R)

1
p v(θ)f(t).

The proof of following two lemmas are slightly different to [15], here for the conve-
nience of readers, we give the proofs of them.

Lemma 2.5. Assume R is defined by (2.20) with |R| � h for h 
 1. Then it
holds that

(2.21) |Di
hDj

tR| ≤ C · hn(i), 0 ≤ i + j ≤ 21

for h 
 1, where n(i) = − i
q for i ≥ 1 and n(0) = 1

p .
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Proof. (i) i + j = 0. The proof for this case can be easily obtained from lemma
2.3 and the conditions in the Theorem.
(ii) i + j = 1. It is clear that for h 
 1,

|ω∂f1

∂r
(ωh − R, t, θ)|+ |ω

p

p
d

1
p (ωh − R)−

1
q v(θ)f(t)| ≤ 1

2
.

Define

Δ(h, t, θ) = 1 + ω
∂f1

∂r
(ωh − R, t, θ)− ωp

p
d

1
p (ωh − R)−

1
q v(θ)f(t),

g1 = ω2 ∂f1

∂r
(ωh − R, t, θ)− ωp+1

p
d

1
p (ωh − R)−

1
q v(θ)f(t),

g2 = −ωpd
1
p (ωh − R)

1
p v(θ)f(t) + ω

∂f1

∂t
(ωh− R, t, θ).

Then it follows that

(2.22) Δ · ∂R

∂h
= g1, Δ · ∂R

∂t
= g2.

From lemma 2.3,p ≥ 2 and the boundedness of f(t), we have |g1| ≤ C · h− 1
q and

|g2| ≤ C · h 1
p . Thus the proof for this case is completed.

(iii) i + j = 2. Lemma 2.3 implies that

|∂Δ
∂t

| ≤ C · h− 1
q , |∂Δ

∂h
| ≤ C · h− 2

q , |∂g1

∂t
| ≤ C · h− 1

q , |∂g1

∂h
|

≤ C · h− 2
q , |∂g2

∂h
| ≤ C · h− 1

q , |∂g2

∂t
| ≤ C · h 1

p .

From the second equation of (2.22), we obtain

Δ
∂2R

∂t2
+

∂Δ
∂t

· ∂R

∂t
=

∂g2

∂t

and
Δ

∂2R

∂t∂h
+

∂Δ
∂h

· ∂R

∂t
=

∂g2

∂h
.

The above inequalities and equations imply that

|∂
2R

∂t2
| ≤ C · h 1

p , | ∂2R

∂h∂t
| ≤ C · h− 1

q .

From the first equation of (2.22), we know that

Δ
∂2R

∂h2
+

∂Δ
∂h

· ∂R

∂h
=

∂g1

∂h
,
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which implies |∂2R
∂h2 | ≤ C · h− 2

q . Thus we complete the proof for this case.

In general, if
|Di

hD
j
t R| ≤ C · hn(i), 0 ≤ i + j ≤ m,

then it holds that

|Di
hDj

tΔ| ≤ C · h− 1
q
+n(i)

, |Di
hD

j
t g1| ≤ C · h− 1

q
− i

q , |Di
hDj

tg2| ≤ C · h− i
q .

Consequently, we obtain

|Di
hD

j
tR| ≤ C · hn(i), 0 ≤ i + j ≤ m + 1.

The proof is completed.

In (2.20), we denote R = −ωpd
1
p (ωh)

1
p v(θ)f(t)− R1(h, t, θ). Then

(2.23) R1 = ωf1(ωh− R, t, θ)− 1
p

∫ 1

0
ωpd

1
p (ωh − τR)−

1
q Rv(θ)f(t)dτ.

Then we have the following conclusion:

Lemma 2.6. It holds that

|Di
hDj

tR1| ≤ C · h− i
q , 0 ≤ i + j ≤ 21.

Proof. The lemma is easily followed from the following claim:

Claim

(2.24)
|Di

hD
j
t f1(ωh− τR, t, θ)| ≤ C · h− i

q ,

|Di
hD

j
t (ωh− τR)−

1
q d

1
p Rv(θ)f(t)| ≤ C · h− 1

q
− i

q

for 0 ≤ i + j ≤ 21.

