TAIWANESE JOURNAL OF MATHEMATICS Vol. 17, No. 5, pp. 1503-1521, October 2013 DOI: 10.11650/tjm.17.2013.2912 This paper is available online at http://journal.taiwanmathsoc.org.tw

INTEGRAL REPRESENTATIONS OF GENERALIZED HARMONIC FUNCTIONS

Lei Qiao and Guoshuang Pan*

Abstract. When generalized harmonic functions belong to the weighted Lebesgue classes, we give the asymptotic behaviors of them at infinity in an *n*-dimensional cone. Meanwhile, the integral representations of them are also considered, which imply the known representations of classical harmonic functions in the upper half space.

1. INTRODUCTION AND RESULTS

Let \mathbf{R} and \mathbf{R}_+ be the set of all real numbers and the set of all positive real numbers, respectively. We denote by $\mathbf{R}^n (n \ge 2)$ the *n*-dimensional Euclidean space. A point in \mathbf{R}^n is denoted by $P = (X, x_n), X = (x_1, x_2, \dots, x_{n-1})$. The Euclidean distance between two points P and Q in \mathbf{R}^n is denoted by |P - Q|. Also |P - O| with the origin O of \mathbf{R}^n is simply denoted by |P|. The boundary and the closure of a set \mathbf{S} in \mathbf{R}^n are denoted by $\partial \mathbf{S}$ and $\overline{\mathbf{S}}$, respectively.

We introduce a system of spherical coordinates (r, Θ) , $\Theta = (\theta_1, \theta_2, \dots, \theta_{n-1})$, in \mathbb{R}^n which are related to cartesian coordinates $(x_1, x_2, \dots, x_{n-1}, x_n)$ by $x_n = r \cos \theta_1$.

The unit sphere and the upper half unit sphere in \mathbb{R}^n are denoted by \mathbb{S}^{n-1} and \mathbb{S}^{n-1}_+ , respectively. For simplicity, a point $(1, \Theta)$ on \mathbb{S}^{n-1} and the set $\{\Theta; (1, \Theta) \in \Omega\}$ for a set Ω , $\Omega \subset \mathbb{S}^{n-1}$, are often identified with Θ and Ω , respectively. For two sets $\Xi \subset \mathbb{R}_+$ and $\Omega \subset \mathbb{S}^{n-1}$, the set $\{(r, \Theta) \in \mathbb{R}^n; r \in \Xi, (1, \Theta) \in \Omega\}$ in \mathbb{R}^n is simply denoted by $\Xi \times \Omega$. In particular, the half space $\mathbb{R}_+ \times \mathbb{S}^{n-1}_+ = \{(X, x_n) \in \mathbb{R}^n; x_n > 0\}$ will be denoted by \mathbb{T}_n .

Received January 25, 2013, accepted February 28, 2013.

Communicated by Alexander Vasiliev.

²⁰¹⁰ Mathematics Subject Classification: 31B05, 31B10.

Key words and phrases: Asymptotic behavior, Integral representation, Stationary Schrödinger equation, Generalized harmonic function, Cone.

This work is supported by the National Natural Science Foundation of China (Grant No.11226093). *Corresponding author.

For $P \in \mathbf{R}^n$ and r > 0, let B(P, r) denote the open ball with center at P and radius r in \mathbf{R}^n . $S_r = \partial B(O, r)$. By $C_n(\Omega)$, we denote the set $\mathbf{R}_+ \times \Omega$ in \mathbf{R}^n with the domain Ω on \mathbf{S}^{n-1} . We call it a cone. Then T_n is a special cone obtained by putting $\Omega = \mathbf{S}_+^{n-1}$. We denote the sets $I \times \Omega$ and $I \times \partial \Omega$ with an interval on \mathbf{R} by $C_n(\Omega; I)$ and $S_n(\Omega; I)$. By $S_n(\Omega; r)$ we denote $C_n(\Omega) \cap S_r$. By $S_n(\Omega)$ we denote $S_n(\Omega; (0, +\infty))$ which is $\partial C_n(\Omega) - \{O\}$.

We denote by dS_r the (n-1)-dimensional volume elements induced by the Euclidean metric on S_r and by dw the elements of the Euclidean volume in \mathbb{R}^n .

Let \mathcal{A}_a denote the class of nonnegative radial potentials a(P), i.e. $0 \le a(P) = a(r)$, $P = (r, \Theta) \in C_n(\Omega)$, such that $a \in L^b_{loc}(C_n(\Omega))$ with some b > n/2 if $n \ge 4$ and with b = 2 if n = 2 or n = 3.

This article is devoted to the stationary Schrödinger equation

$$Sch_a u(P) = -\Delta u(P) + a(P)u(P) = 0$$
 for $P \in C_n(\Omega)$,

where Δ is the Laplace operator and $a \in \mathcal{A}_a$. These solutions called *a*-harmonic functions or generalized harmonic functions associated with the operator Sch_a . Note that they are classical harmonic functions in the classical case a = 0. Under these assumptions the operator Sch_a can be extended in the usual way from the space $C_0^{\infty}(C_n(\Omega))$ to an essentially self-adjoint operator on $L^2(C_n(\Omega))$ (see [10, 11, 15]). We will denote it Sch_a as well. This last one has a Green function $G(\Omega, a)(P, Q)$. Here $G(\Omega, a)(P, Q)$ is positive on $C_n(\Omega)$ and its inner normal derivative $\partial G(\Omega, a)(P, Q)/\partial n_Q \ge 0$. We denote this derivative by $\mathbb{PI}(\Omega, a)(P, Q)$, which is called the Poisson *a*-kernel with respect to $C_n(\Omega)$, where $\partial/\partial n_Q$ denotes the differentiation at Q along the inward normal into $C_n(\Omega)$. We remark that $G(\Omega, 0)(P, Q)$ and $\mathbb{PI}(\Omega, 0)(P, Q)$ are the Green function and Poisson kernel of the Laplacian in $C_n(\Omega)$ respectively.

Let Δ^* be the Laplace-Beltrami operator (spherical part of the Laplace) on $\Omega \subset \mathbf{S}^{n-1}$ and λ_j $(j = 1, 2, 3..., 0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq ...)$ be the eigenvalues of the eigenvalue problem for Δ^* on Ω (see, e.g., [16, p. 41])

$$\begin{split} \Delta^*\varphi(\Theta) + \lambda\varphi(\Theta) &= 0 \quad \text{in } \ \Omega, \\ \varphi(\Theta) &= 0 \quad \text{on } \ \partial\Omega. \end{split}$$

Corresponding eigenfunctions are denoted by φ_{jv} $(1 \le v \le v_j)$, where v_j is the multiplicity of λ_j . We set $\lambda_0 = 0$, norm the eigenfunctions in $L^2(\Omega)$ and $\varphi_1 = \varphi_{11} > 0$. Then there exist two positive constants d_1 and d_2 such that

(1.1)
$$d_1\delta(P) \le \varphi_1(\Theta) \le d_2\delta(P)$$

for $P = (1, \Theta) \in \Omega$ (see Courant and Hilbert [3]), where $\delta(P) = \inf_{Q \in \partial C_n(\Omega)} |P - Q|$.

In order to ensure the existences of λ_j (j = 1, 2, 3...), we put a rather strong assumption on Ω : if $n \ge 3$, then Ω is a $C^{2,\alpha}$ -domain $(0 < \alpha < 1)$ on \mathbf{S}^{n-1} surrounded

by a finite number of mutually disjoint closed hypersurfaces. Then $\varphi_{jv} \in C^2(\overline{\Omega})$ $(j = 1, 2, 3, ..., 1 \le v \le v_j)$ and $\partial \varphi_1 / \partial n > 0$ on $\partial \Omega$ (here and below, $\partial / \partial n$ denotes differentiation along the interior normal). Hence well-known estimates (see, e.g., [14, p. 14]) imply the following inequality:

(1.2)
$$\sum_{v=1}^{v_j} \varphi_{jv}(\Theta) \frac{\partial \varphi_{jv}(\Phi)}{\partial n_{\Phi}} \le M(n) j^{2n-1},$$

where the symbol M(n) denotes a constant depending only on n.

