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DOMINATION IN THE ZERO-DIVISOR GRAPH OF AN IDEAL
OF A NEAR-RING

T. Tamizh Chelvam and S. Nithya

Abstract. Let N be a near-ring. In this paper, we associate a graph corresponding
to the 3-prime radical I of N , denoted by ΓI(N). Further we obtain certain
topological properties of Spec(N), the spectrum of 3-prime ideals of N and graph
theoretic properties of ΓI(N). Using these properties, we discuss dominating sets
and connected dominating sets of ΓI(N).

1. INTRODUCTION

Throughout this paper, by a near-ring N we always mean a zero-symmetric near-
ring with identity 1. For basic definitions in near-rings one may refer [10]. For subsets
A, B of N , (A : B) = {n ∈ N : nB ⊆ A}. An ideal I of N is said to be a prime
ideal if JK ⊆ I , then either J ⊆ I or K ⊆ I for ideals J and K of N . Let a, b ∈ N .
An ideal I of N is 3-prime if aNb ⊆ I , then either a ∈ I or b ∈ I . An ideal I of
N is 3-semiprime if aNa ⊆ I , then a ∈ I . An ideal I of N is completely prime if
ab ∈ I , then either a ∈ I or b ∈ I . Note that completely prime ⇒ 3-prime ⇒ prime
[14]. Moreover, if N is a commutative ring, then the notions of prime, 3-prime and
completely prime are one and the same. The intersection of all proper prime ideals of
N is called the prime radical of N and denoted by P(N ), the intersection of all proper
3-prime ideals of N is called the 3-prime radical of N and denoted by I(N ) and the
intersection of all proper completely prime ideals of N is called the completely prime
radical of N . Let N (N ) denote the set of all nilpotent elements of N . A near-ring
N is called 2-primal if P(N ) = N (N ). As observed in [5], if N is a zero-symmetric
2-primal near-ring, then the prime radical, the 3-prime radical and the completely prime
radical are coincide. A near-ring N is called a pm-near-ring if every 3-prime ideal is
contained in a unique maximal ideal of N .
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The study on graphs from algebraic structures is an interesting subject for mathe-
maticians since the notion of Cayley graphs from groups [4]. In recent years, many alge-
braists as well as graph theorists have focused on the zero-divisor graph of rings. In [2],
D.F. Anderson and P.S. Livingston introduced the zero-divisor graph of a commutative
ringR with identity, denoted by Γ(R), as the graph with vertices Z(R)∗ = Z(R)\{0},
the set of nonzero zero-divisors of R, and for distinct vertices x and y are adjacent if
and only if xy = 0. This concept due to I. Beck [3], who let all the elements of R be
vertices of Γ(R) and was mainly interested in colorings. S.P. Redmond [11] introduced
the zero-divisor graph with respect to an ideal I of R, denoted by ΓI(R), as the graph
with vertex set {x ∈ R\I : xy ∈ I for some y ∈ R\I}, and two distinct vertices x and
y are adjacent if and only if xy ∈ I . Later on, the zero-divisor graph and the ideal-based
zero-divisor graph were studied in near-rings and one may refer [1, 7]. Subsequently, in
[13], authors constructed the zero-divisor graph to an ideal I of a near-ring N , denoted
by ΓI (N ), as the graph with vertex set {x ∈ N \ I : xNy ⊆ I or yNx ⊆ I for some
y ∈ N \ I} and two distinct vertices x and y are adjacent if and only if xNy ⊆ I
or yNx ⊆ I . If I is a totally reflexive ideal of N (i.e, if aNb ⊆ I , then bNa ⊆ I

for a, b ∈ N ), then the vertex set V (ΓI(N )) = {x ∈ N \ I : xNy ⊆ I for some
y ∈ N \ I}. Having constructed ΓI (N ) corresponding to a totally reflexive ideal I of
N , T. Tamizh Chelvam and S. Nithya [13] proved that Beck’s conjecture is true for
the class of ΓI (N ) and further they characterized all near-rings N for which the graph
ΓI(N ) is finitely colorable.
Since I (abbreviation for I(N )) is a 3-prime radical of N , I is a totally reflexive

ideal of N . Due to this, V (ΓI(N )) = {x ∈ N \ I : xNy ⊆ I for some y ∈ N \ I}
and two distinct vertices x and y are adjacent if and only if xNy ⊆ I. If I is a 3-prime
ideal of N , then the graph ΓI (N ) is empty. Hence we consider near-rings N for which
I is not a 3-prime ideal. For an ideal I of N and x ∈ N , the annihilator of x is nothing
but (I : Nx) = {y ∈ N : yNx ⊆ I}. By Proposition 1.42 [10], (I : Nx) is an ideal
of N . Since I is a totally reflexive ideal of N , (I : Nx) = {y ∈ N : xNy ⊆ I}.

