WEIGHTED REPRESENTATION FUNCTIONS ON \mathbb{Z}_{m}

Quan-Hui Yang and Yong-Gao Chen*

Abstract

Let m, k_{1}, and k_{2} be three integers with $m \geq 2$. For $A \subseteq \mathbb{Z}_{m}$ and $n \in \mathbb{Z}_{m}$, let $\hat{r}_{k_{1}, k_{2}}(A, n)$ denote the number of solutions of the equation $n=k_{1} a_{1}+k_{2} a_{2}$ with $a_{1}, a_{2} \in A$. In this paper, we characterize all m, k_{1}, k_{2}, and A for which $\hat{r}_{k_{1}, k_{2}}\left(\mathbb{Z}_{m} \backslash A, n\right)=\hat{r}_{k_{1}, k_{2}}(A, n)$ for all $n \in \mathbb{Z}_{m}$. As a corollary, we prove that there exists $A \subseteq \mathbb{Z}_{m}$ such that $\hat{r}_{k_{1}, k_{2}}\left(\mathbb{Z}_{m} \backslash A, n\right)=\hat{r}_{k_{1}, k_{2}}(A, n)$ for all $n \in \mathbb{Z}_{m}$ if and only if $2 d \mid m$, where $d=\left(k_{1}, m\right)\left(k_{2}, m\right) /\left(k_{1}, k_{2}, m\right)^{2}$. We also pose several problems for further research.

1. Introduction

Let \mathbb{N} be the set of nonnegative integers. For a set $A \subseteq \mathbb{N}$, let $R_{1}(A, n), R_{2}(A, n)$, $R_{3}(A, n)$ denote the number of solutions of $a+a^{\prime}=n, a, a^{\prime} \in A, a+a^{\prime}=n, a, a^{\prime} \in$ $A, a<a^{\prime}$, and $a+a^{\prime}=n, a, a^{\prime} \in A, a \leqslant a^{\prime}$ respectively. We usually call them representation functions. Representation functions first appeared in the famous ErdossTurán conjecture (see [13]) and are named so by Nathanson (see [18]) about forty years later. After that, they are studied by Erdös, Sárközy and Sós in a series of papers [8-12]. Representation functions have recently been extensively studied by many authors (see $[1,7,14-16,19-21,23-25])$ and are still a fruitful area of research in additive number theory.

For $i \in\{1,2,3\}$, Sárközy asked whether there are sets A and B with infinite symmetric difference such that $R_{i}(A, n)=R_{i}(B, n)$ for all sufficiently large integers n. It is known that the answer is negative for $i=1$ (see Dombi [6]). Dombi [6] for $i=2$ and the second author and Wang [4] for $i=3$ proved that there exists a set $A \subseteq \mathbb{N}$ such that $R_{i}(A, n)=R_{i}(\mathbb{N} \backslash A, n)$ for all $n \geq n_{0}$. Later, Lev [17], Sándor [22] and Tang [24] provided several simple and nice proofs. The second author and Tang [3]

[^0]determined those A for which $R_{i}(A, n)=R_{i}(\mathbb{N} \backslash A, n) \geq 1$ for all $n \geq n_{0}$. Recently, the second author [2] determined those A for which $R_{i}(A, n)=R_{i}(\mathbb{N} \backslash A, n) \geq c n$ for all $n \geq n_{0}$.

Given any two positive integers $k_{1} \leq k_{2}$ and any set A of nonnegative integers, let $r_{k_{1}, k_{2}}(A, n)$ denote the number of solutions of the equation $n=k_{1} a_{1}+k_{2} a_{2}$ with $a_{1}, a_{2} \in A$. Cilleruelo and Rué [5] proved that if $k_{2} \geq k_{1} \geq 2$, then $r_{k_{1}, k_{2}}(A, n)$ cannot be constant from some point on. Recently, the authors [26] proved that there exists a set $A \subseteq \mathbb{N}$ such that $r_{k_{1}, k_{2}}(A, n)=r_{k_{1}, k_{2}}(\mathbb{N} \backslash A, n)$ for all sufficiently large integers n if and only if $k_{1} \mid k_{2}$ and $k_{2}>k_{1}$. In this paper, we study the modular version of this property.