Let $V_j(r)$ and $W_j(r)$ stand, respectively, for the increasing and non-increasing, as $r \to +\infty$, solutions of the equation

(1.3)
$$-Q''(r) - \frac{n-1}{r}Q'(r) + \left(\frac{\lambda_j}{r^2} + a(r)\right)Q(r) = 0, \quad 0 < r < \infty,$$

normalized under the condition $V_i(1) = W_i(1) = 1$.

We shall also consider the class \mathcal{B}_a , consisting of the potentials $a \in \mathcal{A}_a$ such that there exists a finite limit $\lim_{r\to\infty} r^2 a(r) = k \in [0,\infty)$, moreover, $r^{-1}|r^2 a(r) - k| \in L(1,\infty)$. If $a \in \mathcal{B}_a$, then generalized harmonic functions are continuous (see [18]).

In the rest of paper, we assume that $a \in \mathcal{B}_a$ and we shall suppress this assumption for simplicity. Further, we use the standard notations $u^+ = \max(u, 0)$, $u^- = -\min(u, 0)$, [d] is the integer part of d and $d = [d] + \{d\}$, where d is a positive real number.

Denote

$$\iota_{j,k}^{\pm} = \frac{2 - n \pm \sqrt{(n-2)^2 + 4(k+\lambda_j)}}{2} \ (j = 0, 1, 2, 3...).$$

It is known (see [7]) that in the case under consideration the solutions to equation (1.3) have the asymptotics

(1.4)
$$V_j(r) \sim d_3 r^{\iota_{j,k}}, \ W_j(r) \sim d_4 r^{\iota_{j,k}}, \ \text{as } r \to \infty,$$

where d_3 and d_4 are some positive constants.

Remark 1. $\iota_{j,0}^+ = j \ (j = 0, 1, 2, 3, ...)$ in the case $\Omega = \mathbf{S}_+^{n-1}$.

It is known that the following expansion for the Green function $G(\Omega, a)(P, Q)$ (see [5, Ch. 11], [9], [10]) holds:

(1.5)
$$G(\Omega, a)(P, Q) = \sum_{j=1}^{\infty} \frac{1}{\chi'(1)} V_j(\min(r, t)) W_j(\max(r, t)) \left(\sum_{v=1}^{v_j} \varphi_{jv}(\Theta) \varphi_{jv}(\Phi) \right),$$

where $P = (r, \Theta)$, $Q = (t, \Phi)$, $r \neq t$ and $\chi'(s) = w(W_1(r), V_1(r))|_{r=s}$ is their Wronskian. The series converges uniformly if either $r \leq st$ or $t \leq sr$ (0 < s < 1). In

the case a = 0, this expansion coincides with the well-known result by Lelong-Ferrand (see [12]). The expansion (1.5) can also be rewritten in terms of the Gegenbauer polynomials.

For a nonnegative integer m and two points $P = (r, \Theta), Q = (t, \Phi) \in C_n(\Omega)$, we put

$$K(\Omega, a, m)(P, Q) = \begin{cases} 0 & \text{if } 0 < t < 1, \\ \widetilde{K}(\Omega, a, m)(P, Q) & \text{if } 1 \le t < \infty, \end{cases}$$

where

$$\widetilde{K}(\Omega, a, m)(P, Q) = \sum_{j=1}^{m} \frac{1}{\chi'(1)} V_j(r) W_j(t) \left(\sum_{v=1}^{v_j} \varphi_{jv}(\Theta) \varphi_{jv}(\Phi) \right).$$

To obtain Poisson *a*-integral representations of generalized harmonic functions in a cone, we use the following modified kernel function defined by

$$G(\Omega, a, m)(P, Q) = G(\Omega, a)(P, Q) - K(\Omega, a, m)(P, Q)$$

for two points $P = (r, \Theta), Q = (t, \Phi) \in C_n(\Omega)$.

Put

$$U(\Omega, a, m; u)(P) = \int_{S_n(\Omega)} \mathbb{PI}(\Omega, a, m)(P, Q)u(Q)d\sigma_Q,$$

where

$$\mathbb{PI}(\Omega, a, m)(P, Q) = \frac{\partial G(\Omega, a, m)(P, Q)}{\partial n_Q}, \ \mathbb{PI}(\Omega, a, 0)(P, Q) = \mathbb{PI}(\Omega, a)(P, Q),$$

u(Q) is a continuous function on $\partial C_n(\Omega)$ and $d\sigma_Q$ is the surface area element on $S_n(\Omega)$.

Remark 2. The kernel function $\mathbb{PI}(\mathbf{S}^{n-1}_+, 0, m)(P, Q)$ coincides with ones in Finkelstein-Scheinberg [6], Kheyfits [9], Siegel-Talvila [17] and Deng [4] (see [10]).

If γ is a real number and $\gamma \geq 0$ (*resp.* $\gamma < 0$), we assume in addition that $1 \leq p < \infty$,

$$\iota^{+}_{[\gamma],k} + \{\gamma\} > (-\iota^{+}_{1,k} - n + 2)p + n - 1,$$

(resp. $-\iota^{+}_{[-\gamma],k} - \{-\gamma\} > (-\iota^{+}_{1,k} - n + 2)p + n - 1,)$

in case p > 1

$$\frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p} < \iota_{m+1,k}^+ < \frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p} + 1;$$

Integral Representations of Generalized Harmonic Functions

$$\left(\ resp. \quad \frac{-\iota_{[-\gamma],k}^+ - \{-\gamma\} - n + 1}{p} < \iota_{m+1,k}^+ < \frac{-\iota_{[-\gamma],k}^+ - \{-\gamma\} - n + 1}{p} + 1; \ \right)$$

and in case p = 1

$$\begin{split} \iota^+_{[\gamma],k} + \{\gamma\} - n + 1 &\leq \iota^+_{m+1,k} < \iota^+_{[\gamma],k} + \{\gamma\} - n + 2. \\ \Big(\ resp. \quad -\iota^+_{[-\gamma],k} - \{-\gamma\} - n + 1 &\leq \iota^+_{m+1,k} < -\iota^+_{[-\gamma],k} - \{-\gamma\} - n + 2. \ \Big) \end{split}$$

If these conditions all hold, we write $\gamma \in \mathcal{C}(k, p, m, n)$ (resp. $\gamma \in \mathcal{D}(k, p, m, n)$).

Let $\gamma \in \mathcal{C}(k, p, m, n)$ $(resp. \gamma \in \mathcal{D}(k, p, m, n))$ and u be a continuous function on $\partial C_n(\Omega)$ satisfying

(1.6)
$$\int_{S_{n}(\Omega)} \frac{|u(t,\Phi)|^{p}}{1+t^{\iota_{[\gamma],k}^{+}+\{\gamma\}}} d\sigma_{Q} < \infty.$$
$$\left(resp. \int_{S_{n}(\Omega)} |u(t,\Phi)|^{p} (1+t^{\iota_{[-\gamma],k}^{+}+\{-\gamma\}}) d\sigma_{Q} < \infty. \right)$$

Siegel-Talvila (cf. [17, Corollary 2.1]) proved the following result.

Theorem A. If u is a continuous function on ∂T_n satisfying

$$\int_{\partial T_n} \frac{|u(t,\Phi)|}{1+t^{n+m}} dQ < \infty,$$

then the function $U(\mathbf{S}^{n-1}_+,0,m;u)(P)$ satisfies

$$\begin{split} U(\mathbf{S}_{+}^{n-1}, 0, m; u) &\in C^{2}(T_{n}) \cap C^{0}(\overline{T_{n}}), \\ \Delta U(\mathbf{S}_{+}^{n-1}, 0, m; u) &= 0 \text{ in } T_{n}, \\ U(\mathbf{S}_{+}^{n-1}, 0, m; u) &= u \text{ on } \partial T_{n}, \\ \lim_{r \to \infty, P = (r, \Theta) \in T_{n}} U(\mathbf{S}_{+}^{n-1}, 0, m; u)(P) &= o(r^{m+1} \cos^{1-n} \theta_{1}). \end{split}$$

First of all we start with the following result.

