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INTEGRAL REPRESENTATIONS OF GENERALIZED HARMONIC
FUNCTIONS

Lei Qiao and Guoshuang Pan*

Abstract. When generalized harmonic functions belong to the weighted Lebesgue
classes, we give the asymptotic behaviors of them at infinity in an n-dimensional
cone. Meanwhile, the integral representations of them are also considered, which
imply the known representations of classical harmonic functions in the upper half
space.

1. INTRODUCTION AND RESULTS

LetR andR+ be the set of all real numbers and the set of all positive real numbers,
respectively. We denote by Rn(n ≥ 2) the n-dimensional Euclidean space. A point
in Rn is denoted by P = (X, xn), X = (x1, x2, . . . , xn−1). The Euclidean distance
between two points P and Q in Rn is denoted by |P − Q|. Also |P − O| with the
origin O of Rn is simply denoted by |P |. The boundary and the closure of a set S in
Rn are denoted by ∂S and S, respectively.
We introduce a system of spherical coordinates (r, Θ), Θ = (θ1, θ2, . . . , θn−1), in

Rn which are related to cartesian coordinates (x1, x2, . . . , xn−1, xn) by xn = r cos θ1.
The unit sphere and the upper half unit sphere in Rn are denoted by Sn−1 and

Sn−1
+ , respectively. For simplicity, a point (1, Θ) on Sn−1 and the set {Θ; (1, Θ) ∈ Ω}
for a set Ω, Ω ⊂ Sn−1, are often identified with Θ and Ω, respectively. For two sets
Ξ ⊂ R+ and Ω ⊂ Sn−1, the set {(r, Θ) ∈ Rn; r ∈ Ξ, (1, Θ) ∈ Ω} in Rn is simply
denoted by Ξ×Ω. In particular, the half space R+×Sn−1

+ = {(X, xn) ∈ Rn; xn > 0}
will be denoted by Tn.
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For P ∈ Rn and r > 0, let B(P, r) denote the open ball with center at P and
radius r in Rn. Sr = ∂B(O, r). By Cn(Ω), we denote the set R+ × Ω in Rn with
the domain Ω on Sn−1. We call it a cone. Then Tn is a special cone obtained by
putting Ω = Sn−1

+ . We denote the sets I × Ω and I × ∂Ω with an interval on R by
Cn(Ω; I) and Sn(Ω; I). By Sn(Ω; r) we denote Cn(Ω) ∩ Sr. By Sn(Ω) we denote
Sn(Ω; (0, +∞)) which is ∂Cn(Ω)− {O}.
We denote by dSr the (n − 1)-dimensional volume elements induced by the Eu-

clidean metric on Sr and by dw the elements of the Euclidean volume in Rn.
Let Aa denote the class of nonnegative radial potentials a(P ), i.e. 0 ≤ a(P ) =

a(r), P = (r, Θ) ∈ Cn(Ω), such that a ∈ Lb
loc(Cn(Ω)) with some b > n/2 if n ≥ 4

and with b = 2 if n = 2 or n = 3.
This article is devoted to the stationary Schrödinger equation

Schau(P ) = −Δu(P ) + a(P )u(P ) = 0 for P ∈ Cn(Ω),

where Δ is the Laplace operator and a ∈ Aa. These solutions called a-harmonic func-
tions or generalized harmonic functions associated with the operator Scha. Note that
they are classical harmonic functions in the classical case a = 0. Under these assump-
tions the operator Scha can be extended in the usual way from the space C∞

0 (Cn(Ω)) to
an essentially self-adjoint operator on L2(Cn(Ω)) (see [10, 11, 15]). We will denote it
Scha as well. This last one has a Green function G(Ω, a)(P, Q). Here G(Ω, a)(P, Q)
is positive on Cn(Ω) and its inner normal derivative ∂G(Ω, a)(P, Q)/∂nQ ≥ 0. We
denote this derivative by PI(Ω, a)(P, Q), which is called the Poisson a-kernel with re-
spect to Cn(Ω), where ∂/∂nQ denotes the differentiation at Q along the inward normal
into Cn(Ω). We remark that G(Ω, 0)(P, Q) and PI(Ω, 0)(P, Q) are the Green function
and Poisson kernel of the Laplacian in Cn(Ω) respectively.
Let Δ∗ be the Laplace-Beltrami operator (spherical part of the Laplace) on Ω ⊂

Sn−1 and λj (j = 1, 2, 3 . . . , 0 < λ1 < λ2 ≤ λ3 ≤ . . .) be the eigenvalues of the
eigenvalue problem for Δ∗ on Ω (see, e.g., [16, p. 41])

Δ∗ϕ(Θ) + λϕ(Θ) = 0 in Ω,

ϕ(Θ) = 0 on ∂Ω.

Corresponding eigenfunctions are denoted by ϕjv (1 ≤ v ≤ vj), where vj is the
multiplicity of λj . We set λ0 = 0, norm the eigenfunctions in L2(Ω) and ϕ1 = ϕ11 > 0.
Then there exist two positive constants d1 and d2 such that

(1.1) d1δ(P ) ≤ ϕ1(Θ) ≤ d2δ(P )

for P = (1, Θ) ∈ Ω (see Courant and Hilbert [3]), where δ(P ) = inf
Q∈∂Cn(Ω)

|P − Q|.
In order to ensure the existences of λj (j = 1, 2, 3 . . .), we put a rather strong

assumption on Ω: if n ≥ 3, then Ω is a C2,α-domain (0 < α < 1) on Sn−1 surrounded
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by a finite number of mutually disjoint closed hypersurfaces.Then ϕjv ∈ C2(Ω) (j =
1, 2, 3, . . . , 1 ≤ v ≤ vj) and ∂ϕ1/∂n > 0 on ∂Ω (here and below, ∂/∂n denotes
differentiation along the interior normal). Hence well-known estimates (see, e.g., [14,
p. 14]) imply the following inequality:

(1.2)
vj∑

v=1

ϕjv(Θ)
∂ϕjv(Φ)

∂nΦ
≤ M(n)j2n−1,

where the symbol M(n) denotes a constant depending only on n.
Let Vj(r) and Wj(r) stand, respectively, for the increasing and non-increasing, as

r → +∞, solutions of the equation

(1.3) −Q′′(r)− n − 1
r

Q′(r) +
(

λj

r2
+ a(r)

)
Q(r) = 0, 0 < r < ∞,

normalized under the condition Vj(1) = Wj(1) = 1.
We shall also consider the class Ba, consisting of the potentials a ∈ Aa such that

there exists a finite limit lim
r→∞ r2a(r) = k ∈ [0,∞), moreover, r−1|r2a(r) − k| ∈

L(1,∞). If a ∈ Ba, then generalized harmonic functions are continuous (see [18]).
In the rest of paper, we assume that a ∈ Ba and we shall suppress this as-

sumption for simplicity. Further, we use the standard notations u+ = max(u, 0),
u− = −min(u, 0), [d] is the integer part of d and d = [d] + {d}, where d is a positive
real number.
Denote

ι±j,k =
2 − n ±√(n − 2)2 + 4(k + λj)

2
(j = 0, 1, 2, 3 . . .).

It is known (see [7]) that in the case under consideration the solutions to equation
(1.3) have the asymptotics

(1.4) Vj(r) ∼ d3r
ι+j,k , Wj(r) ∼ d4r

ι−j,k , as r → ∞,

where d3 and d4 are some positive constants.

Remark 1. ι+j,0 = j (j = 0, 1, 2, 3, . . .) in the case Ω = Sn−1
+ .

It is known that the following expansion for the Green function G(Ω, a)(P, Q) (see
[5, Ch. 11], [9], [10]) holds:

(1.5) G(Ω, a)(P, Q)=
∞∑
j=1

1
χ′(1)

Vj(min(r, t))Wj(max(r, t))

( vj∑
v=1

ϕjv(Θ)ϕjv(Φ)

)
,

where P = (r, Θ), Q = (t, Φ), r 
= t and χ′(s) = w (W1(r), V1(r)) |r=s is their
Wronskian. The series converges uniformly if either r ≤ st or t ≤ sr (0 < s < 1). In
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the case a = 0, this expansion coincides with the well-known result by Lelong-Ferrand
(see [12]). The expansion (1.5) can also be rewritten in terms of the Gegenbauer
polynomials.
For a nonnegative integer m and two points P = (r, Θ), Q = (t, Φ) ∈ Cn(Ω), we

put

K(Ω, a, m)(P,Q) =

{
0 if 0 < t < 1,

K̃(Ω, a, m)(P, Q) if 1 ≤ t < ∞,

where

K̃(Ω, a, m)(P, Q) =
m∑

j=1

1
χ′(1)

Vj(r)Wj(t)

( vj∑
v=1

ϕjv(Θ)ϕjv(Φ)

)
.

To obtain Poisson a-integral representations of generalized harmonic functions in
a cone, we use the following modified kernel function defined by

G(Ω, a, m)(P, Q) = G(Ω, a)(P, Q)− K(Ω, a, m)(P, Q)

for two points P = (r, Θ), Q = (t, Φ) ∈ Cn(Ω).
Put

U(Ω, a, m; u)(P ) =
∫

Sn(Ω)
PI(Ω, a, m)(P, Q)u(Q)dσQ,

where

PI(Ω, a, m)(P, Q) =
∂G(Ω, a, m)(P,Q)

∂nQ
, PI(Ω, a, 0)(P,Q) = PI(Ω, a)(P, Q),

u(Q) is a continuous function on ∂Cn(Ω) and dσQ is the surface area element on
Sn(Ω).

Remark 2. The kernel function PI(Sn−1
+ , 0, m)(P, Q) coincides with ones in

Finkelstein-Scheinberg [6], Kheyfits [9], Siegel-Talvila [17] and Deng [4] (see [10]).
If γ is a real number and γ ≥ 0 (resp. γ < 0), we assume in addition that

1 ≤ p < ∞,

ι+
[γ],k

+ {γ} > (−ι+1,k − n + 2)p + n − 1,

(resp. − ι+
[−γ],k

− {−γ} > (−ι+1,k − n + 2)p + n − 1, )

in case p > 1

ι+
[γ],k

+ {γ} − n + 1

p
< ι+m+1,k <

ι+
[γ],k

+ {γ} − n + 1

p
+ 1;
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(
resp.

−ι+
[−γ],k

−{−γ}−n+1

p < ι+m+1,k <
−ι+

[−γ],k
−{−γ}−n+1

p + 1;
)

and in case p = 1

ι+[γ],k + {γ} − n + 1 ≤ ι+m+1,k < ι+[γ],k + {γ} − n + 2.(
resp. − ι+[−γ],k − {−γ} − n + 1 ≤ ι+m+1,k < −ι+[−γ],k − {−γ} − n + 2.

)
If these conditions all hold, we write γ ∈ C(k, p, m, n) (resp. γ ∈ D(k, p, m, n)).
Let γ ∈ C(k, p, m, n) (resp. γ ∈ D(k, p, m, n)) and u be a continuous function

on ∂Cn(Ω) satisfying

(1.6)

∫
Sn(Ω)

|u(t, Φ)|p
1 + t

ι+
[γ],k

+{γ} dσQ < ∞.(
resp.