First we give some notation here. For a positive integer m, let \mathbb{Z}_{m} be the set of residue classes modulo m. Given any t integers k_{1}, \ldots, k_{t}, any set $A \subseteq \mathbb{Z}_{m}$, and any $n \in \mathbb{Z}_{m}$, let $\hat{r}_{k_{1}, \cdots, k_{t}}(A, n)$ denote the number of solutions of the equation $n=$ $k_{1} a_{1}+\cdots+k_{t} a_{t}$ with $a_{1}, \ldots, a_{t} \in A$. For $d \mid m$, the set A is said uniformly distributed modulo d if $|\{x: x \in A, x \equiv i(\bmod d)\}|=|A| / d$ for all $i=0,1, \ldots, d-1$. In this paper, we characterize all m, k_{1}, k_{2}, and A for which $\hat{r}_{k_{1}, k_{2}}(A, n)=\hat{r}_{k_{1}, k_{2}}\left(\mathbb{Z}_{m} \backslash A, n\right)$ for all $n \in \mathbb{Z}_{m}$. The following results are proved.

Theorem 1. Let m, k_{1}, and k_{2} be three integers with $m \geq 2, A \subseteq \mathbb{Z}_{m}$, and $d=$ $\left(k_{1}, m\right)\left(k_{2}, m\right) /\left(k_{1}, k_{2}, m\right)^{2}$. Then $\hat{r}_{k_{1}, k_{2}}(A, n)=\hat{r}_{k_{1}, k_{2}}\left(\mathbb{Z}_{m} \backslash A, n\right)$ for all $n \in \mathbb{Z}_{m}$ if and only if $|A|=m / 2$ and A is uniformly distributed modulo d.

Corollary 1. Let the notation be as in Theorem 1. Then there exists a set $A \subseteq \mathbb{Z}_{m}$ such that $\hat{r}_{k_{1}, k_{2}}(A, n)=\hat{r}_{k_{1}, k_{2}}\left(\mathbb{Z}_{m} \backslash A, n\right)$ for all $n \in \mathbb{Z}_{m}$ if and only if $2 d \mid m$.

For a nonzero integer k, let $v_{2}(k)=t$ if $2^{t} \mid k$ and $2^{t+1} \nmid k$.
Corollary 2. Let the notation be as in Theorem 1. Then there exists a set $A \subseteq \mathbb{Z}_{m}$ such that $\hat{r}_{k_{1}, k_{2}}(A, n)=\hat{r}_{k_{1}, k_{2}}\left(\mathbb{Z}_{m} \backslash A, n\right)$ for all $n \in \mathbb{Z}_{m}$ if and only if m is even and one of the following statements is true: (i) $2 \mid k_{1}+k_{2}$; (ii) $2 \nmid k_{1}+k_{2}$ and $v_{2}\left(k_{1} k_{2}\right)<v_{2}(m)$.

Motivated by Lev [17] and the authors [26], we now pose the following problems for further research.

Problem 1. Given any integers m, k_{1} and k_{2} with $m \geq 2$, determine all pairs of subsets $A, B \subseteq \mathbb{Z}_{m}$ such that $\hat{r}_{k_{1}, k_{2}}(A, n)=\hat{r}_{k_{1}, k_{2}}(B, n)$ for all $n \in \mathbb{Z}_{m}$.

Problem 2. For $t \geq 3$, find all $t+1$-tuples (m, k_{1}, \ldots, k_{t}) of integers for which there exists a set $A \subseteq \mathbb{Z}_{m}$ such that $\hat{r}_{k_{1}, \ldots, k_{t}}(A, n)=\hat{r}_{k_{1}, \ldots, k_{t}}\left(\mathbb{Z}_{m} \backslash A, n\right)$ for all $n \in \mathbb{Z}_{m}$.