Proof of the claim. We only prove the first inequality of (2.24) and the proof for
the other is similar.
(i) i + j = 0. The proof for this case can be obtained directly from lemma 2.1.
(ii) i > 0, j = 0. We have the following equality:

Di
hf1(ωh − τR, t, θ) =

∑ ∂kf1

∂rk
(u, t, θ) · ∂i1u

∂hi1
· · · ∂

iku

∂hik

with 0 < k ≤ i, i1, · · · , ik > 0, i1 + · · · ik = i and u = ωh − τR. Assume there are
l(≤ k) numbers in {i1, · · · , ik} which is equal to 1. Then we obtain

|Di
hf1(u, t, θ)| ≤ C · h−k

q · h− i1+···ik−l

q ≤ C · h− i
q .
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(iii) i = 0, j > 0. By direct computation, we have

Dj
tf1(ωh − τR, t, θ) =

∑ ∂k+lf1

∂rk∂tl
(u, t, θ) · ∂j1u

∂tj1
· · · ∂

jku

∂tjk

with 0 ≤ k ≤ j, 0 ≤ l ≤ j, k + l = j, j1, · · · , jk > 0, j1 + · · ·jk = k. It follows that

|Dj
tf1(u, t, θ)| ≤ C · h−k

q · hk
p ≤ C.

The last step,we get from that p ≥ 2, 1
p + 1

q = 1 ,and 1
p ≤ 1

q .
(iv) i > 0, j > 0. By direct computation, we have

Di
hDj

t

∂f1

∂r
(u, θ) =

∑ ∂k1+k2+lf1

∂rk1+k2∂tl
(u, θ) · ∂i1u

∂hi1
· · · ∂

ik1 u

∂hik1
· ∂l1+j1u

∂hl1∂tj1
· · · ∂lk2

+jk2 u

∂hlk2 ∂tjk2
,

where u = ωh − τR and

0 ≤ k1 ≤ i, 0 ≤ k2 ≤ j, 0 ≤ l ≤ j, k2 + l

= j, i1, · · · , ik1, j1, · · · , jk2 > 0, l1, · · · , lk2 ≥ 0,

i1 + · · · ik1 + l1 + · · ·+ lk2 = i, j1 + · · ·+ jk2 + l = j.

Assume that there are m(≤ k1) numbers in {i1, · · · , ik1} which is equal to 1. Then

|Di
hD

j
t

∂f1

∂r
| ≤ C · h−k1+k2

q · h− i1+···+ik1
+l1+···+lk2

−m

q ≤ C · h− i
q .

This ends the proof of the claim.

From the definition of R1, we can obtain the following conclusion:

Lemma 2.7. For the function [R1](h, t), we have that

|Di
hDj

t [R1]| ≤ C · (h−i + h−δ1− i
q ), 0 ≤ i + j ≤ 21,

where δ1 ∈ (0, 1
10).

From (2.19), (2.20), we obtain that the Hamiltonian r(h, t, θ) in (2.19) is of the
form:

(2.25) r = ωh + ωpd
1
p (ωh)

1
p v(θ)f(t) + R1(h, t, θ).

3. MORE CANONICAL TRANSFORMATIONS

In this section, we will make some more canonical transformations such that the
Poincaré map of the new system is close to twist map.
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Lemma 3.1. There exists a canonical transformation Φ1 of the form:

Φ1 :
{

h = ρ
t = τ + V1(ρ, τ, θ)

where the functions V1 are periodic in τ, θ. Under this transformation, the Hamiltonian
system with Hamiltonian (2.25) is changed into the following one

(3.1) r̃ = ωρ + ωpd
1
p (ωρ)

1
p v(θ)[f ] + R̃1(ρ, τ, θ),

where the new perturbation R̃1 satisfies

(3.2) | ∂i+j

∂ρi∂τ j
R̃1| ≤ C · ρ− i

q , 0 ≤ i + j ≤ 21.

Moreover, for the function[R̃1](ρ, θ), it holds that

(3.3) |Di
ρD

j
τ [R̃1]| ≤ C · (ρ−i + ρ

−δ1− i
q ), 0 ≤ i + j ≤ 21.

Proof. We construct the canonical transformation by means of generating function:

Φ1 : h = ρ, t = τ +
∂S1

∂ρ
(ρ, τ, θ).