∫
Sn(Ω)

|u(t, Φ)|p(1 + t
ι+
[−γ],k

+{−γ})dσQ < ∞.

)

Siegel-Talvila (cf. [17, Corollary 2.1]) proved the following result.

Theorem A. If u is a continuous function on ∂Tn satisfying∫
∂Tn

|u(t, Φ)|
1 + tn+m

dQ < ∞,

then the function U(Sn−1
+ , 0, m; u)(P ) satisfies

U(Sn−1
+ , 0, m; u) ∈ C2(Tn) ∩ C0(Tn),

ΔU(Sn−1
+ , 0, m; u) = 0 in Tn,

U(Sn−1
+ , 0, m; u) = u on ∂Tn,

lim
r→∞,P=(r,Θ)∈Tn

U(Sn−1
+ , 0, m; u)(P ) = o(rm+1 cos1−n θ1).

First of all we start with the following result.

Theorem 1. If γ ∈ C(k, p, m, n) (resp. γ ∈ D(k, p, m, n)) and u is a continuous
function on ∂Cn(Ω) satisfying (1.6), then the function U(Ω, a, m; u)(P ) satisfies

U(Ω, a, m; u) ∈ C2(Cn(Ω)) ∩ C0(Cn(Ω)),

SchaU(Ω, a, m; u) = 0 in Cn(Ω),

U(Ω, a, m; u) = u on ∂Cn(Ω)
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lim
r→∞,P=(r,Θ)∈Cn(Ω)

r
−ι+

[γ],k
−{γ}+n−1

p ϕn−1
1 (Θ)U(Ω, a, m; u)(P ) = 0.(

resp. lim
r→∞,P=(r,Θ)∈Cn(Ω)

r
ι
+
[−γ],k

+{−γ}+n−1

p ϕn−1
1 (Θ)U(Ω, a, m; u)(P ) = 0.

)

Remark 3. Mizuta-Shimomura (see [13, Theorem 1 with λ = n]) treated the case
Ω = Sn−1

+ and a = 0.
If we put p = 1, ζ = n and ι+[γ],k + {γ} = ι+m+1,k + n − 1 in Theorem 1, by (1.4)

we obtain

Corollary 2. If u is a continuous function on ∂Cn(Ω) satisfying

(1.7)
∫

Sn(Ω)

|u(t, Φ)|
1 + Vm+1(t)tn−1

dσQ < ∞,

then the function U(Ω, a, m; u)(P ) is a generalized harmonic function of P ∈ ∂Cn(Ω)
and

lim
r→∞,P=(r,Θ)∈Cn(Ω)

r−ι+m+1,kϕn−1
1 (Θ)U(Ω, a, m; u)(P ) = 0.

By the boundedness of ϕ1(Θ), we immediately have

Corollary 3. Under the assumptions of Corollary 2, we have

(1.8) lim
r→∞,P=(r,Θ)∈Cn(Ω)

r−ι+m+1,k

∫
Ω

|U(Ω, a, m;u)(P )|ϕ1(Θ)dS1 = 0.

For real numbers β ≥ 1, we denote C(Ω, β, a) the class of all measurable functions
f(t, Φ) (Q = (t, Φ) = (Y, yn) ∈ Cn(Ω)) satisfying the following inequality

(1.9)
∫

Cn(Ω)

|f(t, Φ)|ϕ1

1 + V[β](t)tn+{β} dw < ∞

and the class D(Ω, β, a), consists of all measurable functions g(t, Φ) (Q = (t, Φ) =
(Y, yn) ∈ Sn(Ω)) satisfying

(1.10)
∫

Sn(Ω)

|g(t, Φ)|V1(t)W1(t)
1 + χ′(t)V[β](t)tn+{β}−1

∂ϕ1

∂n
dσQ < ∞.

We will also consider the class of all continuous functions u(t, Φ) ((t, Φ) ∈ Cn(Ω))
generalized harmonic in Cn(Ω) with u+(t, Φ) ∈ C(Ω, β, a) ((t, Φ) ∈ Cn(Ω)) and
u+(t, Φ) ∈ D(Ω, β, a) ((t, Φ) ∈ Sn(Ω)) is denoted by E(Ω, β, a).
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Remark 4. Notice that χ′(t)t = τ1,kV1(t)W1(t). If a = 0, (1.9) and (1.10) are
equivalent to

(1.11)
∫

Cn(Ω)

|f(t, Φ)|ϕ1

1 + t
n+ι+

[β],0
+{β}dw < ∞

and

(1.12)
∫

Sn(Ω)

|g(t, Φ)|
1 + t

n+ι+
[β],0

+{β}−2

∂ϕ1

∂n
dσQ < ∞

respectively from (1.4). We suppose in addition that Ω = Sn−1
+ and α = β − 1 in

(1.11)-(1.12), by Remark 1 we have∫
Tn

yn|f(Y, yn)|
1 + tn+α+2

dQ < ∞ and
∫

∂Tn

|g(Y, 0)|
1 + tn+α

dY < ∞,

which yield that E(Sn−1
+ , α + 1, 0) is equivalent to (CH)α in the notation of [4].