2. Proofs

For $T \subseteq \mathbb{Z}_{m}$ and $x \in \mathbb{Z}_{m}$, let

$$
S_{T}(x)=\sum_{t \in T} e^{2 \pi i t x / m}
$$

Let $A \subseteq \mathbb{Z}_{m}$ and $B=\mathbb{Z}_{m} \backslash A$. Then

$$
\hat{r}_{k_{1}, k_{2}}(A, n)=\frac{1}{m} \sum_{x=0}^{m-1} S_{A}\left(k_{1} x\right) S_{A}\left(k_{2} x\right) e^{-2 \pi i n x / m}
$$

for all $n \in \mathbb{Z}_{m}$. Let $g_{A}(x)=S_{A}\left(k_{1} x\right) S_{A}\left(k_{2} x\right)-S_{B}\left(k_{1} x\right) S_{B}\left(k_{2} x\right)$. Thus

$$
\begin{equation*}
\hat{r}_{k_{1}, k_{2}}(A, n)-\hat{r}_{k_{1}, k_{2}}(B, n)=\frac{1}{m} \sum_{x=0}^{m-1} g_{A}(x) e^{-2 \pi i n x / m} \tag{1}
\end{equation*}
$$

for all $n \in \mathbb{Z}_{m}$.
In order to prove Theorem 1, we need the following Lemmas.
Lemma 1. Let m, k_{1}, and k_{2} be three integers with $m \geq 2$. If $\hat{r}_{k_{1}, k_{2}}(A, n)=$ $\hat{r}_{k_{1}, k_{2}}(B, n)$ for all $n \in \mathbb{Z}_{m}$, then m is even and $|A|=m / 2$.

Proof. If $\hat{r}_{k_{1}, k_{2}}(A, n)=\hat{r}_{k_{1}, k_{2}}(B, n)$ for all $n \in \mathbb{Z}_{m}$, then

$$
|A|^{2}=\sum_{n \in \mathbb{Z}_{m}} \hat{r}_{k_{1}, k_{2}}(A, n)=\sum_{n \in \mathbb{Z}_{m}} \hat{r}_{k_{1}, k_{2}}(B, n)=|B|^{2} .
$$

Hence $|A|=|B|$. Therefore, $m=|A|+|B|$ is even and $|A|=m / 2$.
Lemma 2. If $m \nmid k_{i} x(i=1,2)$, then $g_{A}(x)=0$.
Proof. Since $m \nmid k_{i} x(i=1,2)$, it follows that

$$
\begin{aligned}
& S_{A}\left(k_{1} x\right)+S_{B}\left(k_{1} x\right)=\sum_{j=0}^{m-1} e^{2 \pi i k_{1} x j / m}=0, \\
& S_{A}\left(k_{2} x\right)+S_{B}\left(k_{2} x\right)=\sum_{j=0}^{m-1} e^{2 \pi i k_{2} x j / m}=0 .
\end{aligned}
$$

Hence $g_{A}(x)=S_{A}\left(k_{1} x\right) S_{A}\left(k_{2} x\right)-S_{B}\left(k_{1} x\right) S_{B}\left(k_{2} x\right)=0$.
Lemma 3. If $|A|=m / 2$ and $m \mid k_{i} x(i=1,2)$, then $g_{A}(x)=0$.

Proof. Since $m \mid k_{i} x(i=1,2)$, it follows that

$$
S_{A}\left(k_{1} x\right)=|A|=S_{A}\left(k_{2} x\right) \quad \text { and } \quad S_{B}\left(k_{1} x\right)=|B|=S_{B}\left(k_{2} x\right)
$$

Thus $g_{A}(x)=|A|^{2}-|B|^{2}$. By $|A|=m / 2$ we have $|B|=m / 2$. Therefore, $g_{A}(x)$ $=0$.

