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SPECTRAL PROBLEMS OF NONSELFADJOINT 1D SINGULAR
HAMILTONIAN SYSTEMS

Bilender P. Allahverdiev

Abstract. In this paper, the maximal dissipative one dimensional singular Hamil-
tonian operators (in limit-circle case at singular end point b) are considered in the
Hilbert space L2

W ([a, b) ; C2)(−∞ < a < b ≤ ∞). The maximal dissipative oper-
ators with general boundary conditions are investigated. A selfadjoint dilation of
the dissipative operator and its incoming and outgoing spectral representations are
constructed. These representations allows us to determine the scattering matrix of
the dilation. Further a functional model of the dissipative operator is constructed
and its characteristic function in terms of the scattering matrix of dilation is con-
sidered. Finally, the theorem on completeness of the system of root vectors of the
dissipative operators is proved.

1. INTRODUCTION

One of the methods of the spectral analysis of dissipative operators is the functional
model theory that is an application of dilation theory [1-6, 15, 17-18]. This theory is
associated with the characteristic function. The spectral analysis of the dissipative
operators can be studied with the help of the characteristic function. Using the the-
ory of Sz.-Nagy-Foiaş, the dissipative operator cen be handled as the model operator
[15, 17, 18]. The factorization of the characteristic function may help us to learn that
whether the system of root vectors is complete or not in some Hilbert space. The
characteristic function is established by the selfadjoint dilation of the dissipative oper-
ator and corresponding scattering matrix [13]. The spectral analysis of the dissipative
Sturm-Liouville and Dirac-type operators are investigated in [1-6, 17-18].
In this paper, the minimal symmetric one dimensional singular differential Hamilto-

nian (or Dirac-type) operator Tmin with defect index (2, 2) (in Weyl’s limit-circle case
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at singular end point b) is considered in the Hilbert space L2
W ([a, b); C2) (−∞ < a <

b ≤ ∞). All maximal dissipative and selfadjoint extensions of such a symmetric oper-
ator are described with the help of the boundary conditions at the end points a and b.
The maximal dissipative operators with general (coupled, and separated) boundary con-
ditions are investiged. If we consider separated boundary conditions, the nonselfadjoint
(dissipative) boundary conditions at the end points a and b are prescribed similarly. At
first a selfadjoint dilation of the maximal dissipative operator is constructed and then
its incoming and outgoing spectral representations are prescribed. With these repre-
sentations determining the scattering matrix of the dilation is possible [13]. Then the
model of the maximal dissipative operator is constructed and we define its character-
istic function in terms of the scattering matrix of dilation. Finally, a theorem about
completeness of the system of eigenvectors and associated vectors (or root vectors) of
the maximal dissipative Hamiltonian operators is proved.

2. PRELIMINARIES

One dimensional differential Hamiltonian (or Dirac-type) system is considered as
with the singular end point b

(2.1) τ1(y) := J
dy(x)
dx

+Q(x)y(x) = λW (x)y(x), x ∈ I := [a, b) .

Here λ is a complex spectral parameter,

J =
(

0 − 1
1 0

)
, y(x) =

(
y1(x)
y2(x)

)
,

W (x) =
(
a(x) b(x)
b(x) c(x)

)
, Q(x) =

(
q(x) r(x)
r(x) p(x)

)
,

W (x) > 0 (for almost all x ∈ I); entries of the matrices W (x) and Q(x) are real-
valued, Lebesgue measurable and locally integrable functions on I.
Let H := L2

W (I;E) (E:= C
2) be the Hilbert space consisting of all vector-valued

functions y with values in E such that∫ b

a
(W (x)y(x), y(x))Edx < +∞,

and with the inner product (y, z) :=
∫ b
a (W (x)y(x), z(x))Edx. This space allows us to

pass to the operators from the differential expression τ(y) := W−1τ1(y).
Consdier the set

Dmax =
{
y ∈ H : y =

(
y1
y2

)
,
y1, y2 ∈ ACloc(I),
τ(y) ∈ H

}
,
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where ACloc(I) denotes all locally absolutely continuous functions on I. The operator
Tmax is defined on Dmax as Tmaxy = τ(y).
For all vectors y, z ∈ Dmax, Green’s formula is

(2.2) (Tmaxy, z)− (y, Tmaxz) = [y, z] (b)− [y, z] (a),

where [y, z] (x) := W(y, z̄)(x) := y1 (x) z̄2 (x) − y2 (x) z̄1 (x) , x ∈ I, [y, z] (b) :=
limx→b− [y, z] (x).
In H let us consider the dense linear set D′

min that consists of smooth, compactly
supported vector-valued functions on I. Let T ′

min denote the restriction of the operator
Tmax to D′

min. From (2.2) one gets that T ′
min is symmetric. This admits the closure

which we denote it by Tmin. The domain of Tmin consists of precisely those vectors
y ∈ Dmax satisfying the conditions y1 (a) = y2 (a) = 0, [y, z] (b) = 0, for arbitrary
z ∈ Dmax. Tmin is a symmetric operator with defect index (1, 1) or (2, 2) (see [7, 9-12,
14, 20-24]), and Tmax = T ∗

min. The operators Tmin and Tmax are called the minimal
and maximal operators, respectively.
We remind that the linear operator S with dense domain D(S) acting in some