Under this transformation, the new Hamiltonian function r̃ is of the form

r̃ = ωρ + ωpd
1
p (ωρ)

1
p v(θ)f(τ +

∂S1

∂ρ
) + R1(ρ, τ +

∂S1

∂ρ
, θ) +

∂S1

∂θ

Let S1 = − ∫ θ
0 ωpd

1
p (ωρ)

1
p v(ϑ)f(t)− [f ]dϑ,then we have

r̃(ρ, τ, θ) = ωρ + ωpd
1
p (ωρ)

1
p v(θ)[f ] + R̃1(ρ, τ, θ)

where R̃1(ρ, τ, θ) = R1(ρ, τ + ∂S1
∂ρ , θ) = R1(ρ, τ, θ) +

∫ 1
0

∂R1
∂t (ρ, τ + s∂S1

∂ρ , θ)∂S1
∂ρ ds.

From Lemma 2.6 and the definition of R̃1, we can get the estimates (3.2). (3.3) can
get from Lemma 2.7 and the definition of R̃1.

Lemma 3.2. There exists a canonical transformation Φ2 of the form:

Φ2 :
{

ρ = I
τ = s + V2(I, θ)

with T̃ (I, θ + 2πp) = T̃ (I, θ), such that the system with Hamiltonian (3.1) is trans-
formed into the form:

(3.4)
∂I

∂θ
= −∂r̄

∂s
(I, s, θ),

∂s

∂θ
=

∂r̄

∂I
(I, s, θ)
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with r̄(I, s, θ) = ωI + c∗I
1
p + R̃2(I, s, θ), where c∗ �= 0 and the new perturbation R̃2

satisfies

(3.5) |Di
ID

j
sR̃2| ≤ C · I− i

q , 0 ≤ i + j ≤ 21.

Moreover, for the function [R̃2]0(I) = ( 1
2πp

)2
∫ 2πp

0

∫ 2πp

0 R̃2(I, s, θ)dsdθ, it holds that

(3.6) |Di
I [R̃2]0| ≤ C · (I−i + I

−δ1− i
q ), 0 ≤ i ≤ 21.

Proof. The proof is similar to [18], but for the convenience of readers we still give
a detailed argument. We shall look for the required transformation Φ2 by means of a
generating function S2(I, s, θ), so that Φ2 is implicitly defined by

(3.7) Φ2 : ρ = I +
∂

∂s
S2(I, s, θ), τ = s +

∂

∂I
S2(I, s, θ).

Under this transformation, the system is changed into the form:

∂I

∂θ
= −∂r̄

∂s
(I, s, θ),

∂s

∂θ
=

∂r̄

∂I
(I, s, θ)

the new Hamiltonian function r̄ is of the form

r̄ = ωρ + ω
p+ 1

p d
1
p [f ]ρ

1
p v(θ) + R̃1(ρ, τ, θ)+

∂S2

∂θ

Now we choose

S2 = −
∫ θ

0
ω

p+ 1
p d

1
p [f ]ρ

1
p v(ϑ)− c∗ρ

1
p dϑ

where c∗ = ωp+ 1
p · d

1
p · [f ] �= 0. Obviously, S2 does not depend on s and it is

2πp−periodic in θ. Hence ρ = I. Let

T̃ (I, θ) =
∂S2

∂I
.

Then the canonical transformation Φ2 is of the form

ρ = I, τ = s + T̃ (I, θ).

Let

(3.8) R̃2(I, s, θ) = R̃1(ρ, s, θ) +
∫ 1

0

∂R̃1

∂τ
(ρ, s + mT̃ , θ)T̃dm.

From (3.2) in lemma3.1, we can get (3.5) easily, and (3.6) can be obtained from (3.3).
The proof of this lemma is completed.
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For convenience, we denote

(3.9) r̄ = ωI + r̄1(I) + r̄2(I, s, θ),

with r̄1 = c∗I
1
p , r̄2(I, s, θ) = R̃2(I, s, θ), then from the definition of r̄1, we know that

r̄1 satisfying

(3.10) c · I 1
p
−i ≤ |r̄(i)

1 (I)| ≤ C · I 1
p
−i

,

r̄2 have the same estimate with R̃2 in lemma 3.2, i.e.