Lemma 4. If k and ℓ are two integers, then

$$
\sum_{\substack{x=0 \\ m \mid k x}}^{m-1} S_{T}(\ell x) e^{-2 \pi i n x / m}=(k, m) \sum_{\substack{t \in T \\(k, m) \mid \ell t-n}} 1
$$

Proof. Let $d=(k, m)$. Then

$$
\begin{aligned}
& \sum_{\substack{x=0 \\
m \mid k x}}^{m-1} S_{T}(\ell x) e^{-2 \pi i n x / m}=\sum_{\substack{x=0 \\
m \mid k x}}^{m-1} \sum_{t \in T} e^{2 \pi i(\ell t-n) x / m} \\
= & \sum_{s=0}^{d-1} \sum_{t \in T} e^{2 \pi i(\ell t-n) s / d}=\sum_{t \in T} \sum_{s=0}^{d-1} e^{2 \pi i(\ell t-n) s / d}=d \sum_{\substack{t \in T \\
d \mid \ell t-n}} 1 .
\end{aligned}
$$

Proof of Theorem 1. Let $d_{1}=\left(k_{1}, m\right), d_{2}=\left(k_{2}, m\right)$, and $d_{3}=\left(d_{1}, d_{2}\right)$. Then $d=d_{1} d_{2} / d_{3}^{2}$. By Lemma 1 we may assume that m is even and $|A|=|B|=m / 2$. From equality (1), by Lemmas 2-4, we have

$$
\begin{aligned}
& \hat{r}_{k_{1}, k_{2}}(A, n)-\hat{r}_{k_{1}, k_{2}}(B, n) \\
= & \frac{1}{m} \sum_{\substack{x=0 \\
m \nmid k_{1} x, m \nmid k_{2} x}}^{m-1} g_{A}(x) e^{-2 \pi i n x / m}+\frac{1}{m} \sum_{\substack{x=0 \\
m \mid k_{1} x}}^{m-1} g_{A}(x) e^{-2 \pi i n x / m} \\
& +\frac{1}{m} \sum_{\substack{x=0 \\
m \mid k_{2} x}}^{m-1} g_{A}(x) e^{-2 \pi i n x / m}-\frac{1}{m} \sum_{\substack{x=0 \\
m\left|k_{1} x, m\right| k_{2} x}}^{m-1} g_{A}(x) e^{-2 \pi i n x / m} \\
= & \frac{1}{m} \sum_{x=0}^{m-1} g_{A}(x) e^{-2 \pi i n x / m}+\frac{1}{m} \sum_{\substack{x=0 \\
m \mid k_{2} x}}^{m-1} g_{A}(x) e^{-2 \pi i n x / m} \\
= & \frac{1}{2} \sum_{\substack{x=0 \\
m \mid k_{1} x}}^{m-1}\left(S_{A}\left(k_{2} x\right)-S_{B}\left(k_{2} x\right)\right) e^{-2 \pi i n x / m}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2} \sum_{\substack{x=0 \\
m \mid k_{2} x}}^{m-1}\left(S_{A}\left(k_{1} x\right)-S_{B}\left(k_{1} x\right)\right) e^{-2 \pi i n x / m} \\
= & \frac{1}{2} d_{1}\left(\sum_{\substack{a \in A \\
d_{1} \mid k_{2} a-n}} 1-\sum_{\substack{b \in B \\
d_{1} \mid k_{2} b-n}} 1\right)+\frac{1}{2} d_{2}\left(\sum_{\substack{a \in A \\
d_{2} \mid k_{1} a-n}} 1-\sum_{\substack{b \in B \\
d_{2} \mid k_{1} b-n}} 1\right) .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\hat{r}_{k_{1}, k_{2}}(A, n)=\hat{r}_{k_{1}, k_{2}}(B, n) \tag{2}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
d_{1} \sum_{\substack{a \in A \\ d_{1} \mid k_{2} a-n}} 1+d_{2} \sum_{\substack{a \in A \\ d_{2} \mid k_{1} a-n}} 1=d_{1} \sum_{\substack{b \in B \\ d_{1} \mid k_{2} b-n}} 1+d_{2} \sum_{\substack{b \in B \\ d_{2} \mid k_{1} b-n}} 1 \tag{3}
\end{equation*}
$$