Spec(N ), Max(N ) and Min(N ) denote the set of all proper 3-prime ideals of
N , the set of all maximal ideals of N and the set of all minimal 3-prime ideals of
N , respectively. For a ∈ N , we define V (a) = {P ∈ Spec(N ) : a ∈ P}, D(a) =
{P ∈ Spec(N ) : a /∈ P} = Spec(N ) \ V (a) and M(a) = V (a) ∩ Max(N ). Note
that V (a) = V (〈a〉) and D(a) = D(〈a〉), where 〈a〉 is the ideal generated by a ∈ N .
Also, for an ideal J of N , V (J) =

⋂
a∈J

V (a) and D(J) =
⋃

a∈J

D(a). Since the sets

{V (J) : J is an ideal of N} and {D(J) : J is an ideal of N} satisfy the axioms for
closed sets and open sets, one can have a topology on Spec(N ) and hence Spec(N )
is a topological space. Further with respect to this topologyMin(N ) is a subspace of
Spec(N ). If N is a zero-symmetric near-ring with identity, thenMax(N ) ⊆ Spec(N )
and so we considerMax(N ) as a subspace of Spec(N ). Also B = {D(x) : x ∈ N} is
a base of the topological space Spec(N ). The operators cl and int denote the closure
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and the interior in a topological space. For basic definitions of topological space one
may refer [8].
Recently, K. Samei [12] studied the relation between properties of a commutative

reduced ring R and properties of the graph Γ(R) through topological properties of
Spec(R). Note that when N is a commutative reduced ring, the 3-prime radical of
N is {0} and so Γ(N ) = ΓI(N ). In Section 2, we generalize some results proved in
[12] for commutative ring to near-rings. In section 3, we construct a dominating set of
ΓI(N ) through a base of the topological space Spec(N ) and on the other way obtain a
dense subset in Spec(N ) corresponding to every dominating set in ΓI(N ). Moreover,
we give a topological characterization for the set of all central vertices of ΓI(N ) to be
a dominating set and the neighbourhood of every vertex in ΓI(N ) to be a connected
dominating set of ΓI (N ).
Let G be a graph with vertex set V (G). Recall that G is connected if there is a

path between any two distinct vertices of G. The neighbourhood of a vertex x in G is
the set consisting of all vertices which are adjacent with x. For two vertices x and y
of G, the distance d(x, y) to be the length of a shortest path from x to y. The diameter
of G is diam(G) = max {d(x, y) : x, y ∈ V (G)}. The eccentricity of a vertex x in
G is defined as e(x) = max {d(x, z) : z ∈ V (G)}. The radius of G is the minimum
eccentricity among the vertices of G, which is denoted by rad(G). A vertex x in G is
a central vertex if e(x) = rad(G). For S ⊆ V (G), the induced subgraph H induced
by S is the subgraph of G with vertex set S and two vertices are adjacent in H if and
only if they are adjacent in G and it is denoted by 〈S〉. A graph G is complete if each
pair of distinct vertices is adjacent. For undefined terms in graph theory, we refer to
[6].

2. BASIC PROPERTIES OF ΓI (N )

The results of this section provide effective criterion for discussing the dominating
sets and the connected dominating sets of ΓI(N ) in Section 3. One can easily observe
the following.

Observation 2.1. Let N be a near-ring and a ∈ N . Then
(i) V ((I : Na)) = clD(a) = Spec(N ) \ intV (a).

(ii) a ∈ V (ΓI(N )) if and only if ∅ 	= clD(a) 	= Spec(N ).

The following proposition topologically characterizes the concept of distance in
ΓI(N ). First we need the following Lemma.

Lemma 2.2. ([13, Theorem 2.2]). Let I be a totally reflexive ideal of a near-ring
N . Then diam(ΓI(N ) ≤ 3.

Proposition 2.3. Let I be the 3-prime radical of N and a, b, c ∈ V (ΓI(N )) be
distinct elements. Then the following are true.



1616 T. Tamizh Chelvam and S. Nithya

(i) c is adjacent in ΓI (N ) to both a and b if and only if clD(a)∪ clD(b) ⊆ V (c);

(ii) d(a, b) = 1 if and only if D(a) ∩ D(b) = ∅;
(iii) d(a, b) = 2 if and only if D(a) ∩ D(b) 	= ∅ and clD(a) ∪ clD(b) 	= Spec(N );

(iv) d(a, b) = 3 if and only if D(a) ∩ D(b) 	= ∅ and clD(a) ∪ clD(b) = Spec(N ).

Proof.