Theorem 1. If $\gamma \in \mathcal{C}(k, p, m, n)$ (resp. $\gamma \in \mathcal{D}(k, p, m, n)$) and u is a continuous function on $\partial C_n(\Omega)$ satisfying (1.6), then the function $U(\Omega, a, m; u)(P)$ satisfies

$$U(\Omega, a, m; u) \in C^{2}(C_{n}(\Omega)) \cap C^{0}(\overline{C_{n}(\Omega)}),$$

$$Sch_{a}U(\Omega, a, m; u) = 0 \text{ in } C_{n}(\Omega),$$

$$U(\Omega, a, m; u) = u \text{ on } \partial C_{n}(\Omega)$$

$$\lim_{\substack{r \to \infty, P = (r,\Theta) \in C_n(\Omega) \\ r \to \infty, P = (r,\Theta) \in C_n(\Omega)}} r^{\frac{-\iota_{[\gamma],k}^+ - \{\gamma\} + n - 1}{p}} \varphi_1^{n-1}(\Theta) U(\Omega, a, m; u)(P) = 0.$$

Remark 3. Mizuta-Shimomura (see [13, Theorem 1 with $\lambda = n$]) treated the case

 $\Omega = \mathbf{S}_{+}^{n-1} \text{ and } a = 0.$ If we put p = 1, $\zeta = n$ and $\iota_{[\gamma],k}^{+} + \{\gamma\} = \iota_{m+1,k}^{+} + n - 1$ in Theorem 1, by (1.4) we obtain

Corollary 2. If u is a continuous function on $\partial C_n(\Omega)$ satisfying

(1.7)
$$\int_{S_n(\Omega)} \frac{|u(t,\Phi)|}{1+V_{m+1}(t)t^{n-1}} d\sigma_Q < \infty,$$

then the function $U(\Omega, a, m; u)(P)$ is a generalized harmonic function of $P \in \partial C_n(\Omega)$ and

$$\lim_{r \to \infty, P = (r,\Theta) \in C_n(\Omega)} r^{-\iota_{m+1,k}^+} \varphi_1^{n-1}(\Theta) U(\Omega, a, m; u)(P) = 0.$$

By the boundedness of $\varphi_1(\Theta)$, we immediately have

Corollary 3. Under the assumptions of Corollary 2, we have

(1.8)
$$\lim_{r \to \infty, P = (r,\Theta) \in C_n(\Omega)} r^{-\iota_{m+1,k}^+} \int_{\Omega} |U(\Omega, a, m; u)(P)|\varphi_1(\Theta) dS_1 = 0.$$

For real numbers $\beta \ge 1$, we denote $\mathcal{C}(\Omega, \beta, a)$ the class of all measurable functions $f(t, \Phi)$ $(Q = (t, \Phi) = (Y, y_n) \in C_n(\Omega))$ satisfying the following inequality

(1.9)
$$\int_{C_n(\Omega)} \frac{|f(t,\Phi)|\varphi_1}{1+V_{[\beta]}(t)t^{n+\{\beta\}}} dw < \infty$$

and the class $\mathcal{D}(\Omega, \beta, a)$, consists of all measurable functions $g(t, \Phi)$ $(Q = (t, \Phi) =$ $(Y, y_n) \in S_n(\Omega))$ satisfying

(1.10)
$$\int_{S_n(\Omega)} \frac{|g(t,\Phi)|V_1(t)W_1(t)}{1+\chi'(t)V_{[\beta]}(t)t^{n+\{\beta\}-1}} \frac{\partial\varphi_1}{\partial n} d\sigma_Q < \infty.$$

We will also consider the class of all continuous functions $u(t, \Phi)$ $((t, \Phi) \in \overline{C_n(\Omega)})$ generalized harmonic in $C_n(\Omega)$ with $u^+(t, \Phi) \in \mathcal{C}(\Omega, \beta, a)$ $((t, \Phi) \in C_n(\Omega))$ and $u^+(t,\Phi) \in \mathcal{D}(\Omega,\beta,a) \ ((t,\Phi) \in S_n(\Omega))$ is denoted by $\mathcal{E}(\Omega,\beta,a)$.

Remark 4. Notice that $\chi'(t)t = \tau_{1,k}V_1(t)W_1(t)$. If a = 0, (1.9) and (1.10) are equivalent to

(1.11)
$$\int_{C_n(\Omega)} \frac{|f(t,\Phi)|\varphi_1}{1+t^{n+\iota_{[\beta],0}^++\{\beta\}}} dw < \infty$$

and

(1.12)
$$\int_{S_n(\Omega)} \frac{|g(t,\Phi)|}{1+t^{n+\iota_{[\beta],0}^++\{\beta\}-2}} \frac{\partial \varphi_1}{\partial n} d\sigma_Q < \infty$$

respectively from (1.4). We suppose in addition that $\Omega = \mathbf{S}_{+}^{n-1}$ and $\alpha = \beta - 1$ in (1.11)-(1.12), by Remark 1 we have

$$\int_{T_n} \frac{y_n |f(Y,y_n)|}{1+t^{n+\alpha+2}} dQ < \infty \text{ and } \int_{\partial T_n} \frac{|g(Y,0)|}{1+t^{n+\alpha}} dY < \infty,$$

which yield that $\mathcal{E}(\mathbf{S}^{n-1}_+, \alpha + 1, 0)$ is equivalent to $(CH)_{\alpha}$ in the notation of [4].

Let us recall the classical case a = 0. If $u(P) \le 0$ is classical harmonic in T_n , continuous on $\overline{T_n}$ and $u \in \mathcal{E}(\mathbf{S}^{n-1}_+, 1, 0)$, then there exists a constant $d_5 \le 0$ such that (see [8, 19])

(1.13)
$$u(P) = d_5 x_n + \int_{\partial T_n} \mathbb{PI}(\mathbf{S}^{n-1}_+, 0)(P, Q) u(Q) dQ,$$

where $P = (X, x_n) \in T_n$, $\mathbb{PI}(\mathbf{S}^{n-1}_+, 0)(P, Q) = 2w_n^{-1}x_n|P - Q|^{-n}$ is the classical harmonic Poisson kernel for T_n and w_n is the area of the unit sphere in \mathbf{R}^n .

Deng (see [4]) has constructed a similar representation to (1.13) for $u \in \mathcal{E}(\mathbf{S}_{+}^{n-1}, \beta, 0)$, which is the integral with a modified classical Poisson kernel derived by subtracting of some special harmonic polynomials from $\mathbb{PI}(\mathbf{S}_{+}^{n-1}, 0)(P, Q)$. We will construct an integral representation of a generalized harmonic function as a modified Poisson *a*-integral corresponding to the operator Sch_a in a cone.

Next, we state our main results as follows.

Theorem 2. If $u \in \mathcal{E}(\Omega, \beta, a)$, then $u \in \mathcal{D}(\Omega, \beta, a)$.

Theorem 3. If $u \in \mathcal{E}(\Omega, \beta, a)$, *m* is an integer such that $V_m(t) < V_{[\beta]}(t) + t^{\{\beta\}} \le V_{m+1}(t)$ $(t \ge 1)$, then the following properties hold:

(I) If $\beta = 1$, then the integral

$$\int_{S_n(\Omega)} \mathbb{PI}(\Omega, a, 0)(P, Q)u(Q)d\sigma_Q,$$

is absolutely convergent, it represents a generalized harmonic function $U(\Omega, a, 0; u)(P)$ on $C_n(\Omega)$ and can be continuously extended to $\overline{C_n(\Omega)}$ such that $U(\Omega, a, 0; u)(P) = u(P)$ for $P = (r, \Theta) \in S_n(\Omega)$ and there exists a constant d_6 such that $u(P) = d_6V_1(r)\varphi_1(\Theta) + U(\Omega, a, 0; u)(P)$ for $P = (r, \Theta) \in C_n(\Omega)$.