First, we prove the necessity in Theorem 1. Suppose that (2) holds for all integers n. Then (3) holds for all integers n. Thus, replacing n by $d_{1} n$ in (3), we have

$$
\begin{equation*}
d_{1} \sum_{\substack{a \in A \\ d_{1} \mid k_{2} a-d_{1} n}} 1+d_{2} \sum_{\substack{a \in A \\ d_{2} \mid k_{1} a-d_{1} n}} 1=d_{1} \sum_{\substack{b \in B \\ d_{1} \mid k_{2} b-d_{1} n}} 1+d_{2} \sum_{\substack{b \in B \\ d_{2} \mid k_{1} b-d_{1} n}} 1 \tag{4}
\end{equation*}
$$

for all integers n. Let $d_{i}=d_{3} d_{i}^{\prime}$ and $k_{i}=d_{3} k_{i}^{\prime}(i=1,2)$. Since $d_{3}=\left(d_{1}, d_{2}\right)$ and $d_{i}=\left(k_{i}, m\right)$, we see that d_{i}^{\prime} and k_{i}^{\prime} are integers $(i=1,2)$. By (4), we have

$$
\begin{equation*}
d_{1} \sum_{\substack{a \in A \\ d_{1}^{\prime} \mid k_{2}^{\prime} a}} 1+d_{2} \sum_{\substack{a \in A \\ d_{2}^{\prime} \mid k_{1}^{\prime} a-d_{1}^{\prime} n}} 1=d_{1} \sum_{\substack{b \in B \\ d_{1}^{\prime} \mid k_{2}^{\prime} b}} 1+d_{2} \sum_{\substack{b \in B \\ d_{2}^{\prime} \mid k_{1}^{\prime} b-d_{1}^{\prime} n}} 1 . \tag{5}
\end{equation*}
$$

Since $\left(d_{1}, k_{2}\right)=\left(k_{1}, m, k_{2}\right)=d_{3}$, it follows that $\left(d_{1}^{\prime}, k_{2}^{\prime}\right)=1$. Similarly, we have that $\left(d_{2}^{\prime}, k_{1}^{\prime}\right)=1$. Thus the sum of the two sides of (5) is
(6) $d_{1} \sum_{t \in \mathbb{Z}_{m}, d_{1}^{\prime} \mid k_{2}^{\prime} t} 1+d_{2} \sum_{t \in \mathbb{Z}_{m}, d_{2}^{\prime} \mid k_{1}^{\prime} t-d_{1}^{\prime} n} 1=d_{1} \sum_{t \in \mathbb{Z}_{m}, d_{1}^{\prime} \mid t} 1+d_{2} \sum_{t \in \mathbb{Z}_{m}, d_{2}^{\prime} \mid t} 1=2 d_{3} m$.

By (5) and (6), we have

$$
\begin{equation*}
d_{1} \sum_{\substack{a \in A \\ d_{1}^{\prime} \mid k_{2}^{\prime} a}} 1+d_{2} \sum_{\substack{a \in A \\ d_{2}^{\prime} \mid k_{1}^{\prime} a-d_{1}^{\prime} n}} 1=d_{3} m \quad \text { for all integers } n . \tag{7}
\end{equation*}
$$