(3.11) |Di
ID

j
s r̄2)| ≤ C · I− i

q , 0 ≤ i + j ≤ 21.

(3.12) |Di
I [r̄2]0| ≤ C · (I−i + I

−δ1− i
q ), 0 ≤ i ≤ 21.

The following results are similar to [9], here for the convenience of readers, we
still give the proof of these lemmas.

Lemma 3.3. Let 0 < δ1 < 1
10 be a constant. Consider the Hamiltonian

(3.13) r̄(I, s, θ) = ωI + r̄1(I) + R(I, s, θ),

where R satisfies

(3.14) |Di
ID

j
sR| ≤ C · I−ε− i

q

for 0 ≤ i + j ≤ l with ε ≥ 0.
Then there exists a canonical transformation Φ3 of the form:

Φ3 :

{
I = � + u3(�, ς, θ)

s = ς + v3(�, ς, θ)

such that the system with Hamiltonian (3.13) is transformed into the following one

(3.15) r̂(�, ς, θ) = ω� + r̂1(�) + R1(�, ς, θ),

where r̂1(�) = r̄1(�)+ [R]0(�) with [R]0(�) = ( 1
2πp

)2
∫ 2πp

0

∫ 2πp

0 R(�, τ, θ)dτdθ and R1

satisfies

(3.16) |Di
	D

j
ς R1| ≤ C · �−ε− 1

q
− i

q , 0 ≤ i + j ≤ l − 3.
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Proof. We will prove this lemma by means of Principle Integral method instead of
Fourier series method. Let Φ3 be of the following form:

I = � +
∂S3

∂τ
(�, s, θ), ς = s +

∂S3

∂�
(�, s, θ),

where the generating function S3(�, s, θ) satisfies S3(�, s + 2πp, θ) = S3(�, s, θ +
2πp) = S3(�, s, θ) and will be determined later.
Then the transformed Hamiltonian is

r̂ = ω(� + ∂S3
∂s ) + r̄1(� + ∂S3

∂s ) + R(� + ∂S3
∂s , s, θ) + ∂S3

∂θ

= ω� + r̄1(�) + [R]0(�) + ω ∂S3
∂s + ∂S3

∂θ + R + R1,

where
R = R(�, s, θ)− [R]0(�)

and

(3.17) R1 =
∫ 1

0
r̄′1(� + λ

∂S3

∂s
)
∂S3

∂s
dλ +

∫ 1

0

∂R

∂I
(� + λ

∂S3

∂s
, s, θ)

∂S3

∂s
dλ.

Obviously, it holds that

(3.18) (
1

2πp
)2

∫ 2πp

0

∫ 2πp

0

R(�, s, θ)dsdθ = 0.

Now we determine the periodic function S3 by the following equation

(3.19) ω
∂S3

∂s
(�, s, θ) +

∂S3

∂θ
(�, s, θ) + R(�, s, θ) = 0,

whose characteristic equation is

ds

ω
=

dθ

1
=

dS3

−R(�, s, θ)
.

Obviously, the characteristic equation possesses two independent Principle Integrals as
follows:

s − ωθ = c1

and

S3 +
∫ θ

0
R(�, s− ωθ + ωφ, φ)dφ = c2.

Thus the solution of (3.19) is of the form:

(3.20) S3(�, s, θ) = −
∫ θ

0
R(�, s− ωθ + ωφ, φ)dφ + Ω(�, s− ωθ)
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with Ω a differentiable function determined later.
To ensure S3 be 2πp-periodic on s and θ, Ω must be 2πp-periodic on the second

variable, that is Ω(�, x + 2πp) = Ω(�, x). Then by direct computation, we obtain that
S3 is 2ωπp-periodic on s.
Next we determine Ω by the periodicity of S3 on θ.
Let J(�, x) = − ∫ 2πp

0 R(�, x + ωφ, φ)dφ. Then we have

S3(�, s, θ + 2πp)

= −
∫ θ+2πp

0
R(�, s− ω(θ + 2πp − φ), φ)dφ + Ω(�, s− ω(θ + 2πp))

= J(�, s− ω(θ + 2πP ))

−
∫ 2πp+θ

2πp

R(�, s− ω(θ + 2πp − φ), φ)dφ + Ω(�, s− ω(θ + 2πp)).