(i) Note that c is adjacent to both a and b in ΓI(N ) if and only if aNc ⊆ I
and bNc ⊆ I if and only if D(a) ∩ D(c) = D(b) ∩ D(c) = ∅ if and only if
D(a) ∪ D(b) ⊆ V (c) and if and only if clD(a)∪ clD(b) ⊆ V (c).

(ii) Trivial from definitions.

(iii) Suppose d(a, b) = 2, then there exists c ∈ V (ΓI(N )) such that c is adjacent to
both a and b. By (ii) and (i), D(a) ∩ D(b) 	= ∅ and clD(a) ∪ clD(b) ⊆ V (c).
Since c /∈ I, we have V (c) 	= Spec(N ).

Conversely assume that D(a)∩D(b) 	= ∅ and clD(a)∪ clD(b) 	= Spec(N ). By
(ii), d(a, b) 	= 1. Since clD(a) = V ((I : Na)) and clD(b) = V (I : Nb), there
exists P ∈ Spec(N ) with x, y /∈ P for some x ∈ (I : Na) and y ∈ (I : Nb).
This implies that xNy � I and there exists n ∈ N such that xny ∈ (I : Na)
and xny ∈ (I : Nb). Hence d(a, b) = 2.

(iv) By Lemma 2.2, we have diam(ΓI(N )) ≤ 3. Now proof follows from (ii) and
(iii).

Lemma 2.4. Let N be a near-ring. For F ⊆ Spec(N ), the closure of F is

clF =
{

P ′ ∈ Spec(N ) :
⋂

P∈F
P ⊆ P ′

}
.

Proof. Let A =
{

P ′ ∈ Spec(N ) :
⋂

P∈F
P ⊆ P ′

}
and Q ∈ A. Since B =

{D(x) : x ∈ N} is a base for the space Spec(N ), it is enough to a D(x) such that
Q ∈ D(x). ClearlyD(x)∩F 	= ∅, i.e., Q ∈ clF . Suppose A � clF , there is P1 ∈ clF
such that

⋂
P∈F

P � P1. Let x ∈ ⋂
P∈F

P \ P1, then P1 ∈ D(x) and D(x) ∩ F = ∅, a
contradiction. Hence clF = A.

From this Lemma 2.4, for every closed subset F of Spec(N ), F = V (J) where
J =

⋂
P∈F

P .

Theorem 2.5. Let I be the 3-prime radical of a near-ring N . A subset F of
Spec(N ) is dense in Spec(N ) if and only if I =

⋂
Q∈F

Q.
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Proof. Let F be dense in Spec(N ). Then by Lemma 2.4, clF =

{
P ′ ∈

Spec(N ) :
⋂

Q∈F
Q ⊆ P ′

}
= Spec(N ). Hence

⋂
Q∈F

Q ⊆ I. As F ⊆ Spec(N ),

I =
⋂

Q∈F
Q.

Conversely, assume that I =
⋂

Q∈F
Q. Suppose clF =

{
P ′ ∈ Spec(N ) :

⋂
Q∈F

Q ⊆

P ′
}

� Spec(N ). Then there exists P1 ∈ Spec(N ) such that
⋂

Q∈F
Q � P1, i.e., there

exists x ∈ ⋂
Q∈F

Q \ P1, a contradiction to the fact that I =
⋂

Q∈F
Q. Hence F is dense

in Spec(N ).

Note that every maximal ideal is a 3-primal ideal in a zero-symmetric near-ring N
with identity 1. This along with Theorem 2.5 give the following corollary.

Corollary 2.6. Let I be the 3-prime radical of N with I = ∩Max(N ). Then
Max(N ) is dense in Spec(N ).

Theorem 2.7. Let N be a near-ring with the 3-prime radical I. Then
(i) Spec(N ) is a compact space,

(ii) Max(N ) is a compact subspace of Spec(N ),
(iii) If N is a 2-primal pm-near-ring, then Max(N ) is Hausdorff. Moreover, if

I = ∩Max(N ), then Spec(N ) is normal.

Proof. (i) and (ii) follow from Theorem 2.3(ii) and (iii) in [7].
(iii) Since N is a 2-primal near-ring, all prime radicals are coincide. Now the proof
follows from Theorems 2.8 and 2.3(v) in [7].

Theorem 2.8. Let N be a 2-primal pm-near-ring with I = ∩Max(N ). Then
diam(ΓI(N )) = 3 if and only if there exist at least three distinct maximal ideals in
N .