Since $\left(d_{1}, d_{2}\right)=d_{3}$, we see that $\left(d_{1}^{\prime}, d_{2}^{\prime}\right)=1$. Hence there exists an integer t_{1} such that $d_{1}^{\prime} t_{1} \equiv 1\left(\bmod d_{2}^{\prime}\right)$. Thus $k_{1}^{\prime} a-d_{1}^{\prime} t_{1} k_{1}^{\prime} n \equiv k_{1}^{\prime}(a-n)\left(\bmod d_{2}^{\prime}\right)$. By (7), replacing n by $t_{1} k_{1}^{\prime} n$, and $\left(d_{2}^{\prime}, k_{1}^{\prime}\right)=1$, we have

$$
d_{2} \sum_{a \in A, d_{2}^{\prime} \mid a-n} 1=d_{3} m-d_{1} \sum_{a \in A, d_{1}^{\prime} \mid k_{2}^{\prime} a} 1,
$$

so that

$$
\begin{equation*}
\sum_{\substack{a \in A \\ d_{2}^{\prime} \mid a-n_{1}}} 1=\sum_{\substack{a \in A \\ d_{2}^{\prime} \mid a-n_{2}}} 1 \quad \text { for all integers } n_{1}, n_{2} . \tag{8}
\end{equation*}
$$

Hence A is uniformly distributed modulo d_{2}^{\prime}. Similarly, A is uniformly distributed modulo d_{1}^{\prime}. Since $\left(d_{1}^{\prime}, d_{2}^{\prime}\right)=1$, the set A is uniformly distributed modulo $d_{1}^{\prime} d_{2}^{\prime}=$ $d_{1} d_{2} / d_{3}^{2}=d$.

Now we prove the sufficiency in Theorem 1. Suppose that A is uniformly distributed modulo $d_{1}^{\prime} d_{2}^{\prime}=d$. Then A is uniformly distributed modulo d_{1}^{\prime}. So $\mid\{a \in A$: $\left.d_{1}^{\prime} \mid a-n\right\}\left|=|A| / d_{1}^{\prime}\right.$ for all integers n. Since $\left(k_{2}^{\prime}, d_{1}^{\prime}\right)=1$, it follows that $|\{a \in A$: $\left.d_{1}^{\prime} \mid k_{2}^{\prime} a-n\right\}\left|=|A| / d_{1}^{\prime}\right.$ for all integers n. That is, $|\left\{a \in A: d_{1} \mid k_{2} a-d_{3} n\right\}\left|=d_{3}\right| A \mid / d_{1}$ for all integers n. Similarly, $\left|\left\{a \in A: d_{2} \mid k_{1} a-d_{3} n\right\}\right|=d_{3}|A| / d_{2}$ for all integers n. Hence

$$
\begin{equation*}
d_{1} \sum_{\substack{a \in A \\ d_{1} \mid k_{2} a-d_{3} n}} 1+d_{2} \sum_{\substack{a \in A \\ d_{2} \mid k_{1} a-d_{3} n}} 1=2 d_{3}|A| \quad \text { for all integers } n . \tag{9}
\end{equation*}
$$

Since A is uniformly distributed modulo d, the set $B=\mathbb{Z}_{m} \backslash A$ is also uniformly distributed modulo d. Similarly, we have that

$$
\begin{equation*}
d_{1} \sum_{\substack{b \in B \\ d_{1} \mid k_{2} b-d_{3} n}} 1+d_{2} \sum_{\substack{b \in B \\ d_{2} \mid k_{1} b-d_{3} n}} 1=2 d_{3}|B| \quad \text { for all integers } n . \tag{10}
\end{equation*}
$$

Noting that $|A|=|B|$, by (9) and (10), the equality (3) holds for all integers n with $d_{3} \mid n$. If $d_{3} \nmid n$, by $d_{3}\left|d_{1}, d_{3}\right| d_{2}$, and $d_{2} \mid k_{2}$, we have $d_{1} \nmid k_{2} a-n$. Similarly, if $d_{3} \nmid n$, then $d_{2} \nmid k_{1} a-n, d_{2} \nmid k_{1} b-n$, and $d_{1} \nmid k_{2} b-n$. So (3) holds trivially for all integers n with $d_{3} \nmid n$. Thus (3) holds for all integers n. Therefore, (2) holds for all $n \in \mathbb{Z}_{m}$.