Hilbert space H is called dissipative (accretive) if Im(Sf, f) ≥ 0(Im(Sf, f) ≤ 0) for
all f ∈ D(S) and maximal dissipative (maximal accretive) if it does not have a proper
dissipative (accretive) extension.
In the case of the defect index of Tmin is (1, 1) which is Weyl’s limit-point case, all

maximal dissipative (maximal accretive) extensions Tα of the symmetric operator Tmin

are described with the boundary conditions (y ∈ Dmax): y2 (a) − αy1 (a) = 0, where
Imα ≥ 0 or α = ∞ (Imα ≤ 0 or α = ∞). In the case of Imα = 0 or α = ∞, the
selfadjoint extensions of Tmin are obtained. For α = ∞, the corresponding boundary
condition has the form y1 (a) = 0. The maximal dissipative operators Tα with Imα > 0
are investigated in [2].
Throughtout the paper it is assumed that Tmin has defect index (2, 2), that is, the

Weyl’s limit-circle case holds for the Hamiltonian system (2.1) (see [7, 9-12, 14, 20-
24]).
Let ϕ(x) and ψ(x) be the solutions of the system

(2.3) τ(y) = 0, x ∈ I

satisfying the conditions

(2.4) ϕ1(a) = 1, ϕ2(a) = 0, ψ1(a) = 0, ψ2(a) = 1.

It is known that the Wronskian of the two solutions of (2.3) does not depend on x, and
the two solutions of this system are linearly independent if and only if their Wronskian
is nonzero. Hence from the conditions (2.4) and the constancy of the Wronskian one
gets for a ≤ x ≤ b that

(2.5) W(ϕ, ψ)(x) = W(ϕ, ψ)(a) = 1.
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Hence, ϕ and ψ form a fundamental system of solutions of (2.3). Since Tmin has defect
index (2, 2), ϕ, ψ ∈ H. Further ϕ and ψ belong to Dmax.
For all y, z ∈ Dmax, the following equality is obtained ([5])

(2.6) [y, z] (x) = [y, ϕ] (x) [z̄, ψ] (x) − [y, ψ] (x) [z̄, ϕ] (x), a ≤ x ≤ b.

The domain Dmin of the operator Tmin consists of the vectors y ∈ Dmax satisfying
the conditions ([5])

(2.7) y1(a) = y2(a) = 0, [y, ϕ] (b) = [y, ψ] (b) = 0.

Let Υ1 and Υ2 be the linear mappings from Dmax into E as

(2.8) Υ1y =
( −y1(a)

[y, ϕ] (b)

)
, Υ2y =

(
y2(a)
[y, ψ] (b)

)
.

Then we have (see [5]);

Theorem 2.1. For arbitrary contraction L in E the restriction of the operator
Tmax to the set of vectors y ∈ Dmax satisfying the boundary condition

(2.9) (L− I)Υ1y + i (L+ I)Υ2y = 0

or

(2.10) (L− I)Υ1y − i (L+ I)Υ2y = 0

is, respectively, a maximal dissipative or a maximal accretive extension of the operator
Tmin. Conversely, every maximal dissipative (maximal accretive) extension of Tmin is
the restriction of Tmax to the set of vectors y ∈ Dmax satisfying (2.9) ((2.10)), and
the contraction L is uniquely determined by the extensions. These conditions give a
selfadjoint extension if and only if L is unitary. In the latter case, (2.9) and (2.10) are
equivalent to the condition (cosS)Υ1y − (sinS)Υ2y = 0, where S is a selfadjoint
operator (Hermitian matrix) in E.

In particular, the boundary conditions

(2.11) y2 (a) − β1y1 (a) = 0

(2.12) [y, ψ] (b) + β2 [y, ϕ] (b) = 0

with Imβ1 ≥ 0 or β1 = ∞, and Imβ2 ≥ 0 or β2 = ∞ (Imβ1 ≤ 0 or β1 = ∞, and
Imβ2 ≤ 0 or β2 = ∞) describe all maximal dissipative (maximal accretive) extensions
of Tmin with separated boundary conditions. The selfadjoint extensions of Tmin are
obtained precisely when Imβ1 = 0 or β1 = ∞ and Imβ2 = 0 or β2 = ∞. Here,
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for β1 = ∞ (β2 = ∞), condition (2.11) ((2.12)) should be replaced by y1 (a) = 0
([y, ϕ] (b) = 0) .