Let us recall the classical case a = 0. If u(P ) ≤ 0 is classical harmonic in Tn,
continuous on Tn and u ∈ E(Sn−1

+ , 1, 0), then there exists a constant d5 ≤ 0 such that
(see [8, 19])

(1.13) u(P ) = d5xn +
∫

∂Tn

PI(Sn−1
+ , 0)(P, Q)u(Q)dQ,

where P = (X, xn) ∈ Tn, PI(Sn−1
+ , 0)(P, Q) = 2w−1

n xn|P − Q|−n is the classical
harmonic Poisson kernel for Tn and wn is the area of the unit sphere in Rn.
Deng (see [4]) has constructed a similar representation to (1.13) for u ∈ E(Sn−1

+ , β, 0),
which is the integral with a modified classical Poisson kernel derived by subtracting
of some special harmonic polynomials from PI(Sn−1

+ , 0)(P, Q). We will construct
an integral representation of a generalized harmonic function as a modified Poisson
a-integral corresponding to the operator Scha in a cone.
Next, we state our main results as follows.

Theorem 2. If u ∈ E(Ω, β, a), then u ∈ D(Ω, β, a).

Theorem 3. If u ∈ E(Ω, β, a),m is an integer such that Vm(t) < V[β](t)+ t{β} ≤
Vm+1(t) (t ≥ 1), then the following properties hold:

(I) If β = 1, then the integral∫
Sn(Ω)

PI(Ω, a, 0)(P, Q)u(Q)dσQ,

is absolutely convergent, it represents a generalized harmonic functionU(Ω, a, 0;
u)(P ) on Cn(Ω) and can be continuously extended to Cn(Ω) such that U(Ω, a, 0;
u)(P ) = u(P ) for P = (r, Θ) ∈ Sn(Ω) and there exists a constant d6 such that
u(P ) = d6V1(r)ϕ1(Θ) + U(Ω, a, 0; u)(P ) for P = (r, Θ) ∈ Cn(Ω).
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(II) If β > 1, then

(i) The integral ∫
Sn(Ω)

PI(Ω, a, m)(P, Q)u(Q)dσQ,

is absolutely convergent, it represents a generalized harmonic function
U(Ω, a, m; u)(P ) on Cn(Ω) and can be continuously extended to Cn(Ω)
such that U(Ω, a, m; u)(P ) = u(P ) for P = (r, Θ) ∈ Sn(Ω).

(ii) There exists a generalized harmonic polynomial

h(P ) =
m∑

j=0

( vj∑
v=1

djvϕjv(Θ)

)
Vj(r)

vanishing continuously on ∂Cn(Ω) such that u(P ) = U(Ω, a, m; u)(P ) +
h(P ) for P = (r, Θ) ∈ Cn(Ω), where djv are constants.

The following results generalize Deng’s result (see [4]) to the conical case.

Corollary 4. If u ∈ E(Ω, β, 0) (see Remark 4 for E(Ω, β, 0)), then u ∈ D(Ω, β, 0).

Corollary 5. If u ∈ E(Ω, β, 0), m is an integer such that ι+m,0 < ι+[β],0 + {β} ≤
ι+m+1,0, then the following properties hold:

(I) If β = 1, then the integral∫
Sn(Ω)

PI(Ω, 0, 0)(P,Q)u(Q)dσQ,

is absolutely convergent, it represents a harmonic function U(Ω, 0, 0;u)(P ) on
Cn(Ω) and can be continuously extended to Cn(Ω) such that U(Ω, 0, 0; u)(P ) =
u(P ) for P = (r, Θ) ∈ Sn(Ω) and there exists a constant d7 such that U(P ) =
d7r

ι+1,0ϕ1(Θ) + U(Ω, 0, 0;u)(P ) for P = (r, Θ) ∈ Cn(Ω).
(II) If β > 1, then

(i) The integral ∫
Sn(Ω)

PI(Ω, 0, m)(P, Q)u(Q)dσQ,

is absolutely convergent, it represents a harmonic functionU(Ω, 0, m; u)(P )
on Cn(Ω) and can be continuously extended to Cn(Ω) such that U(Ω, 0, m;
u)(P ) = u(P ) for P = (r, Θ) ∈ Sn(Ω).

(ii) There exists a harmonic polynomial

h(P ) =
m∑

j=0

( vj∑
v=1

d′jvϕjv(Θ)

)
rι+j,0

vanishing continuously on ∂Cn(Ω) such that u(P ) = U(Ω, 0, m; u)(P ) +
h(P ) for P = (r, Θ) ∈ Cn(Ω), where d′jv are constants.
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2. LEMMAS

Throughout this paper, letM denote various constants independent of the variables
in questions, which may be different from line to line.

Lemma 1.

(i) PI(Ω, a)(P, Q) ≤ Mrι−1,k tι
+
1,k−1ϕ1(Θ)

(ii) (resp. PI(Ω, a)(P, Q) ≤ Mrι+1,k tι
−
1,k−1ϕ1(Θ))

for any P = (r, Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Sn(Ω) satisfying 0 < t
r ≤ 4

5
(resp. 0 < r

t ≤ 4
5);

(iii) PI(Ω, 0)(P, Q)≤ M ϕ1(Θ)
tn−1 + M rϕ1(Θ)

|P−Q|n

for any P = (r, Θ) ∈ Cn(Ω) and any Q = (t, Φ) ∈ Sn(Ω; ( 4
5r,

5
4r)).

Proof. (i) and (ii) are obtained by A. Kheyfits (see [5, Ch. 11]). (iii) follows from
V. S. Azarin (see [2, Lemma 4 and Remark]).