(II) If $\beta > 1$, then

(*i*) The integral

$$\int_{S_n(\Omega)} \mathbb{PI}(\Omega, a, m)(P, Q) u(Q) d\sigma_Q,$$

is absolutely convergent, it represents a generalized harmonic function $U(\Omega, a, m; u)(P)$ on $C_n(\Omega)$ and can be continuously extended to $\overline{C_n(\Omega)}$ such that $U(\Omega, a, m; u)(P) = u(P)$ for $P = (r, \Theta) \in S_n(\Omega)$.

(ii) There exists a generalized harmonic polynomial

$$h(P) = \sum_{j=0}^{m} \left(\sum_{v=1}^{v_j} d_{jv} \varphi_{jv}(\Theta) \right) V_j(r)$$

vanishing continuously on $\partial C_n(\Omega)$ such that $u(P) = U(\Omega, a, m; u)(P) + h(P)$ for $P = (r, \Theta) \in C_n(\Omega)$, where d_{jv} are constants.

The following results generalize Deng's result (see [4]) to the conical case.

Corollary 4. If $u \in \mathcal{E}(\Omega, \beta, 0)$ (see Remark 4 for $\mathcal{E}(\Omega, \beta, 0)$), then $u \in \mathcal{D}(\Omega, \beta, 0)$.

Corollary 5. If $u \in \mathcal{E}(\Omega, \beta, 0)$, *m* is an integer such that $\iota_{m,0}^+ < \iota_{[\beta],0}^+ + \{\beta\} \le \iota_{m+1,0}^+$, then the following properties hold:

(I) If $\beta = 1$, then the integral

$$\int_{S_n(\Omega)} \mathbb{P}\mathbb{I}(\Omega, 0, 0)(P, Q)u(Q)d\sigma_Q,$$

is absolutely convergent, it represents a harmonic function $U(\Omega, 0, 0; u)(P)$ on $C_n(\Omega)$ and can be continuously extended to $\overline{C_n(\Omega)}$ such that $U(\Omega, 0, 0; u)(P) = u(P)$ for $P = (r, \Theta) \in S_n(\Omega)$ and there exists a constant d_7 such that $U(P) = d_7 r_{1,0}^{\iota^+} \varphi_1(\Theta) + U(\Omega, 0, 0; u)(P)$ for $P = (r, \Theta) \in C_n(\Omega)$.

- (II) If $\beta > 1$, then
 - (i) The integral

$$\int_{S_n(\Omega)} \mathbb{PI}(\Omega, 0, m)(P, Q)u(Q)d\sigma_Q,$$

is absolutely convergent, it represents a harmonic function $U(\Omega, 0, m; u)(P)$ on $C_n(\Omega)$ and can be continuously extended to $\overline{C_n(\Omega)}$ such that $U(\Omega, 0, m; u)(P) = u(P)$ for $P = (r, \Theta) \in S_n(\Omega)$.

(ii) There exists a harmonic polynomial

$$h(P) = \sum_{j=0}^{m} \left(\sum_{v=1}^{v_j} d'_{jv} \varphi_{jv}(\Theta) \right) r^{\iota_{j,0}^+}$$

vanishing continuously on $\partial C_n(\Omega)$ such that $u(P) = U(\Omega, 0, m; u)(P) + h(P)$ for $P = (r, \Theta) \in C_n(\Omega)$, where d'_{iv} are constants.

2. Lemmas

Throughout this paper, let M denote various constants independent of the variables in questions, which may be different from line to line.

Lemma 1.

- (i) $\mathbb{PI}(\Omega, a)(P, Q) \leq Mr^{\iota_{1,k}^{-}} t^{\iota_{1,k}^{+}-1} \varphi_1(\Theta)$ (ii) (resp. $\mathbb{PI}(\Omega, a)(P, Q) \leq Mr^{\iota_{1,k}^{+}} t^{\iota_{1,k}^{-}-1} \varphi_1(\Theta))$ for any $P = (r, \Theta) \in C_n(\Omega)$ and any $Q = (t, \Phi) \in S_n(\Omega)$ satisfying $0 < \frac{t}{r} \leq \frac{4}{5}$ (resp. $0 < \frac{r}{t} \leq \frac{4}{5}$);
- $\begin{array}{ll} (iii) \ \mathbb{PI}(\Omega,0)(P,Q) \leq M \frac{\varphi_1(\Theta)}{t^{n-1}} + M \frac{r\varphi_1(\Theta)}{|P-Q|^n} \\ for \ any \ P = (r,\Theta) \in C_n(\Omega) \ and \ any \ Q = (t,\Phi) \in S_n(\Omega; (\frac{4}{5}r, \frac{5}{4}r)). \end{array}$

Proof. (i) and (ii) are obtained by A. Kheyfits (see [5, Ch. 11]). (iii) follows from V. S. Azarin (see [2, Lemma 4 and Remark]).

Lemma 2. (see [10]). For a non-negative integer m, we have

(2.1)
$$|\mathbb{PI}(\Omega, a, m)(P, Q)| \le M(n, m, s) V_{m+1}(r) \frac{W_{m+1}(t)}{t} \varphi_1(\Theta) \frac{\partial \varphi_1(\Phi)}{\partial n_{\Phi}}$$

for any $P = (r, \Theta) \in C_n(\Omega)$ and $Q = (t, \Phi) \in S_n(\Omega)$ satisfying $r \leq st$ (0 < s < 1), where M(n, m, s) is a constant dependent of n, m and s.

The following Lemma plays an important role in our discussions, which is due to B. Ya. Levin and A. Kheyfits (see [5, p. 356]).

Lemma 3. If R > r > 0 and $u(t, \Phi)$ is a generalized harmonic function on a domain containing $C_n(\Omega; (r, R))$, then

(2.2)
$$\int_{S_n(\Omega;R)} \frac{\chi'(R)}{V_1(R)} u(R,\Phi)\varphi_1(\Phi)dS_R + \int_{S_n(\Omega;(r,R))} u(t,\Phi)\frac{\partial\varphi_1}{\partial n}\Psi(t)d\sigma_Q + d_6(r) + d_7(r)\frac{W_1(R)}{V_1(R)} = 0,$$

where

$$\begin{split} \Psi(t) &= W_1(t) - \frac{W_1(R)}{V_1(R)} V_1(t), \\ d_8(r) &= \int_{S_n(\Omega;r)} u(r,\Phi)\varphi_1(\Phi)W_1'(r) - W_1(r)\varphi_1(\Phi)\frac{\partial u}{\partial n} dS_r, \\ d_9(r) &= \int_{S_n(\Omega;r)} V_1(r)\varphi_1(\Phi)\frac{\partial u}{\partial n} - u(r,\Phi)\varphi_1(\Phi)V_1'(r)dS_r. \end{split}$$

Lemma 4. (see [11, Theorem 1]). If m is an nonnegative integer and $u(r, \Theta)$ is a generalized harmonic function on $C_n(\Omega)$ satisfying

(2.3)
$$\int_{\Omega} u^+(r,\Theta) dS_1 = O(r^{\iota_{m,k}^+}), \text{ as } r \to \infty,$$

then

$$u(r,\Theta) = \sum_{j=0}^{m} \left(\sum_{v=1}^{v_j} d_{jv} \varphi_{jv}(\Theta) \right) V_j(r),$$

where d_{jv} are constants.

Corollary 5. Obviously, the conclusion of Lemma 4 holds true if (2.3) is replaced by

$$\liminf_{r \to \infty, (r,\Theta) \in C_n(\Omega)} r^{-\iota_{m+1,k}^+} \int_{\Omega} u^+(r,\Theta)\varphi_1(\Theta) dS_1 = 0.$$

3. PROOF OF THEOREM 1

We only prove the case p > 1 and $\gamma \ge 0$, the remaining cases can be proved similarly.