Proof. Assume that diam(ΓI(N )) = 3, then there exist a, b, x, y ∈ V (ΓI(N ))
such that a−x−y−b is a path. Suppose |Max(N )| = 2 and letMax(N ) = {M1, M2}.
As d(a, b) = 3, by Proposition 2.3(ii) there exists a 3-prime ideal P ∈ D(a) ∩ D(b).
By P ∈ D(a) and Corollary 2.6, there exists a maximal ideal M1 ∈ D(a). Since
aNx ⊆ I, xNy ⊆ I and I = M1 ∩M2, x ∈ M1 \M2, y ∈ M2 \M1. Now yNb ⊆ I
gives that b ∈ M1. Therefore M1 ∈ D(a) \ D(b). Similarly, as P ∈ D(b) we can
show that M2 ∈ D(b) \ D(a). Again P ∈ D(anb) for some n ∈ N and Max(N ) is
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dense in Spec(N ), we have D(anb) ∩ Max(N ) 	= ∅. But Mi /∈ D(anb) ∩ Max(N )
for i = 1, 2, a contradiction. Thus |Max(N )| ≥ 3.
Conversely, suppose that |Max(N )| ≥ 3 and let M1, M2, M3 be distinct maximal

ideals in N . By Theorem 2.7(iii), Max(N ) is Hausdorff. Thus there exist ai ∈ N
such thatMi ∈ D(ai), i = 1, 2, 3 and D(ai) are mutually disjoint. Since a1 /∈ M1 and
a2 /∈ M2, there exist a ∈ M1, b ∈ M2 such that a+a′1 = b+a′2 = 1 where a′1 ∈ < a1 >
and a′2 ∈ < a2 >. Thus M1 ∈ V (a) ⊆ D(a1) and M2 ∈ V (b) ⊆ D(a2). Clearly
M3 ∈ D(a)∩D(b) and soD(a)∩D(b) 	= ∅. SupposeD(a)∪D(b) � Spec(N ). Then
there exists P ∈ Spec(N ) such that P ∈ V (a) ⊆ D(a1) and P ∈ V (b) ⊆ D(a2),
a contradiction. Therefore clD(a) ∪ clD(b) ⊇ D(a) ∪ D(b) = Spec(N ) and so by
Proposition 2.3(iv), d(a, b) = 3 which implies diam(ΓI(N )) = 3.

Theorem 2.9. Let N be a 2-primal pm-near-ring with |N | > 4 and
∩Max(N ) = 〈0〉. Then diam(ΓI(N )) = min {|Max(N )|, 3}.
Proof. Since ∩Max(N ) = 〈0〉, I = ∩Max(N ) gives |Max(N )| > 1. Suppose

that |Max(N )| = 2. Let Max(N ) = {M1, M2}, then there exist a1 ∈ M1 \ M2 and
a2 ∈ M2 \M1 such that a1Na2 ⊆ I and so a1, a2 ∈ V (ΓI(N )). Since |N | > 4, either
M1 or M2 contains at least two nonzero elements. If possible, M1 and M2 contains
only one element, then |N | = 4, a contradiction. Without loss of generality assume
that there exists nonzero (a1 	=)b1 ∈ M1. Since a2Nb1 ⊆ I and b1 /∈ M2 which imply
b1 ∈ V (ΓI(N )) and a1Nb1 � M2. Therefore d(a1, b1) = 2 and so diam(ΓI(N )) = 2.
This along with Theorem 2.8 imply that diam(ΓI(N )) = min {|Max(N )|, 3}.
Remark 2.10. In Theorem 2.9, if |N | = 4, then the fact is not true. Consider

the near-ring of matrices N =
{(

0 0
x x

)
, x ∈ Z2

}
. Then diam(ΓI(N )) = 1. If

|N | < 4, then the graph ΓI(N ) is empty.

Lemma 2.11. Let N be a 2-primal pm-near-ring with I = ∩Max(N ). For every
open subset U of P in Spec(N ), there exists a ∈ V (ΓI(N )) such that P ∈ intV (a) ⊆
V (a) ⊆ U . That is, {intV (a) : a ∈ V (ΓI(N ))} is a base of the space Spec(N ).

Proof. Let U be a proper open set of Spec(N ). Then ∅ 	= U c = Spec(N ) \U =
V (J) for some ideal J of N . By Theorem 2.7(iii), Spec(N ) is normal and so there
are disjoint open sets U ′ and U ′′ in Spec(N ) such that P ∈ U ′ and V (J) ⊆ U ′′. Since
Spec(N ) is compact and V (J) is closed, V (J) is compact, so there are ai ∈ N , i = 1 to