In the following we consider the maximal dissipative operator TL, where L satisfies
the inequality ‖L‖E < 1, generated by the expression τ and boundary condition (2.9).
The condition ‖L‖E < 1 implies that the operator L+ I must be invertible. More-

over (2.9) is equivalent to the condition

(2.13) Υ2y +BΥ1y = 0,

where B = −i (L+ I)−1 (L− I), ImB > 0, and −L is the Cayley transform of the
dissipative operator B. We denote by T̃B (= TL) the maximal dissipative operator
generated by the expression τ and the boundary condition (2.13).
Let

B =
(
β1 0
0 β2

)
,

where Imβ1 > 0, Imβ2 > 0. Then the boundary condition (2.13) coincides with the
separated boundary conditions (2.11) and (2.12).

3. SELFADJOINT DILATION OF THE MAXIMAL DISSIPATIVE OPERATOR

The useful method to investigate the spectral analysis of the maximal dissipative
operators is about the construction a selfadjoint dilation of the maximal dissipative
operators belongs to Sz.-Nagy-Foiaş ([15]). In the literature there are a lot of works
that contains this method. For this aim, let us add the space H to the ‘incoming’ and
‘outgoing’ subspaces L2(R−;E) (R− := (−∞, 0]) and L2 (R+;E) (R+ := [0,∞)) of
the Hilbert space H = L2(R−;E)⊕H⊕L2 (R+;E) called the main Hilbert space of
the dilation. Clearly the elements of H are three-component vector-valued functions
h = 〈θ−, y, θ+〉.
Now let us consider the following mappings;

P : H → H, 〈θ−, y, θ+〉 → y, P1 : H → H, y → 〈0, y, 0〉

and
P+ : H → L2 (R+;E) , 〈θ−, y, θ+〉 → θ+,

P+
1 : L2 (R+;E) → H, θ → 〈0, 0, θ〉.

Let us consider the operator TB in the main Hilbert space H generated by differ-
ential expression

(3.1) T〈θ−, y, θ+〉 = 〈idθ−
dξ

, τ(y), i
dθ+
dζ

〉
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on the set of elements D(TB) satisfying the boundary conditions

(3.2) Υ2y + BΥ1y = Aθ− (0) , Υ2y + B∗Υ1y = Aθ+ (0) ,

where θ− ∈ W 1
2 (R−;E) , θ+ ∈ W 1

2 (R+;E) , y ∈ Dmax, A
2:= 2ImB, A > 0, and

W 1
2 (R∓) is the Sobolev space.
One gets the following;

Theorem 3.1. The operator TB is selfadjoint in H. Further TB is a selfadjoint
dilation of the maximal dissipative operator T̃B (= TL) .

Proof. For h = 〈θ−, y, θ+〉, g = 〈ϑ−, z, ϑ+〉 ∈ D(TB) we get that

(3.3)
(TBh, g)H − (h,TBg)H = i(θ− (0) , ϑ− (0))E − i(θ+ (0) , ϑ+ (0))E

+ [y, z] (b)− [y, z] (a).

Further using (3.2) and (2.6), one gets that

i(θ− (0) , ϑ− (0))E − i(θ+ (0) , ϑ+ (0))E + [y, z] (b)− [y, z] (a) = 0.

This implies that the operator TB is symmetric, and D(TB) ⊆ D(T∗
B).

TB and T∗
B are generated by the same expression (3.1). This can be seen with a

direct calculation. Now we shall form the domain of T∗
B. We shall compute the terms

outside the integral sign, which are obtained by integration by parts in bilinear form
(TBh, g)H, h ∈ D(TB), g ∈ D(T∗

B). Their sum is equal to zero:

(3.4) [y, z] (b)− [y, z] (a) + i(θ− (0) , ϑ− (0))E − i(θ+ (0) , ϑ+ (0))E = 0.

Now solving the boundary conditions (3.2) for Υ1y and Υ2y, we obtain that

Υ1y = −iA−1(θ− (0)− θ+ (0)),Υ2y = Aθ− (0) + iBA−1(θ− (0) − θ+ (0)).

From (2.6) and (2.8), one gets that (3.4) is equivalent to the equality

i(θ+ (0) , ϑ+ (0))E − i(θ− (0) , ϑ− (0))E = [y, z] (b)− [y, z] (a)

= [y, ϕ] (b) [z̄, ψ] (b)− [y, ψ] (b) [z̄, ϕ] (b)− [y, ϕ] (a) [z̄, ψ] (a)

+ [y, ψ] (a) [z̄, ϕ] (a) = (Υ1y,Υ2z)E − (Υ2y,Υ1z)E

= −i(A−1(θ− (0)− θ+ (0)),Υ2z)E − (Aθ− (0) ,Υ1z)E

−i(BA−1(θ− (0)− θ+ (0)),Υ1z)E .