 $s < \frac{4}{5}$. If $\iota_{m+1,k}^+ > \frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p}$ and $\frac{1}{p} + \frac{1}{q} = 1$, then $(-\iota_{m+1,k}^+ - n + 1 + \frac{\iota_{[\gamma],k}^+ + \{\gamma\}}{p})q + n - 1 < 0$. Then

$$\int_{S_{n}(\Omega;(R,\infty))} |\mathbb{PI}(\Omega, a, m)(P, Q)| |u(Q)| d\sigma_{Q} \\
\leq V_{m+1}(r)\varphi_{1}(\Theta) \int_{S_{n}(\Omega;(R,\infty))} \frac{|u(Q)|}{V_{m+1}(t)t^{n-1}} d\sigma_{Q} \\
\leq Mr^{\iota_{m+1,k}^{+}}\varphi_{1}(\Theta) \left(\int_{S_{n}(\Omega;(R,\infty))} \frac{|u(Q)|^{p}}{t^{\iota_{p}^{+}}, k^{+}\{\gamma\}} d\sigma_{Q}\right)^{\frac{1}{p}} \\
\times \left(\int_{S_{n}(\Omega;(\frac{r}{s},\infty))} t^{(-\iota_{m+1,k}^{+}-n+1+\frac{\iota_{p}^{+}, k^{+}\{\gamma\}}{p})q} d\sigma_{Q}\right)^{\frac{1}{q}} \\
\leq Mr^{\frac{\iota_{p}^{+}, k^{+}\{\gamma\}-n+1}{p}} \varphi_{1}(\Theta) \\
< \infty.$$

from (1.4), (1.6), Lemma 2 and Hölder's inequality.

Then $U(\Omega, a, m; u)(P)$ is finite for any $P \in C_n(\Omega)$. Since $\mathbb{PI}(\Omega, a, m)(P, Q)$ is a generalized harmonic function of $P \in C_n(\Omega)$ for any $Q \in S_n(\Omega)$, $U(\Omega, a, m; u)(P)$ is also a generalized harmonic function of $P \in C_n(\Omega)$.

Now we study the boundary behavior of $U(\Omega, a, m; u)(P)$. Let $Q' = (t', \Phi') \in \partial C_n(\Omega)$ be any fixed point and l be any positive number satisfying $l > \max(t'+1, \frac{4}{5}R)$.

Set $\chi_{S(l)}$ is the characteristic function of $S(l) = \{Q = (t, \Phi) \in \partial C_n(\Omega), t \leq l\}$ and write

$$U(\Omega, a, m; u)(P) = U'(P) - U''(P) + U'''(P),$$

where

$$U'(P) = \int_{S_n(\Omega;(0,\frac{5}{4}l])} \mathbb{P}\mathbb{I}(\Omega, a)(P, Q)u(Q)d\sigma_Q,$$
$$U''(P) = \int_{S_n(\Omega;(1,\frac{5}{4}l])} \frac{\partial K(\Omega, a, m)(P, Q)}{\partial n_Q}u(Q)d\sigma_Q$$

and

$$U^{\prime\prime\prime}(P) = \int_{S_n(\Omega; (\frac{5}{4}l,\infty))} \mathbb{PI}(\Omega, a, m)(P, Q) u(Q) d\sigma_Q$$

Notice that U'(P) is the Poisson *a*-integral of $u(Q)\chi_{S(\frac{5}{4}l)}$, we have $\lim_{P \to Q', P \in C_n(\Omega)} U'(P) = u(Q')$. Since $\lim_{\Theta \to \Phi'} \varphi_{jv}(\Theta) = 0$ $(j = 1, 2, 3...; 1 \le v \le v_j)$ as $P = (r, \Theta) \to Q' = (t', \Phi') \in S_n(\Omega)$, we have $\lim_{P \to Q', P \in C_n(\Omega)} U''(P) = 0$ from the defini- $\iota_{|\gamma|,k}^+ + \{\gamma\} - n + 1$

tion of the kernel function $K(\Omega, a, m)(P, Q)$. $U'''(P) = O(r^{\frac{\iota_{[\gamma], k}^+ + \{\gamma\} - n + 1}{p}} \varphi_1(\Theta))$ and therefore tends to zero.

So the function $U(\Omega, a, m; u)(P)$ can be continuously extended to $\overline{C_n(\Omega)}$ such that

$$\lim_{P \to Q', P \in C_n(\Omega)} U(\Omega, a, m; u)(P) = u(Q')$$

for any $Q' = (t', \Phi') \in \partial C_n(\Omega)$ from the arbitrariness of l. For any $\epsilon > 0$, there exists $R_{\epsilon} > 1$ such that

(3.1)
$$\int_{S_n(\Omega;(R_{\epsilon},\infty))} \frac{|u(Q)|^p}{1+t^{\iota_{[\gamma],k}^++\{\gamma\}}} d\sigma_Q < \epsilon.$$

The relation $G(\Omega, a)(P, Q) \leq G(\Omega, 0)(P, Q)$ implies this inequality (see [1])

(3.2)
$$\mathbb{PI}(\Omega, a)(P, Q) \le \mathbb{PI}(\Omega, 0)(P, Q).$$

For $0 < s < \frac{4}{5}$ and any fixed point $P = (r, \Theta) \in C_n(\Omega)$ satisfying $r > \frac{5}{4}R_{\epsilon}$, let $I_1 = S_n(\Omega; (0, 1)), I_2 = S_n(\Omega; [1, R_{\epsilon}]), I_3 = S_n(\Omega; (R_{\epsilon}, \frac{4}{5}r]), I_4 = S_n(\Omega; (\frac{4}{5}r, \frac{5}{4}r)), I_5 = S_n(\Omega; [\frac{5}{4}r, \frac{r}{s})), I_6 = S_n(\Omega; [1, \frac{r}{s}))$ and $I_7 = S_n(\Omega; [\frac{r}{s}, \infty))$, we write

$$U(\Omega, a, m; u)(P) \le \sum_{i=1}^{7} U_{\Omega, a, i}(P),$$

where

$$\begin{split} U_{\Omega,a,i}(P) &= \int_{I_i} |\mathbb{PI}(\Omega, a)(P, Q)| |u(Q)| d\sigma_Q \ (i = 1, 2, 3, 4, 5), \\ U_{\Omega,a,6}(P) &= \int_{I_6} |\mathbb{PI}(\Omega, a, m)(P, Q)| |u(Q)| d\sigma_Q, \\ U_{\Omega,a,7}(P) &= \int_{I_7} |\frac{\partial \widetilde{K}(\Omega, a, m)(P, Q)}{\partial n_Q}| |u(Q)| d\sigma_Q. \end{split}$$

If $\iota_{[\gamma],k}^+ + \{\gamma\} > (-\iota_{1,k}^+ - n + 2)p + n - 1$, then $(\iota_{1,k}^+ - 1 + \frac{\iota_{[\gamma],k}^+ + \{\gamma\}}{p})q + n - 1 > 0$. By (1.6), (3.1), Lemma 1 (i) and Hölder's inequality, we have the following growth estimates

$$U_{\Omega,a,2}(P) \leq Mr^{\iota_{1,k}^{-}}\varphi_{1}(\Theta)\int_{I_{2}}t^{\iota_{1,k}^{+}-1}|u(Q)|d\sigma_{Q}$$

$$(3.3) \leq Mr^{\iota_{1,k}^{-}}\varphi_{1}(\Theta)\left(\int_{I_{2}}\frac{|u(Q)|^{p}}{t^{\iota_{1,k}^{+}+\{\gamma\}}}d\sigma_{Q}\right)^{\frac{1}{p}}\left(\int_{I_{2}}t^{(\iota_{1,k}^{+}-1+\frac{\iota_{[\gamma],k}^{+}+\{\gamma\}}{p})q}d\sigma_{Q}\right)^{\frac{1}{q}} \leq Mr^{\iota_{1,k}^{-}}R_{\epsilon}^{\iota_{1,k}^{+}+n-2+\frac{\iota_{[\gamma],k}^{+}+\{\gamma\}-n+1}{p}}\varphi_{1}(\Theta).$$