n such that V (J) ⊆
n⋃

i=1
D(ai) = D(J1) ⊆ U ′′, where J1 =

n∑
i=1

< ai >. We claim that

J1+J = N . For otherwise, there exists a proper 3-prime ideal Q such that J1+J ⊆ Q
which gives Q ∈ V (J1) and Q ∈ V (J) ⊆ D(J1), a contradiction. Thus J1 + J = N ,
i.e., a+b = 1 for some a ∈ J1 and b ∈ J . Since U ′∩U ′′ = ∅, we have U ′∩D(a) = ∅
. Hence P ∈ U ′ ⊆ int V (a) ⊆ V (a) ⊆ D(b) ⊆ D(J) = U . By Observation
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2.1, a ∈ V (ΓI(N )). Suppose U = Spec(N ). Since |Max(N )| > 1, there exists a
maximal ideal M containing c such that c /∈ P . Then P ∈ D(c) 	= Spec(N ). Hence
there exists a ∈ V (ΓI(N )) such that P ∈ int V (a) ⊆ V (a) ⊆ D(b) ⊆ D(c) ⊂ U .

In view of Lemma 2.11, we observe that the following remarks.

Remark 2.12. For every nonempty open subset U of Spec(N ), by Lemma 2.11,
there exists b ∈ N such that ∅ 	= D(b) 	= Spec(N ) and D(b) ⊆ U . Choose P1 ∈ D(b)
and P2 ∈ V (b). Since Spec(N ) is normal, there exist c1, c2 ∈ N such that P1 ∈
D(c1) ⊆ D(b), P2 ∈ D(c2) and D(c1) ∩ D(c2) = ∅. Therefore c1Nc2 ⊆ I. Hence
for every nonempty open subset U of Spec(N ), there exists c1 ∈ V (ΓI(N )) such that
D(c1) ⊆ U .
If N is a 2-primal pm-near-ring, then by Theorem 2.7(ii) and (iii), Max(N ) is a

compact Hausdorff space and by Theorem 3.26 in [9], Max(N ) is normal. By the
argument similar to the proof of Lemma 2.11, {intM(a) : a ∈ V (ΓI(N ))} is a basis
of Max(N ).

Proposition 2.13. Let I be the 3-prime radical of N and a ∈ V (ΓI(N )). If
e(a) = 1, then |Min(N )| = 2.

Proof. We claim that P1 = I ∪ {a} and P2 = (I : Na) are the only minimal 3-
primal ideals of N . Let x1, x2 ∈ P1. Since e(a) = 1, for every y ∈ P2 (x1−x2)Ny ⊆
I which yields x1 − x2 ∈ P1. If x ∈ P1, then xNy + I = I for every y ∈ P2 and
so (n + x − n)Ny ⊆ I for every n ∈ N , i.e., n + x − n ∈ P1. Thus P1 is a normal
subgroup of N . Let x ∈ P1 and n, n′ ∈ N , then xnNy ⊆ I which gives P1N ⊆ P1

and since xNy +I = I, (n(n′ +x)−nn′)Ny ⊆ I, i.e., n(n′ +x)−nn′ ∈ P1. Hence
P1 is an ideal of N . Assume that x1Nx2 ⊆ P1, x1, x2 ∈ N , then x1Nx2Ny ⊆ I for
every y ∈ P2.

Case 1. Let x1Nx2 ⊆ I. Suppose that both x1, x2 /∈ P1, then x1, x2 ∈ V (ΓI(N )).
As e(a) = 1 gives aNx1 ⊆ I and aNx2 ⊆ I, so (a + x2)Nx1 ⊆ I. Thus a + x2 ∈
V (ΓI(N )) such that d(a, a + x2) = 2, a contradiction.

Case 2. Suppose x1nx2 = a /∈ I for some n ∈ N. From this, x1Na � I
and x2Na � I. Since every y ∈ P2, aNy ⊆ I, x1nx2Ny ⊆ I. If x2Ny ⊆ I,
then d(a, x2) =, a contradiction. Also, if x2Ny � I, then x1Nx2Ny ⊆ I implies
x1 ∈ V (ΓI(N )). Since P2 is an ideal, x2NyNa ⊆ I, so d(a, x1) = 2, again a
contradiction. Also P1 is a minimal 3-prime ideal of N .
Since P2 is an ideal, it remains to prove that P2 is 3-prime. Let x1Nx2 ⊆ P2, then

x1Nx2Na ⊆ I. If x2Na ⊆ I, then x2 ∈ P2. Otherwise, there exists n ∈ N such that
x2na = a, as x2Na ⊆ P1. Hence x1 ∈ P2. Therefore P2 is a minimal 3-prime ideal
of N .
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If P ∈ Min(N ) \ {P1, P2}, then a /∈ P and there is some b ∈ P2 such that b /∈ P .
It is clear that aNb ⊆ I, a contradiction to the fact that a, b /∈ P .