Since the values θ± (0) are arbitrary, we get from comparing the coefficients of (θ±)i (0)
(i = 1, 2) that

Υ2z +BΥ1z = Aϑ− (0) ,Υ2z + B∗Υ1z = Aϑ+ (0) ,
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and this proves that the vector g = 〈ϑ−, z, ϑ+〉 satisfies the boundary conditions (3.2).
Hence D(T∗

B) ⊆ D(TB), and TB = T∗
B .

Now let us consider the operator Zt = PUtP1, t ≥ 0, where Ut := exp [iTBt]
(t ∈ R := (−∞,∞)) is the unitary group on H. It is known that the operator family
{Zt}t≥0 is the strictly continuous semigroup of completely nonunitary contractions on H

([15-18]). Let CB be the generator of this semigroup: CBy = limt→+0(it)−1(Zty−y).
It is clear that the domain of CB consists of all vectors for which the limit exists and
CB is maximal dissipative. The operator TB is called the selfadjoint dilation of CB

([15-18]). We shall show that T̃B = CB .
Now let us consider the equality

(3.5) P(TB − λI)−1P1y = (T̃B − λI)−1y, y ∈ H, Imλ < 0.

Let (TB − λI)−1 P1y = f = 〈ϑ−, z, ϑ+〉. Then the equialities (TB−λI)f = P1y, and
τ(z)−λz = y, ϑ−(ξ) = ϑ− (0) e−iλξ, ϑ+(ζ) = ϑ+ (0) e−iλζ hold. Since f ∈ D(TB),
hence ϑ− ∈W 1

2 (R−;E) and so ϑ− (0) = 0. This implies that z satisfies the boundary
condition Υ2z+BΥ1z = 0. Therefore, z ∈ D(T̃B), and since a point λ with Imλ < 0
cannot be an eigenvalue of a dissipative operator, then z = Rλ(T̃B)y := (T̃B−λI)−1y.

Hence for y ∈ H and Imλ < 0 we have

(TB − λI)−1P1y = 〈0,Rλ(T̃B)y, A−1(Υ2y + B∗Υ1y)e−iλξ〉.

Applying the mapping P to this equality, we obtain (3.5) and

Rλ(T̃B) = P(TB − λI)−1P1 = −iP
∫ ∞

0

Ute
−iλtdtP1

= −i
∫ ∞

0
Zte

−iλtdt = (CB − λI)−1 , Imλ < 0.

This implies that T̃B = CB and the theorem is proved.

4. SCATTERING THEORY OF THE DILATION, FUNCTIONAL MODEL AND COMPLETENESS
THEOREM FOR THE SYSTEM OF ROOT VECTORS OF THE DISSIPATIVE OPERATOR

Lax and Phillips constructed their scattering theory [13] in the decomposition of
the main Hilbert space H = D− ⊕ H ⊕ D+ in which the unitary group {Ut} (t ∈ R)
has the following properties
(1) UtD− ⊂ D−, t ≤ 0; UtD+ ⊂ D+, t ≥ 0;
(2) ∩

t≤0
UtD− = ∩

t≥0
UtD+ = {0} ;

(3) ∪
t≥0

UtD− = ∪
t≤0

UtD+ = H;

(4) D− ⊥ D+.
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Let D− = 〈L2 (R−;E) , 0, 0〉 and D+ = 〈0, 0,L2 (R+;E)〉. We shall show that
the properties (1)-(4) are satisfied. Inner product in the main Hilbert space H shows
that the property (4) is satisfied.
To show that the property (1) is satisfied for D+ (for D−, the proof is analogous),

let Rλ = (TB − λI)−1. Then for all λ with Imλ < 0 and for all h = 〈0, 0, θ+〉 ∈ D+

we get that

Rλh = 〈0, 0,−ie−iλξ

∫ ξ

0
eiλsθ+ (s) ds〉.

This implies that Rλh ∈ D+. Hence for g ⊥ D+ one obtains

0 = (Rλh, g)H = −i
∫ ∞

0
e−iλt(Uth, g)Hdt, Imλ < 0.

We get from the last equality that (Uth, g)H = 0 for all t ≥ 0. Hence for t ≥ 0,
UtD+ ⊂ D+. This proves the property (1) is satisfied.
For proving the property (2) consider U+

t = P+UtP+
1 , t ≥ 0. It is known that the

semigroup of isometries U+
t = P+UtP+

1 , t ≥ 0 is the one-sided shift in L2 (R+;E).
In fact, the generator of the semigroup of the shift Vt in L2 (R+;E) is the differen-
tial operator i(d/dσ) with the boundary condition v (0) = 0. On the other hand, the
generator A of semigroup of isometries U+

t , t ≥ 0 is given by Aϕ = P+LBP+
1 v =

P+LB〈0, 0, v〉 = P+〈0, 0, i(dv/dσ)〉 = i(dv/dσ),where v ∈W 1
2 (R+;E) and v (0) =

0. Since a semigroup is uniquely determined by its generator, U+
t = Vt, and

∩
t≥0

UtD+ = 〈0, 0, ∩
t≥0

VtL2 (R+;E) = {0} .