Lemma 2. (see [10]). For a non-negative integer m, we have

(2.1) |PI(Ω, a, m)(P, Q)| ≤ M(n, m, s)Vm+1(r)
Wm+1(t)

t
ϕ1(Θ)

∂ϕ1(Φ)
∂nΦ

for any P = (r, Θ) ∈ Cn(Ω) and Q = (t, Φ) ∈ Sn(Ω) satisfying r ≤ st (0 < s < 1),
where M(n, m, s) is a constant dependent of n, m and s.
The following Lemma plays an important role in our discussions, which is due to

B. Ya. Levin and A. Kheyfits (see [5, p. 356]).

Lemma 3. If R > r > 0 and u(t, Φ) is a generalized harmonic function on a
domain containing Cn(Ω; (r, R)), then

(2.2)

∫
Sn(Ω;R)

χ′(R)
V1(R)

u(R, Φ)ϕ1(Φ)dSR

+
∫

Sn(Ω;(r,R))
u(t, Φ)

∂ϕ1

∂n
Ψ(t)dσQ + d6(r) + d7(r)

W1(R)
V1(R)

= 0,

where
Ψ(t) = W1(t)− W1(R)

V1(R)
V1(t),

d8(r) =
∫

Sn(Ω;r)
u(r, Φ)ϕ1(Φ)W ′

1(r)− W1(r)ϕ1(Φ)
∂u

∂n
dSr,

d9(r) =
∫

Sn(Ω;r)
V1(r)ϕ1(Φ)

∂u

∂n
− u(r, Φ)ϕ1(Φ)V ′

1(r)dSr.
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Lemma 4. (see [11, Theorem 1]). If m is an nonnegative integer and u(r, Θ) is
a generalized harmonic function on Cn(Ω) satisfying

(2.3)
∫

Ω
u+(r, Θ)dS1 = O(rι+m,k ), as r → ∞,

then

u(r, Θ) =
m∑

j=0

( vj∑
v=1

djvϕjv(Θ)

)
Vj(r),

where djv are constants.

Corollary 5. Obviously, the conclusion of Lemma 4 holds true if (2.3) is replaced
by

lim inf
r→∞,(r,Θ)∈Cn(Ω)

r−ι+m+1,k

∫
Ω

u+(r, Θ)ϕ1(Θ)dS1 = 0.

3. PROOF OF THEOREM 1

We only prove the case p > 1 and γ ≥ 0, the remaining cases can be proved
similarly.
For any fixed P = (r, Θ) ∈ Cn(Ω), take a number satisfying R > max(1, r

s ) (0 <

s < 4
5). If ι+m+1,k >

ι+
[γ],k

+{γ}−n+1

p and 1
p + 1

q = 1, then (−ι+m+1,k − n + 1 +
ι+
[γ],k

+{γ}
p )q + n − 1 < 0.
Then ∫

Sn(Ω;(R,∞))
|PI(Ω, a, m)(P, Q)||u(Q)|dσQ

≤ Vm+1(r)ϕ1(Θ)
∫

Sn(Ω;(R,∞))

|u(Q)|
Vm+1(t)tn−1

dσQ

≤ Mrι+m+1,kϕ1(Θ)
(∫

Sn(Ω;(R,∞))

|u(Q)|p
t
ι+
[γ],k

+{γ} dσQ

) 1
p

×
(∫

Sn(Ω;( r
s
,∞))

t
(−ι+m+1,k−n+1+

ι
+
[γ],k

+{γ}
p

)q
dσQ

)1
q

≤ Mr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ)
< ∞.

from (1.4), (1.6), Lemma 2 and Hölder’s inequality.
Then U(Ω, a, m; u)(P ) is finite for any P ∈ Cn(Ω). Since PI(Ω, a, m)(P,Q) is

a generalized harmonic function of P ∈ Cn(Ω) for any Q ∈ Sn(Ω), U(Ω, a, m; u)(P )
is also a generalized harmonic function of P ∈ Cn(Ω).
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Now we study the boundary behavior of U(Ω, a, m; u)(P ). Let Q′ = (t′, Φ′) ∈
∂Cn(Ω) be any fixed point and l be any positive number satisfying l > max(t′+1, 4

5R).
Set χS(l) is the characteristic function of S(l) = {Q = (t, Φ) ∈ ∂Cn(Ω), t ≤ l}

and write
U(Ω, a, m; u)(P ) = U ′(P ) − U ′′(P ) + U ′′′(P ),

where
U ′(P ) =

∫
Sn(Ω;(0, 5

4
l])

PI(Ω, a)(P, Q)u(Q)dσQ,

U ′′(P ) =
∫

Sn(Ω;(1, 5
4
l])

∂K(Ω, a, m)(P, Q)
∂nQ

u(Q)dσQ

and
U ′′′(P ) =

∫
Sn(Ω;( 5

4
l,∞))

PI(Ω, a, m)(P, Q)u(Q)dσQ.

Notice that U ′(P ) is the Poisson a-integral of u(Q)χS( 5
4
l), we have lim

P→Q′,P∈Cn(Ω)

U ′(P ) = u(Q′). Since lim
Θ→Φ′ ϕjv(Θ) = 0 (j = 1, 2, 3 . . . ; 1 ≤ v ≤ vj) as P =

(r, Θ) → Q′ = (t′, Φ′) ∈ Sn(Ω), we have lim
P→Q′,P∈Cn(Ω)

U ′′(P ) = 0 from the defini-

tion of the kernel function K(Ω, a, m)(P,Q). U ′′′(P ) = O(r
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ)) and
therefore tends to zero.
So the function U(Ω, a, m; u)(P ) can be continuously extended to Cn(Ω) such that

lim
P→Q′,P∈Cn(Ω)

U(Ω, a, m; u)(P ) = u(Q′)

for any Q′ = (t′, Φ′) ∈ ∂Cn(Ω) from the arbitrariness of l.
For any ε > 0, there exists Rε > 1 such that

(3.1)
∫

Sn(Ω;(Rε,∞))

|u(Q)|p
1 + t

ι+
[γ],k

+{γ} dσQ < ε.