Remark 2.14. The converse of the Proposition 2.13 is not true. Consider the near-
ring N = Z3 × Z5, then the graph ΓI (N ) is K2,4 and N has exactly two minimal
3-prime ideals, but no one vertex in ΓI(N ) has eccentricity one.

Proposition 2.15. Let N be a 2-primal pm-near-ring with I = ∩Max(N ), a ∈
V (ΓI(N )) and e(a) 	= 1. Then

(i) e(a) = 2 if and only if |clD(a)| = 1,

(ii) e(a) = 3 if and only if |clD(a)| > 1.
In particular, e(a) = min {|clD(a)|+ 1, 3} .

Proof. (i) Assume that e(a) = 2. Suppose |clD(a)| > 1. Clearly D(a) 	= ∅,
then there is a maximal ideal, say M in D(a). Now we prove that D(a) contains at
least two distinct maximal ideals. For otherwise, it contains only one maximal ideal
M . Since |clD(a)| > 1, there is a 3-prime ideal (M 	=)Q ∈ clD(a). Therefore there
exists x ∈ M \ Q such that aNx ⊆ ∩Max(N ) = I which is a contradiction to the
fact that D(a) ∩ D(x) 	= ∅. Hence there are maximal ideals M, M ′ in D(a). Let
b ∈ M ′ \ M , then aNb � M and so M ∈ D(anb) for some n ∈ N . By Lemma
2.11, there exists c ∈ N such that M ∈ intV (c) ⊆ D(anb) ⊆ clD(a), consequently,
clD(a) ∪ clD(c) = Spec(N ) and M ′ ∈ D(a) ∩ clD(c) gives that D(a) ∩ D(c) 	= ∅.
Then by Proposition 2.3(iv), d(a, c) = 3, a contradiction.
Conversely assume that |clD(a)| = 1, then there is P ∈ Spec(N ) such thatD(a) =

clD(a) = {P}. On the contrary, suppose that d(a, b) = 3 for some b ∈ V (ΓI(N )).
Again by Proposition 2.3(iv), we have D(a)∪ clD(b) = clD(a)∪ clD(b) = Spec(N ).
This implies that clD(b) = V (a). Therefore D(a) ∩ D(b) = ∅, a contradiction. This
shows that e(a) = 2.
(ii) Proof follows from the hypothesis and (i).

3. DOMINATING SETS IN ΓI(N )

A subsetD of V (ΓI(N )) is called a dominating set if for every v ∈ V (ΓI(N ))−D

is adjacent to some vertex in D. The domination number γ(G) is the cardinality of
the smallest possible dominating set in G. A dominating set D is called a connected
dominating set if the induced subgraph< D > is connected. The connected domination
number γc(G) is the cardinality of the smallest possible connected dominating set. The
following theorem exposes a close connection betweenΓI (N ) and the topological space
Spec(N ).

Theorem 3.1. Let N be a 2-primal pm-near-ring with I = ∩Max(N ). Then

(i) For every dominating set of ΓI(N ), there exists a dense subset in Spec(N ).
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(ii) For every base for the open sets of the space Spec(N ), there exists a dominating
set in ΓI (N ).

Proof. (i) Suppose D is a dominating set. For every a ∈ D, there exists
b ∈ V (ΓI(N )) such that aNb ⊆ I. Since Max(N ) is dense, ∅ 	= D(b)∩Max(N ) ⊆
M(a) andMax(N )\M(a) 	= ∅. Then we takeMa ∈ intM(a) and M ′

a ∈ Max(N )\
M(a). First we show that the setA = {Ma : a ∈ D}∪{M ′

a : a ∈ D} is a dense subset
of Max(N ). By Remark 2.12(ii) {intM(c) : c ∈ V (ΓI(N ))} is a basis for Max(N ).
Therefore it is sufficient to prove that for every c ∈ V (ΓI(N )), A∩ intM(c) 	= ∅. Let
c ∈ V (ΓI(N )). If c ∈ D implies that Mc ∈ A ∩ intM(c). Otherwise, since D is a
dominating set, there exists d ∈ D such that cNd ⊆ I. ThusM ′

d ∈ Max(N )\M(d) ⊆
intM(c) and soM ′

d ∈ A∩ intM(c). This shows that A is a dense subset inMax(N )
this along with Max(N ) is dense in Spec(N ) lead to A is dense in Spec(N ).
(ii) Let B = {Bλ : λ ∈ Λ} be a base for the open sets of the space Spec(N ). By
Remark 2.12(i), for everyBλ ∈ B, there exists aλ ∈ V (ΓI(N )) such that D(aλ) ⊆ Bλ.
We claim that D = {aλ : λ ∈ Λ} is a dominating set. Let b ∈ V (ΓI(N )). Then there
exists Bλ ∈ B such that Bλ ⊆ intV (b). Therefore D(aλ) ⊆ intV (b), i.e., aλNb ⊆ I
and consequentlyD is a dominating set.