This proves that the property (2) is satisfied.
According to the Lax-Phillips scattering theory, the scattering matrix is defined in

terms of the theory of spectral representations. Using these representations we will
have also proved property (3) of the incoming and outgoing subspaces.
The linear operator S (with domain D(S)) acting in the Hilbert space H is called

completely nonselfadjoint (or simple) if invariant subspace K ⊆ D(S) (K �= {0}) of
the operator S on which restriction S on K is selfadjoint does not exist.

Lemma 4.1. The operator T̃B is completely nonselfadjoint (simple).

Proof. Let T̃ ′
B is the selfadjoint part of T̃B in H0 ⊂ H. The subspace H0 is

invariant with respect to semigroup of isometries Zt = exp(iT̃ ′
Bt) (Z

∗
t = exp(−iT̃ ′

Bt),
Z−1

t = Z∗
t , t > 0). Let f ∈ H0 ∩ D(T̃B). Then f ∈ D(T̃ ∗

B), and Υ2f + BΥ1f =
0,Υ2f+B∗Υ1f = 0. Hence one gets that Υ1f = Υ2f = 0. For eigenvectors zλ ∈ H0

of the operator T̃B, we have z1λ (a) = 0, z2λ (a) = 0. The uniqueness theorem of
the Cauchy problem for the system τ(z) = λz (x ∈ I) implies that zλ ≡ 0. Since
all solutions of τ(z) = λz (x ∈ I) belong to L2

W (I;E) , it can be concluded that the



Spectral Problems of Nonselfadjoint 1D Singular Hamiltonian Systems 1495

resolvent Rλ(T̃B) of the operator T̃B is a compact operator, and the spectrum of T̃B is
purely discrete. Hence, by the theorem on expansion in eigenvectors of the selfadjoint
operator T̃ ′

B, we have H0 = {0} . Hence the operator T̃B is simple. The lemma is
proved.
Now to prove the property (3) consider the equalities

H− = ∪
t≥0

UtD−, H+ = ∪
t≤0

UtD+.

Lemma 4.2. The equality H−+H+ = H holds.

Proof. Using the property (1) of the subspacesD±, we shall show that the subspace
H′ = H � (H−+H+) is invariant with respect to the group {Ut} . H′ has the form
H′ = 〈0,H′, 0〉, where H′ is a subspace of H. Let the subspace H′ (and hence also
H′) be nontrivial and let the unitary group {U ′

t} restricted to this subspace be a unitary
part of the group {Ut} . This implies that the restriction T̃ ′

B of the operator T̃B to H′ is
the selfadjoint operator in H′. From the simplicity of the operator T̃ ′

B this shows that
H′ = {0} , i.e. H′ = {0}. So the lemma is proved.
Let u and v be the solutions of the system τ(y) = λy (x ∈ I) satisfying the

conditions

(4.1) u1 (a, λ) = 0, u2 (a, λ) = −1, v1 (a, λ) = 1, v2 (a, λ) = 0.

Consider the matrix-valued functionM (λ) satisfying the conditions

(4.2) M (λ)Υ1u = Υ2u, M (λ)Υ1v = Υ2v.

With a direct calculation one can obtain thatM (λ) has the form

(4.3) M (λ) =

⎛
⎜⎜⎝

m∞ (λ) − 1
[u, ϕ] (b)

− 1
[u, ϕ] (b)

[u, ψ] (b)
[u, ϕ] (b)

⎞
⎟⎟⎠ ,

wherem∞ (λ) is theWeyl-Titchmarsh function of the selfadjoint operator T∞ generated
by the expression τ with the boundary conditions y1 (a) = 0 and [y, ϕ] (b) = 0. Then
we have

m∞ (λ) = − [v, ϕ] (b)
[u, ϕ] (b)

.

It is easy to show that the matrix-valued functionM (λ) is meromorphic in C with all
its poles on real axis R, and that it has the following properties:
(i) ImM (λ) ≤ 0 for Imλ > 0, and ImM (λ) ≥ 0 for Imλ < 0;
(ii) M∗ (λ) = M (

λ̄
)
for all λ ∈ C, except the real poles of M (λ) .
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Let χj (x) and θj (x) (j = 1, 2) be the solutions of the system τ(y) = λy (x ∈ I)
satisfying the conditions

(4.4) Υ1χj = (M (λ) +B)−1 Aej ,Υ1θj = (M (λ) +B∗)−1Aej (j = 1, 2),

where e1 and e2 are the orthonormal basis for E .
Now consider the vectors V−

λj (j = 1, 2) as

V−
λj(x, σ, ζ) = 〈e−iλσej , χj (x) , A−1 (M+ B∗) (M +B)−1Ae−iλζej〉.