The relation G(Ω, a)(P, Q) ≤ G(Ω, 0)(P, Q) implies this inequality (see [1])

(3.2) PI(Ω, a)(P, Q) ≤ PI(Ω, 0)(P, Q).

For 0 < s < 4
5 and any fixed point P = (r, Θ) ∈ Cn(Ω) satisfying r > 5

4Rε, let
I1 = Sn(Ω; (0, 1)), I2 = Sn(Ω; [1, Rε]), I3 = Sn(Ω; (Rε,

4
5r]), I4 = Sn(Ω; ( 4

5r,
5
4r)),

I5 = Sn(Ω; [ 54r,
r
s )), I6 = Sn(Ω; [1, r

s )) and I7 = Sn(Ω; [ r
s,∞)), we write

U(Ω, a, m; u)(P ) ≤
7∑

i=1

UΩ,a,i(P ),
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where

UΩ,a,i(P ) =
∫

Ii

|PI(Ω, a)(P, Q)||u(Q)|dσQ (i = 1, 2, 3, 4, 5),

UΩ,a,6(P ) =
∫

I6

|PI(Ω, a, m)(P, Q)||u(Q)|dσQ,

UΩ,a,7(P ) =
∫

I7

|∂K̃(Ω, a, m)(P, Q)
∂nQ

||u(Q)|dσQ.

If ι+
[γ],k

+{γ} > (−ι+1,k −n+2)p+n−1, then (ι+1,k −1+
ι+
[γ],k

+{γ}
p )q +n−1 > 0.

By (1.6), (3.1), Lemma 1 (i) and Hölder’s inequality, we have the following growth
estimates

(3.3)

UΩ,a,2(P )

≤ Mrι−1,kϕ1(Θ)
∫

I2

tι
+
1,k−1|u(Q)|dσQ

≤ Mrι−1,kϕ1(Θ)
(∫

I2

|u(Q)|p
t
ι+
[γ],k

+{γ} dσQ

)1
p
(∫

I2

t
(ι+1,k−1+

ι+
[γ],k

+{γ}
p

)q
dσQ

) 1
q

≤ Mrι−1,kR
ι+1,k+n−2+

ι+
[γ],k

+{γ}−n+1

p
ε ϕ1(Θ).

(3.4) UΩ,a,1(P ) ≤ Mrι−1,kϕ1(Θ).

(3.5) UΩ,a,3(P ) ≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ).

If ι+m,k >
ι+
[γ],k

+{γ}−n+1

p , then (ι−1,k − 1 +
ι+
[γ],k

+{γ}
p )q + n − 1 < 0. We obtain by

(3.1), Lemma 1 (ii) and Hölder’s inequality

(3.6)

UΩ,a,5(P )

≤ Mrι+1,k ϕ1(Θ)
∫

Sn(Ω;[ 5
4
r,∞))

tι
−
1,k−1|u(Q)|dσQ

≤ Mrι+1,k ϕ1(Θ)
(∫

Sn(Ω;[ 5
4
r,∞))

|u(Q)|p
t
ι+
[γ],k

+{γ} dσQ

) 1
p

(∫
Sn(Ω;[ 5

4
r,∞)) t

(ι−1,k−1+
ι+
[γ],k

+{γ}
p

)q
dσQ

)1
q

≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ).
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By (3.2) and Lemma 1 (iii), we consider the inequality

UΩ,a,4(P ) ≤ UΩ,0,4(P ) ≤ U ′
Ω,0,4(P ) + U ′′

Ω,0,4(P ),

where
U ′

Ω,0,4(P ) = Mϕ1(Θ)
∫

I4

t1−n|u(Q)|dσQ,

U ′′
Ω,0,4(P ) = Mrϕ1(Θ)

∫
I4

|u(Q)|
|P − Q|n dσQ.

We first have

(3.7)

U ′
Ω,0,4(P )

= Mϕ1(Θ)
∫

I4

tι
+
1,k+ι−1,k−1|u(Q)|dσQ

≤ Mrι+1,kϕ1(Θ)
∫

Sn(Ω;( 4
5
r,∞))

tι
−
1,k−1|u(Q)|dσQ

≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ),

which is similar to the estimate of UΩ,a,5(P ).
Next, we shall estimate U ′′

Ω,0,4(P ).
Take a sufficiently small positive number d10 such that I4 ⊂ B(P, 1

2r) for any
P = (r, Θ) ∈ Π(d10), where

Π(d10) = {P = (r, Θ) ∈ Cn(Ω); inf
z∈∂Ω

|(1, Θ)− (1, z)| < d10, 0 < r < ∞}.

and divide Cn(Ω) into two sets Π(d10) and Cn(Ω) − Π(d10).
If P = (r, Θ) ∈ Cn(Ω)−Π(d10), then there exists a positive d′10 such that |P−Q| ≥

d′10r for any Q ∈ Sn(Ω), and hence

(3.8)
U ′′

Ω,0,4(P ) ≤ Mϕ1(Θ)
∫

I4

t1−n|u(Q)|dσQ

≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ),

which is similar to the estimate of U ′
Ω,0,4(P ).

We shall consider the case P = (r, Θ) ∈ Π(d10). Now put

Hi(P ) = {Q ∈ I4; 2i−1δ(P ) ≤ |P − Q| < 2iδ(P )}.