On the other hand, from R(�, s, φ + 2πp) = R(�, s, φ) we have

∫ 2πp+θ

2πp

R(�, s− ω(θ + 2πp − φ), φ)dφ =
∫ θ

0
R(�, s− ω(θ − φ), φ)dφ,

which implies that

(3.21)
S3(�, s, θ + 2πp)

= J(�, s−ω(θ+2πp))−
∫ θ

0

R(�, s−ω(θ−φ), φ)dφ+Ω(�, s−ω(θ+2πp)).

Setting S3(�, s, θ + 2πp) = S3(�, s, θ), it follows from (3.20) and (3.21) that

J(�, s− ω(θ + 2πp)) + Ω(�, s− ω(θ + 2πp))− Ω(�, s− ωθ) = 0,

or equivalently,

(3.22) J(�, x) = Ω(�, x + x0) − Ω(�, x),

where x = s − ω(θ + 2πp) and x0 = 2ωπp.
From (3.18) and the definition of J , we have

∫ 2πp

0
J(�, x)dx = −

∫ 2πp

0

∫ 2πp

0
R(�, x + ωφ, φ)dxdφ

= −
∫ 2ωπp

0

∫ 2πp

0
R(�, x, φ)dxdφ = 0.
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Thus we assume J(�, x) =
∑

0 �=k∈Z Jk(�)eiλkx and Ω(�, x) =
∑

0 �=k∈Z Ωk(�)eiλkx,
where λ = π/πp. Then the homological equation (3.22) implies that

Ωk =
Jk

eiλkx0 − 1
, k �= 0.

The definition of J(�, x) implies that J(�, x) is Cl on x. Thus it holds that

(3.23) |Jk| ≤ C · ‖J(·, x)‖Cl · |k|−l, k �= 0.

From the Diophantine condition (1.14), we have that

(3.24) |eiλkx0 − 1| ≥ 2πγ|k|−τ , k �= 0.

Combining (3.23) and (3.24), we obtain that

|Ωk| ≤ C · ‖J(·, x)‖Cl · |k|τ−l, k �= 0,

which implies Ω is well-defined and Cl−3 on x since 1 < τ < 2.
For the definition of Ω and (3.14), we have that

|Di
	D

j
xΩ| ≤ C · �−ε− i

q , 0 ≤ i + j ≤ l − 2,

which together with (3.14) and (3.20) implies

(3.25) |Di
	D

j
τS3| ≤ C · �−ε− i

q , 0 ≤ i + j ≤ l − 2.

Thus we obtain (3.16) from (3.17) and (3.25) and the proof is completed.

By lemma 3.2 and the repeated use of lemma 3.3, we have the following result.

Corollary 3.1. There exists a canonical transformation Φ4 of the form:

Φ4 :

{
I = ζ + u4(ζ, η, θ)

s = η + v4(ζ, η, θ)

such that the system with Hamiltonian (3.9) is transformed into the following one

(3.26) r(ζ, η, θ) = ωζ + r1(ζ) + r2(ζ, η, θ),

where r1 = r̄1 + [r̄2]0 with r̄1, [r̄2]0 satisfying (3.10), (3.12), and r2 satisfies

(3.27) |Di
ζD

j
ηr2| ≤ C · ζ−2− i

q

for 0 ≤ i + j ≤ 5.
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4. PROOF OF THEOREM 1

In order to apply Moser’s small twist theorem, we need to calculate the Poincaré
mapping of the Hamiltonian system with the Hamiltonian (3.26). So in this section,
we first give the expression of the Poincaré mapping. And then we will use Moser’s
small twist theorem to prove Theorem 1.
From corollary 3.1, it follows that the Hamiltonian system with the Hamiltonian

(3.26) is of the form:

(4.1)

⎧⎪⎪⎨
⎪⎪⎩

dη

dθ
= ω + r′1(ζ) +

∂r2

∂ζ
(ζ, η, θ)

dζ

dθ
= −∂r2

∂η
(ζ, η, θ),

where r1(ζ) = r̄1(ζ) + [r̄2]0(ζ) satisfying (3.10) and (3.12), r2(ζ, η, θ) satisfies (3.27).
Thus the Poincaré map of the equation (4.1) is of the form:

(4.2) P :

{
η(2πp) = 2πpω + η + α(ζ) + F1(ζ, η),

ζ(2πp) = ζ + F2(ζ, η).

where F1(ζ, η) =
∫ 2πp

0
∂r2
∂ζ (ζ, η, θ)dθ, F2(ζ, η) = − ∫ 2πp

0
∂r2
∂η (ζ, η, θ)dθ,α(ζ) = r′1(ζ),

and from the definition of r1, (3.10), (3.12) and (3.27), we have that

(4.3) α(ζ) = α1(ζ) + α2(ζ)

with

(4.4)
|α(i)

1 (ζ)| ≥ c · ζ− 1
q
−i

,

|α(i)
1 (ζ)| ≤ C · ζ− 1

q
−i, |α(i)

2 (ζ)| ≤ C · ζ−δ1− 1
q
− i

q , 0 ≤ i ≤ 4

and

(4.5) |Di
ζD

j
ηFk(ζ, η)| ≤ C · ζ−2− i

q , 0 ≤ i + j ≤ 4, k = 1, 2,

where α1(ζ) = r̄′1(ζ),α2(ζ) = [r̄2]
′
0(ζ).

According to (4.4), we can know that the following case is possible, that is, the
function α(ζ) may be not monotone. In order to find a monotone interval for α(ζ),
we consider the interval [2ζ0, 3ζ0] with ζ0 
 1. By (4.3) and (4.4), we have that the

set α([ 94ζ0,
11
4 ζ0]) covers some interval with length longer than c · ζ−

1
q

0 . Therefore by
Mean Value theorem of Differentials, there exists some point ζ∗ ∈ [ 94ζ0,

11
4 ζ0] such that

|α′(ζ∗)| ≥ c · ζ−
1+q

q

0 .
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What’s more, (4.4) implies |α′′(ζ)| ≤ C · ζ− 1+q
q

−δ1 . Thus for each ζ ∈ [ζ∗, ζ∗ +

ζ0

δ1
q ], we have

(4.6) |α′(ζ)| ≥ c · ζ0
− 1+q

q .

In the next, we give the following scale transformation :

(4.7) α(ζ) − α(ζ∗) = ζ
− 1+q

q

0 ν, ν ∈ [2, 3].

Then we have the following Poincaré mapping:

(4.8) P̃ :

{
η(2πp) = 2πpω + α(ζ∗) + η + ζ

− 1+q
q

0 ν + F̃1(ν, η),
ν(2πp) = ν + F̃2(ν, η),

where

(4.9) F̃1(ν, η) = F1(ζ(ν), η), F̃2(ν, η) = ζ
1+q

q

0 (α(ζ(ν) + F2(ζ(ν), η))− α(ζ(ν)))

with ζ(ν) determined by (4.7).
From (4.4), (4.6) and (4.7), we see that

(4.10) |ζ(i)(ν)| ≤ C, 1 ≤ i ≤ 4,

which together with (4.5) and (4.9) implies

(4.11) |Di
νD

j
ηF̃1| ≤ C · ζ−2

0 , |Di
νD

j
ηF̃2| ≤ C · ζ−2

0 , 0 ≤ i + j ≤ 4.

What’s more, the mapping P̃ of the Hamiltonian system (3.26) is time 2πp mapping,
so it is area-preserving. And further it possesses the intersection property in the annulus
[2, 3]×Sp, this is to say, if Γ is an embedded circle in [2, 3]×Sp homotopic to a circle
ν = constant, then P̃ (Γ) ∩ Γ �= ∅. The proof can be found in [4].
For the mapping P̃ , all the conditions of Moser’s small twist theorem [19] have

been verified. Consequently, if ζ0 
 1, then there exists an invariant curve Γ of P̃

surrounding ν ≡ 1 . This implies that the Poincaré mapping of the system (3.26) indeed
processes invariant curves. Retracting the sequence of transformations back to the
original system, we conclude that there exist invariant curves of the Poincaré mapping
of the original system (1.11). And those curves surround the origin (x, y) = (0, 0) and
at the same time are arbitrarily far from it. This completes the proof of Theorem 1.
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