For all λ ∈ R, the vectors V−
λj (j = 1, 2) do not belong toH. However, V−

λj (j = 1, 2)
satisfies the equation LV = λV and the boundary conditions (3.2).
With the help of the vectors V−

λj (j = 1, 2), let us consider the transformation
Φ− : h → h̃− (λ) , where h = 〈θ−, y, θ+〉, (Φ−h) (λ):= h̃− (λ):=

∑2
j=1 h̃

−
j (λ) ej,

θ−, θ+, and y are smooth, compactly supported functions, and h̃−j (λ) = 1√
2π

(h, V−
λj)H

(j = 1, 2).

Lemma 4.3.H− is isometrically mapped by the transformationΦ− ontoL2 (R;E) .
For all vectors h, g ∈ H−, the Parseval equality

(h, g)H = (h̃−, g̃−)L2 =
∫ ∞

−∞

2∑
j=1

h̃−j (λ)g̃−j (λ)dλ,

and the inversion formula

h =
1√
2π

∫ ∞

−∞

2∑
j=1

V−
λjh̃

−
j (λ)dλ,

hold, where h̃− (λ) = (Φ−f) (λ), g̃− (λ) = (Φ−g) (λ).

Proof. Let H2±(E) denote the Hardy classes in L2(R;E) consisting of the vector-
valued functions analytically extendable to the upper and lower half-planes, respectively.
For h, g ∈ D−, h = 〈h−, 0, 0〉, g = 〈g−, 0, 0〉, h−, g− ∈ L2 (R−;E), we have

h̃−j (λ) =
1√
2π

(h, V−
λj)H =

1
2π

∫ 0

−∞

(
h− (σ) , e−iλσej

)
E
dσ ∈ H2

−,

h̃−(λ) =
2∑

j=1

h̃−j (λ)ej ∈ H2
− (E) ,

and the Parseval equality:

(h, g)H = (h̃−, g̃−)L2 =
∫ ∞

−∞

2∑
j=1

h̃−j (λ)g̃−j (λ)dλ.

We shall extend this equality to the all of the spaceH−. For this aim, let us consider in
H′− the dense set H− of vectors, obtained on smooth, compactly supported functions
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belonging to D− by the following way: h ∈ H′−, h = Utfh0, h0 = 〈θ−, 0, 0〉, θ− ∈
C∞

0 (R−;E). For these vectors, noting TB = T∗
B , and using the fact that U−th ∈

〈C∞
0 (R−;E) , 0, 0〉, and (U−th, V−

λj)H = e−iλt(h, V−
λj)H (j = 1, 2) for t > tf , tg, we

have

(h, g)H = (U−th,U−tg)H

=
1
2π

∫ ∞

−∞

2∑
j=1

(U−th, V−
λj)H(U−tg, V−

λj)Hdλ =
∫ ∞

−∞

2∑
j=1

h̃−j (λ)g̃−j (λ)dλ.

Taking the closure, one obtains that the Parseval equality holds for all of the space
H−. The inversion formula follows from the Parseval equality if all integrals in it are
understood as limits in the mean of integrals over finite intervals. Finally, we have

Φ−H− = ∪
t≥0

Φ−UtD− = ∪
t≥0
eiλtH2− (E) = L2 (R;E) .

This implies that Φ− maps H− onto whole L2 (R;E) . So, the lemma is proved.
Now let us consider the vectors

V+
λj (x, σ, ζ) = 〈SB (λ) e−iλσej, θj (x) , e−iλζej〉 (j = 1, 2),

where

(4.5) SB (λ) = A−1 (M (λ) + B) (M (λ) + B∗)−1 A.

It should be noted that vectors V+
λj (j = 1, 2) for all λ ∈ R do not belong to H.

However, V+
λj (j = 1, 2) satisfies the equation TV = λV and the boundary conditions

(3.2).
Let Φ+ : h → h̃+ (λ) be the transformation as (Φ+h) (λ):= h̃+ (λ):=

∑2
j=1 f̃

+
j

(λ) ej , where h = 〈θ−, y, θ+〉, θ−, θ+, and y are smooth, compactly supported func-
tions, and h̃+

j (λ) = 1√
2π

(h, V+
λj)H (j = 1, 2) . The proof of the next result is analogous

to that of Lemma 4.3.