Since Sn(Ω) ∩ {Q ∈ Rn : |P − Q| < δ(P )} = ∅, we have
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U ′′
Ω,0,4(P ) = M

i(P )∑
i=1

∫
Hi(P )

rϕ1(Θ)
|u(Q)|

|P − Q|n dσQ,

where i(P ) is a positive integer satisfying 2i(P )−1δ(P ) ≤ r
2 < 2i(P )δ(P ).

From (1.1) we see that rϕ1(Θ) ≤ Mδ(P ) (P = (r, Θ) ∈ Cn(Ω)). Similar to the
estimate of U ′

Ω,0,4(P ), we obtain∫
Hi(P )

rϕ1(Θ)
|u(Q)|

|P − Q|n dσQ

≤
∫

Hi(P )
rϕ1(Θ)

|u(Q)|
(2i−1δ(P ))n

dσQ

≤ M2(1−i)nϕ1−n
1 (Θ)

∫
Hi(P )

t1−n|u(Q)|dσQ

≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1−n
1 (Θ)

for i = 0, 1, 2, . . . , i(P ).
So

(3.9) U ′′
Ω,0,4(P ) ≤ Mεr

ι+
[γ],k

+{γ}−n+1

p ϕ1−n
1 (Θ).

We only consider UΩ,a,6(P ) in the case m ≥ 1, since UΩ,a,6(P ) ≡ 0 for m = 0.
By the definition of K̃(Ω, a, m), (1.2) and Lemma 2, we see

UΩ,a,6(P ) ≤ M

χ′(1)

m∑
j=0

j2n−1qj(r),

where
qj(r) = Vj(r)ϕ1(Θ)

∫
I6

Wj(t)|u(Q)|
t

dσQ.

To estimate qj(r), we write

qj(r) ≤ q′j(r) + q′′j (r),

where
q′j(r) = Vj(r)ϕ1(Θ)

∫
I2

Wj(t)|u(Q)|
t

dσQ,

q′′j (r) = Vj(r)ϕ1(Θ)
∫

Sn(Ω;(Rε,
r
s
))

Wj(t)|u(Q)|
t

dσQ.

If ι+m+1,k <
ι+
[γ],k

+{γ}−n+1

p + 1, then (−ι+m+1,k − n + 2+
ι+
[γ],k

+{γ}
p )q + n− 1 > 0.

Notice that

Vj(r)
Vm+1(t)
Vj(t)t

≤ M
Vm+1(r)

r
≤ Mrι+m+1,k−1 (t ≥ 1, Rε <

r

s
).
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Thus, by (1.4), (1.6) and Hölder’s inequality we conclude

q′j(r) = Vj(r)ϕ1(Θ)
∫

I2

|u(Q)|
Vj(t)tn−1

dσQ

≤ MVj(r)ϕ1(Θ)
∫

I2

Vm+1(t)

tι
+
m+1,k

|u(Q)|
Vj(t)tn−1

dσQ

≤ rι+m+1,k−1ϕ1(Θ)
(∫

I2

|u(Q)|p
t
ι+
[γ],k

+{γ} dσQ

) 1
p
(∫

I2

t
(−ι+m+1,k−n+2+

ι+
[γ],k

+{γ}
p

)q
dσQ

) 1
q

≤ Mrι+m+1,k−1R
−ι+m+1,k+1+

ι+
[γ],k

+{γ}−n+1

p
ε ϕ1(Θ).

Analogous to the estimate of q′j(r), we have

q′′j (r) ≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ).

Thus we can conclude that

qj(r) ≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ),

which yields

(3.10) UΩ,a,6(P ) ≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ).

If ι+m+1,k >
ι+
[γ],k

+{γ}−n+1

p , then (−ι+m+1,k − n + 1 +
ι+
[γ],k

+{γ}
p )q + n− 1 < 0. By

(3.1), Lemma 2 and Hölder’s inequality we have

(3.11)

UΩ,0,7(P ) ≤ MVm+1(r)ϕ1(Θ)
∫

I7

|u(Q)|
Vm+1(t)tn−1

dσQ

≤ MVm+1(r)ϕ1(Θ)
(∫

I7

|u(Q)|p
t
ι+
[γ],k

+{γ} dσQ

) 1
p

(∫
I7

t
(−ι+m+1,k−n+1+

ι+
[γ],k

+{γ}
p

)q
dσQ

) 1
q

≤ Mεr
ι+
[γ],k

+{γ}−n+1

p ϕ1(Θ).

Combining (3.3)-(3.11), we obtain that if Rε is sufficiently large and ε is sufficiently

small, then U(Ω, a, m; u)(P ) = o(r
ι+
[γ],k

+{γ}−n+1

p ϕ1−n
1 (Θ)) as r → ∞, where P =

(r, Θ) ∈ Cn(Ω; (Rε, +∞)). Then we complete the proof of Theorem 1.
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4. PROOF OF THEOREM 2

We apply the formula (2.2) with R > r = 1 to u = u+ − u− in Cn(Ω; (1, R)).

(4.1)
m+(R) +

∫
Sn(Ω;(1,R))

u+Ψ(t)
∂ϕ1

∂n
dσQ + d6 +

W1(R)
V1(R)

d7

= m−(R) +
∫

Sn(Ω;(1,R))
u−Ψ(t)

∂ϕ1

∂n
dσQ,

where

m±(R) =
∫

Sn(Ω;R)

χ′(R)
V1(R)

u±ϕ1dSR,

d6 =
∫

Sn(Ω;1)

uϕ1W
′
1(1)− W1(1)ϕ1

∂u

∂n
dS1 ,

d7 =
∫

Sn(Ω;1)
V1(1)ϕ1

∂u

∂n
− uϕ1V

′
1(1)dS1.