In a topological space X , a point x of X is said to be an isolated point of X
if the one point set {x} is open in X . P0(N ), M0(N ) and I0(N ) denote the sets
of isolated points of the spaces Spec(N ), Max(N ) and Min(N ), respectively. The
following lemma shows that these isolated points sets are coincide in a pm-near-ring
N with I = ∩Max(N ).

Lemma 3.2. Let N be a pm-near-ring with I = ∩Max(N ). Then P0(N ) =
M0(N ) = I0(N ).

Proof. First we show that P0(N ) = M0(N ). Suppose {M} is open inMax(N ),
then D(a) ∩ Max(N ) = {M} for some a ∈ N . It follows that
a ∈ ⋂

M ′∈Max(N)\{M}
M ′. Therefore < a > M ⊆ ∩Max(N ) = I. Since every

P ∈ Spec(N ) is prime, 〈a〉 ⊆ P or M ⊆ P and so D(a) = {M}, i.e., M ∈ P0(N ).
The opposite inclusion is trivial. Now it is sufficient to show that M0(N ) = I0(N ).
Let P ′ ∈ I0(N ) such that {P ′} = D(b) ∩ Min(N ), b ∈ N . Then P ′ ⊆ M ′ for
a unique maximal ideal M ′ and so b ∈ ⋂

M∈Max(N)\{M ′}
M \ P ′ . This implies that⋂

M∈Max(N)\{M ′}
M 	= I, i.e., there exists c /∈ I and c ∈ ⋂

M∈Max(N)\{M ′}
M . Therefore

c /∈ M ′ and hence M ′ is an isolated point of Max(N ), so M ′ ∈ M0(N ) = P0(N )
and consequently P ′ = M ′ ∈ M0(N ). Since M0(N )=P0(N ), M0(N )⊆I0(N ).
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Theorem 3.3. Let N be a 2-primal pm-near-ring with I = ∩Max(N ) and
|Min(N )| > 2. Then the set of central vertices of ΓI(N ) is a dominating set if
and only if the set of isolated points of Spec(N ) is dense in Spec(N ).

Proof. Let D be the set of central vertices of ΓI(N ). Since diam(ΓI(N )) ≤ 3
and Proposition 2.13, e(a) = 2 for every a ∈ D. Then by Proposition 2.15(i), we have
D = {a ∈ V (ΓI(N )) : |clD(a)| = 1}. Now we claim that Y = {Pa : D(a) = {Pa} ,

a ∈ D} is a dense subset of Spec(N ). Let U be a nonempty open set which does
not contain any isolated points. Since Max(N ) is dense in Spec(N ), there exists
M ∈ U ∩ Max(N ). By Lemma 3.2, |U ∩ Max(N )| > 1, so there are distinct
maximal ideals M, M ′ ∈ U . Clearly (I : Na0) � M , a0 ∈ D, otherwise, M ∈
V ((I : Na0)) = clD(a0), a contradiction. Then there exists y ∈ (I : Na0) \ M
and x ∈ M ′ \ M such that b = xny ∈ Pa0 ∩ M ′ \ M for some n ∈ N and there is
b′ ∈ N such that M ∈ D(b′) ⊆ U . Therefore by Lemma 2.11, there exists c ∈ N and
n′ ∈ N such that M ∈ intV (c) ⊆ D(bn′b′) ⊆ U , consequently Pa0, M

′ ∈ cl D(c),
i.e., c ∈ V (ΓI(N )) \ D. Since D is a dominating set, there exists a ∈ D such that
aNc ⊆ I. Hence Pa ∈ D(a) ⊆ intV (c) ⊆ U , i.e., U contains an isolated point of
Spec(N ). This leads to U ∩ Y 	= ∅, i.e., Y is dense in Spec(N ).
Conversely, let Y = {Pλ : λ ∈ Λ} be the set of isolated points of Spec(N ). Consider
D = {aλ : D(aλ) = {Pλ}}, then e(aλ) = 2 for every λ ∈ Λ and so every element of
D is a central vertex of ΓI(N ). Suppose that b ∈ V (ΓI(N )) \ D. Since Y is dense
in Spec(N ), then there exists Pλ ∈ intV (b) ∩ Y . Therefore D(aλ) ⊆ intV (b) which
implies that aλNb ⊆ I, i.e., D is a dominating set.

Proposition 3.4. Let N be a 2-primal pm-near-ring with I = ∩Max(N ). If
Spec(N ) has an isolated point, then there exists a ∈ N such that the neighbourhood
N (a) of a in ΓI(N ) is a dominating set.