(3.4)
$$U_{\Omega,a,1}(P) \le Mr^{\iota_{1,k}^{-}}\varphi_1(\Theta).$$

(3.5)
$$U_{\Omega,a,3}(P) \le M \epsilon r^{\frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p}} \varphi_1(\Theta).$$

If $\iota_{m,k}^+ > \frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p}$, then $(\iota_{1,k}^- - 1 + \frac{\iota_{[\gamma],k}^+ + \{\gamma\}}{p})q + n - 1 < 0$. We obtain by (3.1), Lemma 1 (ii) and Hölder's inequality

$$U_{\Omega,a,5}(P)$$

$$\leq Mr^{\iota_{1,k}^{+}}\varphi_{1}(\Theta)\int_{S_{n}(\Omega;[\frac{5}{4}r,\infty))}t^{\iota_{1,k}^{-}-1}|u(Q)|d\sigma_{Q}$$

$$\leq Mr^{\iota_{1,k}^{+}}\varphi_{1}(\Theta)\left(\int_{S_{n}(\Omega;[\frac{5}{4}r,\infty))}\frac{|u(Q)|^{p}}{t^{\iota_{[\gamma],k}^{+}+\{\gamma\}}}d\sigma_{Q}\right)^{\frac{1}{p}}$$

$$\left(\int_{S_{n}(\Omega;[\frac{5}{4}r,\infty))}t^{(\iota_{1,k}^{-}-1+\frac{\iota_{[\gamma],k}^{+}+\{\gamma\}}{p})q}d\sigma_{Q}\right)^{\frac{1}{q}}$$

$$\leq M\epsilon r^{\frac{\iota_{[\gamma],k}^{+}+\{\gamma\}-n+1}{p}}\varphi_{1}(\Theta).$$

By (3.2) and Lemma 1 (iii), we consider the inequality

$$U_{\Omega,a,4}(P) \le U_{\Omega,0,4}(P) \le U'_{\Omega,0,4}(P) + U''_{\Omega,0,4}(P),$$

where

$$U_{\Omega,0,4}'(P) = M\varphi_1(\Theta) \int_{I_4} t^{1-n} |u(Q)| d\sigma_Q,$$
$$U_{\Omega,0,4}'(P) = Mr\varphi_1(\Theta) \int_{I_4} \frac{|u(Q)|}{|P-Q|^n} d\sigma_Q.$$

We first have

(3.7)

$$U'_{\Omega,0,4}(P) = M\varphi_1(\Theta) \int_{I_4} t^{\iota_{1,k}^+ + \iota_{1,k}^- - 1} |u(Q)| d\sigma_Q$$

$$\leq Mr^{\iota_{1,k}^+}\varphi_1(\Theta) \int_{S_n(\Omega;(\frac{4}{5}r,\infty))} t^{\iota_{1,k}^- - 1} |u(Q)| d\sigma_Q$$

$$\leq M\epsilon r^{\frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p}} \varphi_1(\Theta),$$

which is similar to the estimate of $U_{\Omega,a,5}(P)$.

Next, we shall estimate $U_{\Omega,0,4}''(P)$.

Take a sufficiently small positive number d_{10} such that $I_4 \subset B(P, \frac{1}{2}r)$ for any $P = (r, \Theta) \in \Pi(d_{10})$, where

$$\Pi(d_{10}) = \{ P = (r, \Theta) \in C_n(\Omega); \inf_{z \in \partial \Omega} |(1, \Theta) - (1, z)| < d_{10}, \ 0 < r < \infty \}.$$

and divide $C_n(\Omega)$ into two sets $\Pi(d_{10})$ and $C_n(\Omega) - \Pi(d_{10})$.

If $P = (r, \Theta) \in C_n(\Omega) - \Pi(d_{10})$, then there exists a positive d'_{10} such that $|P-Q| \ge C_n(\Omega) - \Pi(d_{10})$. $d'_{10}r$ for any $Q \in S_n(\Omega)$, and hence

(3.8)
$$U_{\Omega,0,4}'(P) \leq M\varphi_1(\Theta) \int_{I_4} t^{1-n} |u(Q)| d\sigma_Q$$
$$\leq M\epsilon r^{\frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n+1}{p}} \varphi_1(\Theta),$$

which is similar to the estimate of $U'_{\Omega,0,4}(P)$. We shall consider the case $P = (r, \Theta) \in \Pi(d_{10})$. Now put

$$H_i(P) = \{ Q \in I_4; \ 2^{i-1}\delta(P) \le |P - Q| < 2^i\delta(P) \}.$$

Since $S_n(\Omega) \cap \{Q \in \mathbf{R}^n : |P - Q| < \delta(P)\} = \emptyset$, we have

$$U_{\Omega,0,4}''(P) = M \sum_{i=1}^{i(P)} \int_{H_i(P)} r\varphi_1(\Theta) \frac{|u(Q)|}{|P-Q|^n} d\sigma_Q,$$

where i(P) is a positive integer satisfying $2^{i(P)-1}\delta(P) \leq \frac{r}{2} < 2^{i(P)}\delta(P)$. From (1.1) we see that $r\varphi_1(\Theta) \leq M\delta(P)$ $(P = (r, \Theta) \in C_n(\Omega))$. Similar to the estimate of $U'_{\Omega,0,4}(P)$, we obtain

$$\int_{H_i(P)} r\varphi_1(\Theta) \frac{|u(Q)|}{|P-Q|^n} d\sigma_Q$$

$$\leq \int_{H_i(P)} r\varphi_1(\Theta) \frac{|u(Q)|}{(2^{i-1}\delta(P))^n} d\sigma_Q$$

$$\leq M 2^{(1-i)n} \varphi_1^{1-n}(\Theta) \int_{H_i(P)} t^{1-n} |u(Q)| d\sigma_Q$$

$$\leq M \epsilon r^{\frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n+1}{p}} \varphi_1^{1-n}(\Theta)$$

for $i = 0, 1, 2, \dots, i(P)$. So

(3.9)
$$U_{\Omega,0,4}''(P) \le M \epsilon r^{\frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p}} \varphi_1^{1-n}(\Theta).$$

We only consider $U_{\Omega,a,6}(P)$ in the case $m \ge 1$, since $U_{\Omega,a,6}(P) \equiv 0$ for m = 0. By the definition of $\widetilde{K}(\Omega, a, m)$, (1.2) and Lemma 2, we see

$$U_{\Omega,a,6}(P) \le \frac{M}{\chi'(1)} \sum_{j=0}^{m} j^{2n-1} q_j(r),$$

where

$$q_j(r) = V_j(r)\varphi_1(\Theta) \int_{I_6} \frac{W_j(t)|u(Q)|}{t} d\sigma_Q.$$

To estimate $q_j(r)$, we write

$$q_j(r) \le q'_j(r) + q''_j(r),$$

where

$$\begin{split} q_j'(r) &= V_j(r)\varphi_1(\Theta) \int_{I_2} \frac{W_j(t)|u(Q)|}{t} d\sigma_Q, \\ q_j''(r) &= V_j(r)\varphi_1(\Theta) \int_{S_n(\Omega;(R_\epsilon,\frac{r}{s}))} \frac{W_j(t)|u(Q)|}{t} d\sigma_Q. \end{split}$$

If $\iota_{m+1,k}^+ < \frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p} + 1$, then $(-\iota_{m+1,k}^+ - n + 2 + \frac{\iota_{[\gamma],k}^+ + \{\gamma\}}{p})q + n - 1 > 0$. Notice that

$$V_j(r)\frac{V_{m+1}(t)}{V_j(t)t} \le M \frac{V_{m+1}(r)}{r} \le M r^{\iota_{m+1,k}^+ - 1} \ (t \ge 1, R_{\epsilon} < \frac{r}{s}).$$