Since u ∈ E(Ω, β, a), we obtain by (1.9)

(4.2)

∫ ∞

1

m+(R)V1(R)
χ′(R)V[β](R)Rn+{β}dR

=
∫

Cn(Ω;(1,∞))

u+ϕ1

V[β](t)tn+{β} dw ≤ 2
∫

Cn(Ω)

u+ϕ1

1 + V[β](t)tn+{β} dw < ∞.

From (1.10), we conclude that

(4.3)

∫ ∞

1

V1(R)
χ′(R)V[β](R)Rn+{β}

∫
Sn(Ω;(1,R))

u+Ψ(t)
∂ϕ1

∂n
dσQdR

=
∫

Sn(Ω;(1,∞))
u+V1(t)

∫ ∞

t

V1(R)
χ′(R)V[β](R)Rn+{β}(

W1(t)
V1(t)

− W1(R)
V1(R)

)
dR

∂ϕ1

∂n
dσQ

≤ M

∫
Sn(Ω;(1,∞))

u+V1(t)W1(t)
χ′(t)V[β](t)tn+{β}−1

∂ϕ1

∂n
dσQ

≤ M

∫
Sn(Ω)

u+V1(t)W1(t)
1 + χ′(t)V[β](t)tn+{β}−1

∂ϕ1

∂n
dσQ

< ∞.



Integral Representations of Generalized Harmonic Functions 1519

Combining (4.1), (4.2) and (4.3), we obtain∫ ∞

1

V1(R)

χ′(R)V[β](R)Rn+
{β}
2

∫
Sn(Ω;(1,R))

u−Ψ(t)
∂ϕ1

∂n
dσQdR

≤
∫ ∞

1

m+(R)V1(R)

χ′(R)V[β](R)Rn+
{β}
2

dR

+
∫ ∞

1

V1(R)

χ′(R)V[β](R)Rn+
{β}
2

∫
Sn(Ω;(1,R))

u+Ψ(t)
∂ϕ1

∂n
dσQdR

+
∫ ∞

1

1

χ′(R)V[β](R)Rn+{β}
2

(V1(R)d6 + W1(R)d7) dR

< ∞.

Set

H(β)

= lim
t→∞

χ′(t)V[β](t)tn+{β}−1

W1(t)

∫ ∞

t

V1(R)

χ′(R)V[β](R)Rn+
{β}
2

(
W1(t)
V1(t)

− W1(R)
V1(R)

)
dR

= lim
t→∞ t

ι+
[β],k

+ι+1,k+n+{β}−2
∫ ∞

t

1

R
ι+
[β],k

−ι+1,k+{β}
2

+1

(
1

tχ1,k
− 1

Rχ1,k

)
dR,

where χ1,k = ι+1,k − ι−1,k.
By the L’hospital’s rule, we have

H(β) =

{ χ1,k

(ι+
[β],k

−ι+1,k )(ι+
[β],k

+ι+1,k+n−2)
if {β} = 0,

+∞ if {β} 
= 0,

which yields that there exists a positive constant M such that for any t ≥ 1,∫ ∞

t

V1(R)

χ′(R)V[β](R)Rn+
{β}
2

Ψ(t)dR ≥ MV1(t)W1(t)
χ′(t)V[β](t)tn+{β}−1

.

Then

M

∫
Sn(Ω;(1,∞))

u−V1(t)W1(t)
χ′(t)V[β](t)tn+{β}−1

∂ϕ1

∂n
dσQ

≤
∫

Sn(Ω;(1,∞))
u−
∫ ∞

t

V1(R)

χ′(R)V[β](R)Rn+
{β}
2

Ψ(t)dR
∂ϕ1

∂n
dσQ

< ∞,

which shows that u ∈ D(Ω, β, a) from |u| = u+ + u−. Then Theorem 2 is proved.
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5. PROOF OF THEOREM 3

To prove (II). Notice that Vm(t) < V[β](t)t{β} ≤ Vm+1(t) (t ≥ 1) and condition
(1.10) is stronger than (1.7). So the proofs of (i) are similar to them as in Theorem 1.
Here we omit them.
Finally we consider the function u(P ) − U(Ω, a, m; u)(P ), which is generalized

harmonic in Cn(Ω) and vanishes continuously on ∂Cn(Ω).
Since

(5.1) 0 ≤ (u(P ) − U(Ω, a, m; u)(P ))+ ≤ u+(P ) + (U(Ω, a, m;u))−(P )

for any P ∈ Cn(Ω).
Further, (1.4) and (1.9) give that

(5.2) lim inf
r→∞,(r,Θ)∈Cn(Ω)

r−ι+m+1,k

∫
Ω

u+(r, Θ)ϕ1(Θ)dS1 = 0.

By virtue of (1.8), (5.1), (5.2) and Corollary 5, the conclusion (ii) holds.
If u ∈ E(Ω, 1, a), then u ∈ E(Ω, β, a) for each β > 1 and there exists a constant

d9 such that
u(P ) = d11V1(r)ϕ1(Θ) + U(Ω, a, 1; u)(P )

for all P ∈ Cn(Ω). So if we take d6 = d11 −
∫
Sn(Ω;[1,∞)) P (Ω, a, 1)(0, Q)u(Q)dσQ,

we see that u(P ) = d6V1(r)ϕ1(Θ) + U(Ω, a, 0;u)(P ) holds for all P ∈ Cn(Ω). We
complete the proof of Theorem 3.
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