Lemma 4.4.H+ is isometrically mapped by the transformationΦ+ onto L2 (R;E).
For all vectors h, g ∈ H+, the Parseval equality

(h, g)H = (h̃+, g̃+)L2 =
∫ ∞

−∞

2∑
j=1

h̃+
j (λ)g̃+

j (λ)dλ,

and the inversion formula

h =
1√
2π

∫ ∞

−∞

2∑
j=1

V+
λjh̃

+
j (λ)dλ,

are valid, where h̃+
j (λ) = (Φ+h) (λ) , g̃+ (λ) = (Φ+g) (λ) .
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The matrix-valued function SB (λ) is meromorphic in C and all poles are in the
lower half-plane. From (4.5) one can obtain that ‖SB (λ)‖E ≤ 1 for Imλ > 0 and
SB (λ) is the unitary matrix for all λ ∈ R. Since SB (λ) is the unitary matrix for
λ ∈ R, then, it follows from the definitions of the vectors V+

λj and V−
λj that

V+
λj =

2∑
k=1

Sjk (λ)V−
λk (j = 1, 2) ,

where Sjk (λ) (j, k = 1, 2) are entries of the matrix SB (λ) . This implies from Lemmas
4.3 and 4.4 that H− = H+. Together with Lemma 4.2, this shows that H−=H+=H,
and property (3) above has been established for the incoming and outgoing subspaces.
Thus,H is isometricallymapped by transformationΦ− ontoL2(R;E); the subspace

D− is mapped onto H2−(E), while the operators Ut go over into the operators of
multiplication by eiλt. According to the Lax-Phillips scattering theory ([13]) Φ− is
an incoming spectral representation of the group {Ut}. Similarly, Φ+ is an outgoing
spectral representation of {Ut}. From the explicit formulas for V−

λj and V+
λj (j = 1, 2),

it follows that the passage from the Φ−-representation of a vector h ∈ H to its Φ+-
representation is accomplished as follows: h̃+(λ) = S−1

B (λ)h̃−(λ). Hence [13], we
have now proved the following result.

Theorem 4.5. The matrix S−1
B (λ) is the scattering matrix of the group Ut (of the

operator TB).

Remind that the analytic matrix-valued function S(λ) on the upper half-plane C+

is called inner function on C+ if ‖S(λ)‖ ≤ 1 for λ ∈ C+ and S(λ) is a unitary
matrix for almost all λ ∈ R. To sum up the equivalence of the characteristic function
of Sz.-Nagy-Foiaş and the scattering function of Lax-Phillips, let S(λ) be an arbitrary
nonconstant (matrix-valued) inner matrix-valued function [15] on the upper half-plane.
Consider the space K = H2

+ � SH2
+. It is known that K �= {0} and is a subspace

of the Hilbert space H2
+. We consider the semigroup of the operators Zt (t ≥ 0)

acting in K according to the formula Ztϕ = P [
eiλtu

]
, u:= u(λ) ∈ K, where P is the

orthogonal projection fromH2
+ ontoK. The generator of the semigroup {Zt} is denoted

by A : Aϕ = limt→+0(it)−1(Ztϕ−ϕ), which is a maximal dissipative operator acting
in K with the domain D(A) consisting of all vectors u ∈ K, such that the limit exists.
The operator A is called a model dissipative operator. Here, this model dissipative
operator is a special case of a more general model dissipative operator constructed by
Sz.-Nagy and Foiaş ([15-17]). The basic assertion is that S(λ) is the characteristic
function of the operator A .
Using the unitary transformation Φ− we have:

H → L2 (R;E) , h→ h̃− (λ) = (Φ−h) (λ) , D− → H2
− (E) ,

D+ → SBH
2
+ (E) , H � (D− ⊕ D+) → H2

+ (E)� SBH
2
+ (E) ,

Uth → (Φ−UtΦ−1
− h̃−) (λ) = eiλth̃− (λ) .
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These mappings show that the operator T̃B (TL) is unitary equivalent to the model
dissipative operator with the characteristic function SB (λ) . Since the characteristic
functions of unitary equivalent dissipative operators coincide [15-18], we have proved
the next theorem.

Theorem 4.6. The characteristic function of the maximal dissipative operator T̃B

(TL) coincides with the matrix-valued function SB(λ) determined by formula (4.5).
The matrix-valued function SB (λ) is meromorphic in the complex plane C and is an
inner function in the upper half-plane.
Let L denote the linear operator acting in the Hilbert space H with the domain

D(L). The complex number λ0 is called an eigenvalue of the operator L if there
exist a nonzero element f0 ∈ D(L) such that Lf0 = λ0f0. Such element f0 is called
the eigenvector of the operator L corresponding to the eigenvalue λ0. The elements
f1, f2, ..., fk are called the associated vectors of the eigenvector f0 if they belong to
D(L) and Lfj = λ0fj + fj−1, j = 1, 2, ..., k. The element f ∈ D(L), f �= 0 is called
a root vector of the operator L corresponding to the eigenvalue λ0, if all powers of
L are defined on this element and (L − λ0I)nf = 0 for some integer n. The set of
all root vectors of L corresponding to the same eigenvalue λ0 with the vector f = 0
forms a linear set Nλ0 and is called the root lineal. The dimension of the lineal Nλ0