Thus, by (1.4), (1.6) and Hölder's inequality we conclude

$$\begin{aligned} q_{j}'(r) &= V_{j}(r)\varphi_{1}(\Theta) \int_{I_{2}} \frac{|u(Q)|}{V_{j}(t)t^{n-1}} d\sigma_{Q} \\ &\leq MV_{j}(r)\varphi_{1}(\Theta) \int_{I_{2}} \frac{V_{m+1}(t)}{t^{\iota_{m+1,k}^{+}}} \frac{|u(Q)|}{V_{j}(t)t^{n-1}} d\sigma_{Q} \\ &\leq r^{\iota_{m+1,k}^{+}-1}\varphi_{1}(\Theta) \left(\int_{I_{2}} \frac{|u(Q)|^{p}}{t^{\iota_{j}^{+},k} + \{\gamma\}} d\sigma_{Q} \right)^{\frac{1}{p}} \left(\int_{I_{2}} t^{(-\iota_{m+1,k}^{+}-n+2+\frac{\iota_{j}^{+},k+\{\gamma\}}{p})q} d\sigma_{Q} \right)^{\frac{1}{q}} \\ &\leq Mr^{\iota_{m+1,k}^{+}-1} R_{\epsilon}^{-\iota_{m+1,k}^{+}+1+\frac{\iota_{j}^{+},k+\{\gamma\}-n+1}{p}} \varphi_{1}(\Theta). \end{aligned}$$

Analogous to the estimate of $q'_j(r)$, we have

$$q_j''(r) \le M \epsilon r^{\frac{\iota_{[\gamma],k}^+ \{\gamma\} - n + 1}{p}} \varphi_1(\Theta).$$

Thus we can conclude that

$$q_j(r) \le M \epsilon r^{\frac{\iota_{[\gamma],k}^+ \{\gamma\} - n + 1}{p}} \varphi_1(\Theta),$$

which yields

(3.10)
$$U_{\Omega,a,6}(P) \le M \epsilon r^{\frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p}} \varphi_1(\Theta).$$

If $\iota_{m+1,k}^+ > \frac{\iota_{[\gamma],k}^+ + \{\gamma\} - n + 1}{p}$, then $(-\iota_{m+1,k}^+ - n + 1 + \frac{\iota_{[\gamma],k}^+ + \{\gamma\}}{p})q + n - 1 < 0$. By (3.1), Lemma 2 and Hölder's inequality we have

(3.11)

$$U_{\Omega,0,7}(P) \leq MV_{m+1}(r)\varphi_1(\Theta) \int_{I_7} \frac{|u(Q)|}{V_{m+1}(t)t^{n-1}} d\sigma_Q$$

$$\leq MV_{m+1}(r)\varphi_1(\Theta) \left(\int_{I_7} \frac{|u(Q)|^p}{t^{\iota_{\lceil\gamma\rceil,k}^++\{\gamma\}}} d\sigma_Q\right)^{\frac{1}{p}}$$

$$\left(\int_{I_7} t^{(-\iota_{m+1,k}^+ - n+1 + \frac{\iota_{\lceil\gamma\rceil,k}^++\{\gamma\}}{p})q} d\sigma_Q\right)^{\frac{1}{q}}$$

$$\leq M\epsilon r^{\frac{\iota_{\lceil\gamma\rceil,k}^++\{\gamma\}-n+1}{p}}\varphi_1(\Theta).$$

Combining (3.3)-(3.11), we obtain that if R_{ϵ} is sufficiently large and ϵ is sufficiently small, then $U(\Omega, a, m; u)(P) = o(r^{\frac{\iota_{[\gamma], k}^{+} + \{\gamma\} - n + 1}{p}} \varphi_1^{1-n}(\Theta))$ as $r \to \infty$, where $P = (r, \Theta) \in C_n(\Omega; (R_{\epsilon}, +\infty))$. Then we complete the proof of Theorem 1.

4. Proof of Theorem 2

We apply the formula (2.2) with R > r = 1 to $u = u^+ - u^-$ in $C_n(\Omega; (1, R))$.

(4.1)
$$m_{+}(R) + \int_{S_{n}(\Omega;(1,R))} u^{+}\Psi(t) \frac{\partial\varphi_{1}}{\partial n} d\sigma_{Q} + d_{6} + \frac{W_{1}(R)}{V_{1}(R)} d_{7}$$
$$= m_{-}(R) + \int_{S_{n}(\Omega;(1,R))} u^{-}\Psi(t) \frac{\partial\varphi_{1}}{\partial n} d\sigma_{Q},$$

where

$$m_{\pm}(R) = \int_{S_n(\Omega;R)} \frac{\chi'(R)}{V_1(R)} u^{\pm} \varphi_1 dS_R,$$

$$d_{6} = \int_{S_{n}(\Omega;1)} u\varphi_{1}W_{1}'(1) - W_{1}(1)\varphi_{1}\frac{\partial u}{\partial n}dS_{1},$$

$$d_{7} = \int_{S_{n}(\Omega;1)} V_{1}(1)\varphi_{1}\frac{\partial u}{\partial n} - u\varphi_{1}V_{1}'(1)dS_{1}.$$

Since $u \in \mathcal{E}(\Omega, \beta, a)$, we obtain by (1.9)

(4.2)
$$\int_{1}^{\infty} \frac{m_{+}(R)V_{1}(R)}{\chi'(R)V_{[\beta]}(R)R^{n+\{\beta\}}} dR$$
$$= \int_{C_{n}(\Omega;(1,\infty))} \frac{u^{+}\varphi_{1}}{V_{[\beta]}(t)t^{n+\{\beta\}}} dw \leq 2 \int_{C_{n}(\Omega)} \frac{u^{+}\varphi_{1}}{1+V_{[\beta]}(t)t^{n+\{\beta\}}} dw < \infty.$$

From (1.10), we conclude that

$$(4.3) \qquad \begin{aligned} \int_{1}^{\infty} \frac{V_{1}(R)}{\chi'(R)V_{[\beta]}(R)R^{n+\{\beta\}}} \int_{S_{n}(\Omega;(1,R))} u^{+}\Psi(t) \frac{\partial\varphi_{1}}{\partial n} d\sigma_{Q} dR \\ &= \int_{S_{n}(\Omega;(1,\infty))} u^{+}V_{1}(t) \int_{t}^{\infty} \frac{V_{1}(R)}{\chi'(R)V_{[\beta]}(R)R^{n+\{\beta\}}} \\ &\qquad \left(\frac{W_{1}(t)}{V_{1}(t)} - \frac{W_{1}(R)}{V_{1}(R)}\right) dR \frac{\partial\varphi_{1}}{\partial n} d\sigma_{Q} \\ &\leq M \int_{S_{n}(\Omega;(1,\infty))} \frac{u^{+}V_{1}(t)W_{1}(t)}{\chi'(t)V_{[\beta]}(t)t^{n+\{\beta\}-1}} \frac{\partial\varphi_{1}}{\partial n} d\sigma_{Q} \\ &\leq M \int_{S_{n}(\Omega)} \frac{u^{+}V_{1}(t)W_{1}(t)}{1+\chi'(t)V_{[\beta]}(t)t^{n+\{\beta\}-1}} \frac{\partial\varphi_{1}}{\partial n} d\sigma_{Q} \\ &\leq \infty. \end{aligned}$$

Combining (4.1), (4.2) and (4.3), we obtain

$$\begin{split} &\int_{1}^{\infty} \frac{V_{1}(R)}{\chi'(R)V_{[\beta]}(R)R^{n+\frac{\{\beta\}}{2}}} \int_{S_{n}(\Omega;(1,R))} u^{-}\Psi(t) \frac{\partial \varphi_{1}}{\partial n} d\sigma_{Q} dR \\ &\leq \int_{1}^{\infty} \frac{m_{+}(R)V_{1}(R)}{\chi'(R)V_{[\beta]}(R)R^{n+\frac{\{\beta\}}{2}}} dR \\ &+ \int_{1}^{\infty} \frac{V_{1}(R)}{\chi'(R)V_{[\beta]}(R)R^{n+\frac{\{\beta\}}{2}}} \int_{S_{n}(\Omega;(1,R))} u^{+}\Psi(t) \frac{\partial \varphi_{1}}{\partial n} d\sigma_{Q} dR \\ &+ \int_{1}^{\infty} \frac{1}{\chi'(R)V_{[\beta]}(R)R^{n+\frac{\{\beta\}}{2}}} \left(V_{1}(R)d_{6} + W_{1}(R)d_{7}\right) dR \\ &< \infty. \end{split}$$