Proof. Let P be an isolated point in Spec(N ). Then there exists a ∈ N
such that {P} = D(a) and so |clD(a)| = 1. If e(a) = 1, then clearly N (a) is
a dominating set. Otherwise, since |clD(a)| = 1, Proposition 2.15(ii) implies that
e(a) = 2. Suppose there is a vertex b /∈ N (a) which is not dominated by any c ∈ N (a).
As diam(ΓI(N )) ≤ 3, d(b, c) = 2 or 3 and hence d(a, b) > 2, a contradiction.

Remark 3.5. From the Proposition 3.4, γ(ΓI(N )) ≤ |N (a)| and the bound is
sharp. For example, consider the near-ring N = Z2 ×Z2 ×Z2, then the corresponding
graph ΓI(N ) as given in Figure 1. Here, D((1, 0, 0)) = {{0} × Z2 × Z2}, then
{0} × Z2 × Z2 is an isolated point and hence the neighbourhood set N ((1, 0, 0)) =
{(0, 1, 1), (0, 0, 1)(0, 1, 0)} is a minimum dominating set.
Theorem 3.6. Let I be the 3-prime radical of a near-ring N and

diam(ΓI(N )) = 2 . Then the following are equivalent.
(i) For every x ∈ V (ΓI(N )), the neighbourhood N (x) in ΓI(N ) of x induces a

connected subgraph of ΓI(N ) and hence it is a connected dominating set.
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(ii) For every pair of distinct a, b ∈ V (ΓI(N )), there exists c ∈ N such that
clD(a) ∪ clD(b) ⊆ V (c).

Figure 1.

Proof. (i)⇒(ii) Let a, b ∈ V (ΓI(N )). If aNb � I, since diam(ΓI(N )) = 2, the
result follows from Proposition 2.3(i). So it is enough to discuss the case that aNb ⊆ I.
Again by diameter of ΓI(N ), there exists c′ ∈ V (ΓI(N )) \ {a, b} such that c′ ∈ N (a)
or c′ ∈ N (b). Without loss of generality, c′ ∈ N (a). Since induced subgraph of N (a)
is connected, there is a path lies between c′ and b. Then there exists c ∈ N (a) such
that c ∈ N (b). Therefore by Proposition 2.3(i), clD(a) ∪ clD(b) ⊆ V (c).
(ii)⇒(i) Let x1, x2 ∈ N (x). If x1Nx2 ⊆ I, then x1 − x2 is a path. Otherwise, there
exists n ∈ N such that x1nx2 /∈ I. Consider x, x1 and x, x2, by our assumption
and proposition 2.3(i), there exist y1, y2 ∈ N such that y1 ∈ N (x) ∩ N (x1) and
y2 ∈ N (x) ∩ N (x2). Then x1 − y1 − x1nx2 − y2 − x2 is a path in the induced
subgraph of N (x). Thus N (x) induces a connected subgraph of ΓI(N ) and since
diam(ΓI(N )) = 2, for every x ∈ V (ΓI(N )), N (x) is a dominating set.

Proposition 3.7. Let I be the 3-prime radical of N such that for every P ∈
Spec(N ),

⋂
Q∈Spec(N)\{P}

Q 	= I. Then γc(ΓI(N )) ≤ |Spec(N )|.

Proof. For every P ∈ Spec(N ), take aP ∈ ⋂
Q∈Spec(N)\{P}

Q \ I. We show
that the set D = {aP : P ∈ Spec(N )} is a connected dominating set of V (ΓI(N )).
Suppose b ∈ V (ΓI(N )) \ D, then b ∈ P ′ for some P ′ ∈ Spec(N ) and so we have
bP ′ ∈ ⋂

Q′∈Spec(N)\{P ′}
Q′ \ I. Then bP ′ ∈ D and bNbP ′ ⊆ I. Consequently, since

every aP ∈ D, D(aP ) = {P}, P ∈ Spec(N ) and by Proposition 2.3(ii), D induces
a complete subgraph of ΓI(N ). Hence D is a connected dominating set. Therefore
γc(ΓI(N )) ≤ |D| = Spec(N ).

Remark 3.8. The bound in Proposition 3.7, is sharp. Consider the near-ring N
with Spec(N ) = {P1, P2} and |Pi \ I| > 1 for i = 1, 2. Let a ∈ V (ΓI(N )). Without
loss of generality a ∈ P1 \ I, then aNb ⊆ I for every b ∈ P2 \ I and aNa′ � I for
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every a′ ∈ P1 \ I, so for all a ∈ P1 \ I, b ∈ P2 \ I, {a, b} is a minimum connected
dominating set.
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