is called the algebraic multiplicity of the eigenvalue λ0. The root lineal Nλ0 coincides
with the linear span of all eigenvectors and associated vectors of L corresponding to
the eigenvalue λ0. Consequently, the completeness of the system of all eigenvectors
and associated vectors of L is equivalent to the completeness of the system of all root
vectors of this operator.
Sz.-Nagy-Foiaş proved a theorem on completeness of the system of all eigenvectors

and associated (or root) vectors of dissipative operator. Showing the absence of the
singular factor s (λ) in the factorization det S̃L (λ) = s (λ)B (λ) (B (λ) is the Blaschke
product) ensures the completeness of the system of eigenvectors and associated (or root)
vectors of the operator T̃B (TL) in the space H (see [8, 15-18]).
We first use the following result ([1]).

Lemma 4.7. The characteristic function S̃L (λ) of the operator TL (T̃B) has the
form

S̃L (λ) : = SB (λ) = Y1(I − L1L
∗
1)

− 1
2 (Ψ(σ)− L1)(I − L∗

1Ψ(σ))−1(I − L1L
∗
1)

1
2Y2,

where L1 = −L is the Cayley transformation of the dissipative operator B, and Ψ (σ)
is the Cayley transformation of the matrix-valued functionM (λ) , σ=(λ−i) (λ+i)−1

and Y1 := (ImB)−
1
2 (I − L1)

−1 (I −L1L
∗
1)

1
2 , Y2 := (I −L∗

1L1)−
1
2 (I −L∗

1) (ImT )
1
2 ,

|det Y1| = |det Y2| = 1.

In order that being the inner matrix-valued function S̃L (λ) is a Blaschke-Potopov
product it is necessary and sufficient that detS̃L (λ) is a Blaschke product ([8, 15-18]).
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Hence from Lemma 4.7. that the characteristic function S̃L (λ) is a Blaschke-Potopov
product if and only if the matrix-valued function

YL1 (σ) = (I − L1L
∗
1)

− 1
2 (Ψ (σ)− L1) (I − L∗

1Ψ (σ))−1 (I − L∗
1L1)

1
2

is a Blaschke-Potopov product in a unit disk.
To prove a theorem on completeness, we shall formulate the definition of Γ-capacity

in a form convenient for what follows (see [8, 19]).
Let E be an N -dimensional (N <∞) Euclidean space. In E we fix an orthonor-

mal basis e1, e2, ..., eN and denote by En (n = 1, 2, ..., N) the linear span vectors
e1, e2, ..., en. If K ⊂ En, then the set of v ∈ En−1 with the property Cap{ξ : ξ ∈
C, (v + ξen) ∈ K} > 0 will be denoted by Γn−1K. (CapG is the inner logarith-
mic capacity of the set G ⊂ C). The Γ-capacity of the set K ⊂ E is a number
Γ-CapK:= supCap{ξ : ξ ∈ C, ξe1 ⊂ Γ1Γ2...Γm−1K}, where the sup is taken with
respect to all orthonormal bases in E. It is known that every set K ⊂ E of zero
Γ-capacity has zero 2N -dimensional Lebesgue measure (in the decomplexified space
E) ([8, 19]), however, the converse is false.
Denote by [E] the set of all linear operators in E

(
= C2

)
. To convert [E] into the

4-dimensional Euclidean space, we introduce the inner product 〈A,C〉 = trC∗A, for
A,C ∈ [E] (trC∗A is the trace of the operator C∗A). Hence, we may introduce the
Γ-capacity of a set of [E] .
We will utilize the following important result of [8].

Lemma 4.8. Let Y (ξ) (|ξ| ≤ 1) be a holomorphic function with the values to
be contractive operators in [E] (i.e. ‖Y (ξ)‖ < 1). Then for Γ-quasi every strictly
contractive operators L in E (i.e., for all strictly contractive L ∈ [E] with the possible
exception of a set of Γ-capacity zero) the inner part of the contractive function

YL (ξ) : = (I − LL∗)−
1
2 (Y (ξ) − L) (I − L∗Y (ξ))−1 (I − L∗L)

1
2

is a Blaschke-Potopov product.

Then by summing all obtained results for the maximal dissipative operators TL

(T̃B), we have proved the following theorem.

Theorem 4.9. For Γ-quasi-every strictly contractive L ∈ [E] , the characteristic
function S̃L (λ) of the maximal dissipative operator TL is a Blaschke-Potopov product,
and the spectrum of TL is purely discrete and belongs to the open upper half-plane. For
Γ-quasi-every strictly contractive L ∈ [E] , the operator TL has a countable number
of isolated eigenvalues with finite algebraic multiplicity and limit point at infinity, and
the system of all eigenvectors and associated vectors (or root vectors) of this operator
is complete in the space L2

W (I;E).
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