Set

$$\begin{aligned} \mathcal{H}(\beta) \\ &= \lim_{t \to \infty} \frac{\chi'(t) V_{[\beta]}(t) t^{n+\{\beta\}-1}}{W_1(t)} \int_t^\infty \frac{V_1(R)}{\chi'(R) V_{[\beta]}(R) R^{n+\frac{\{\beta\}}{2}}} \left(\frac{W_1(t)}{V_1(t)} - \frac{W_1(R)}{V_1(R)}\right) dR \\ &= \lim_{t \to \infty} t^{\iota^+_{[\beta],k} + \iota^+_{1,k} + n+\{\beta\}-2} \int_t^\infty \frac{1}{R^{\iota^+_{[\beta],k} - \iota^+_{1,k} + \frac{\{\beta\}}{2} + 1}} \left(\frac{1}{t^{\chi_{1,k}}} - \frac{1}{R^{\chi_{1,k}}}\right) dR, \end{aligned}$$

where $\chi_{1,k} = \iota_{1,k}^+ - \iota_{1,k}^-$. By the L'hospital's rule, we have

$$\mathcal{H}(\beta) = \begin{cases} \frac{\chi_{1,k}}{(\iota_{[\beta],k}^+ - \iota_{1,k}^+)(\iota_{[\beta],k}^+ + \iota_{1,k}^+ + n - 2)} & \text{if} \quad \{\beta\} = 0, \\ +\infty & \text{if} \quad \{\beta\} \neq 0, \end{cases}$$

which yields that there exists a positive constant M such that for any $t\geq 1,$

$$\int_{t}^{\infty} \frac{V_{1}(R)}{\chi'(R)V_{[\beta]}(R)R^{n+\frac{\{\beta\}}{2}}} \Psi(t)dR \ge \frac{MV_{1}(t)W_{1}(t)}{\chi'(t)V_{[\beta]}(t)t^{n+\{\beta\}-1}}$$

Then

$$\begin{split} M \int_{S_n(\Omega;(1,\infty))} \frac{u^- V_1(t) W_1(t)}{\chi'(t) V_{[\beta]}(t) t^{n+\{\beta\}-1}} \frac{\partial \varphi_1}{\partial n} d\sigma_Q \\ &\leq \int_{S_n(\Omega;(1,\infty))} u^- \int_t^\infty \frac{V_1(R)}{\chi'(R) V_{[\beta]}(R) R^{n+\frac{\{\beta\}}{2}}} \Psi(t) dR \frac{\partial \varphi_1}{\partial n} d\sigma_Q \\ &< \infty, \end{split}$$

which shows that $u \in \mathcal{D}(\Omega, \beta, a)$ from $|u| = u^+ + u^-$. Then Theorem 2 is proved.

5. Proof of Theorem 3

To prove (II). Notice that $V_m(t) < V_{[\beta]}(t)t^{\{\beta\}} \leq V_{m+1}(t)$ $(t \geq 1)$ and condition (1.10) is stronger than (1.7). So the proofs of (i) are similar to them as in Theorem 1. Here we omit them.

Finally we consider the function $u(P) - U(\Omega, a, m; u)(P)$, which is generalized harmonic in $C_n(\Omega)$ and vanishes continuously on $\partial C_n(\Omega)$.

Since

(5.1)
$$0 \le (u(P) - U(\Omega, a, m; u)(P))^+ \le u^+(P) + (U(\Omega, a, m; u))^-(P)$$

for any $P \in C_n(\Omega)$.

Further, (1.4) and (1.9) give that

(5.2)
$$\liminf_{r \to \infty, (r,\Theta) \in C_n(\Omega)} r^{-\iota_{m+1,k}^+} \int_{\Omega} u^+(r,\Theta)\varphi_1(\Theta) dS_1 = 0.$$

By virtue of (1.8), (5.1), (5.2) and Corollary 5, the conclusion (ii) holds.

If $u \in \mathcal{E}(\Omega, 1, a)$, then $u \in \mathcal{E}(\Omega, \beta, a)$ for each $\beta > 1$ and there exists a constant d_9 such that

$$u(P) = d_{11}V_1(r)\varphi_1(\Theta) + U(\Omega, a, 1; u)(P)$$

for all $P \in C_n(\Omega)$. So if we take $d_6 = d_{11} - \int_{S_n(\Omega;[1,\infty))} P(\Omega, a, 1)(0, Q)u(Q)d\sigma_Q$, we see that $u(P) = d_6V_1(r)\varphi_1(\Theta) + U(\Omega, a, 0; u)(P)$ holds for all $P \in C_n(\Omega)$. We complete the proof of Theorem 3.

REFERENCES

- 1. A. Ancona, First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains, *J. d'Anal. Math.*, **72** (1997), 45-92.
- 2. V. S. Azarin, Generalization of a theorem of Hayman on subharmonic functions in an *m*-dimensional cone, *Amer. Math. Soc. Trans.*, **80(2)** (1969), 119-138.
- R. Courant and D. Hilbert, *Methods of Mathematical Physics*, 1st English edition, Interscience Publishers, New York, 1953.
- G. T. Deng, Integral representations of harmonic functions in half spaces, *Bull. Sci.* Math., 131 (2007), 53-59.
- 5. A. Escassut, W. Tutschke and C. C. Yang, *Some Topics on Value Distribution and Differentiability in Complex and P-adic Snalysis*, Science Press, Beijing, 2008.
- 6. M. Finkelstein and S. Scheinberg, Kernels for solving problems of Dirichlet typer in a half-plane, *Advances in Math.*, **18(1)** (1975), 108-113.
- 7. P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.

- 8. L. Hörmander, Notions of Convexity, Birkhäuser, Boston, Basel, Berlin, 1994.
- 9. A. Kheyfits, Representation of the analytic functions of infinite order in a half-plane, *Izv. Akad. Nauk Armjan SSR, Ser. Mat.*, **6(6)** (1971), 472-476.
- 10. A. Kheyfits, Dirichlet problem for the Schrödinger operator in a half-space with boundary data of arbitrary growth at infinity, *Differential Integral Equations*, **10** (1997), 153-164.
- 11. A. Kheyfits, Liouville theorems for generalized harmonic functions, *Potential Analysis*, **16** (2002), 93-101.
- 12. J. Lelong-Ferrand, Etude des fonctions subharmoniques positives dans un cylindre ou dans un cone, C. R. Acad. Sci. Paris, Ser A., 229(5) (1949), 340-341.
- 13. Y. Mizuta and T. Shimomura, Growth properties for modified Poisson integrals in a half space, *Pac. J. Math.*, **212(2)** (2003), 333-346.
- 14. C. Muller, *Spherical Harmonics*, Lect. Notes in Math. Vol. 17, Springer Verlag, Berlin, 1966.
- 15. M. Reed and B. Simon, *Methods of Modern Mathematical Physics*, Vol. 3, Acad Press, London-New York-San Francisco, 1970.
- 16. G. Rosenblum, M. Solomyak and M. Shubin, *Spectral Theory of Differential Operators*, VINITI, Moscow, 1989.
- 17. D. Siegel and E. Talvila, Sharp growth estimates for modified Poisson integrals in a half space, *Potential Analysis*, **15** (2001), 333-360.
- 18. B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447-526.
- 19. E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, NJ, 1993.

Lei Qiao Department of Mathematics and Information Science Henan University of Economics and Law Zhengzhou 450002 P. R. China E-mail: giaocqu@163.com

Guo-Shuang Pan Beijing National Day School Beijing 100039 P. R. China E-mail: gsp1979@163.com