Proof of Corollary 1. Suppose that there exists a set $A \subseteq \mathbb{Z}_{m}$ such that $\hat{r}_{k_{1}, k_{2}}(A, n)$ $=\hat{r}_{k_{1}, k_{2}}\left(\mathbb{Z}_{m} \backslash A, n\right)$ for all $n \in \mathbb{Z}_{m}$. By Theorem $1,|A|=m / 2$ and A is uniformly distributed modulo d. So m is even and $d \mid m / 2$. Thus $2 d \mid m$. Conversely, suppose that $2 d \mid m$. Let

$$
A=\bigcup_{i=0}^{d-1}\left\{i+d \ell: \ell=1, \ldots, \frac{m}{2 d}\right\}
$$

Then $|A|=m / 2$ and A is uniformly distributed modulo d. By Theorem 1, $\hat{r}_{k_{1}, k_{2}}(A, n)=$ $\hat{r}_{k_{1}, k_{2}}\left(\mathbb{Z}_{m} \backslash A, n\right)$ for all $n \in \mathbb{Z}_{m}$.

Proof of Corollary 2. By Corollary 1, there exists a set $A \subseteq \mathbb{Z}_{m}$ such that $\hat{r}_{k_{1}, k_{2}}(A, n)=\hat{r}_{k_{1}, k_{2}}\left(\mathbb{Z}_{m} \backslash A, n\right)$ for all $n \in \mathbb{Z}_{m}$ if and only if $2 d \mid m$.

Since $d_{1} \mid m$ and $d_{2} \mid m$, by $\left(d_{1} / d_{3}, d_{2} / d_{3}\right)=1$ and $d=d_{1} d_{2} / d_{3}^{2}$ we have $d \mid m$. So $2 d \mid m$ is equivalent to $v_{2}(2 d) \leq v_{2}(m)$. Without loss of generality, we assume that $v_{2}\left(k_{1}\right) \leq v_{2}\left(k_{2}\right)$. Noting that

$$
\begin{aligned}
v_{2}(2 d) & =1+v_{2}\left(d_{1}\right)+v_{2}\left(d_{2}\right)-2 v_{2}\left(d_{3}\right) \\
& =1+\min \left\{v_{2}\left(k_{2}\right), v_{2}(m)\right\}-\min \left\{v_{2}\left(k_{1}\right), v_{2}(m)\right\},
\end{aligned}
$$

the inequality $v_{2}(2 d) \leq v_{2}(m)$ is equivalent to that m is even and one of (i) and (ii) is true. Therefore, there exists a set $A \subseteq \mathbb{Z}_{m}$ such that $\hat{r}_{k_{1}, k_{2}}(A, n)=\hat{r}_{k_{1}, k_{2}}\left(\mathbb{Z}_{m} \backslash A, n\right)$ for all $n \in \mathbb{Z}_{m}$ if and only if m is even and one of (i) and (ii) is true.

Acknowledgments

We are grateful to the referee for his/her detailed comments.

References

1. R. Balasubramanian and G. Prakash, On an additive representation function, J. Number Theory, 104 (2004), 327-334.
2. Y.-G. Chen, On the values of representation functions, Sci. China Math., 54 (2011), 1317-1331.
3. Y.-G. Chen and M. Tang, Partitions of natural numbers with the same representation functions, J. Number Theory, 129 (2009), 2689-2695.
4. Y.-G. Chen and B. Wang, On additive properties of two special sequences, Acta Arith., 110 (2003), 299-303.
5. J. Cilleruelo and J. Rué, On a question of Sárközy and Sós for bilinear forms, Bull. Lond. Math. Soc., 41 (2009), 274-280.
6. G. Dombi, Additive properties of certain sets, Acta Arith., 103 (2002), 137-146.
7. A. Dubickas, A basis of finite and infinite sets with small representation function, Electron. J. Combin., 19 (2012), R6.
8. P. Erdठss and A. Sárközy, Problems and results on additive properties of general sequences, I, Pacific J. Math., 118 (1985), 347-357.
9. P. Erdos and A. Sárközy, Problems and results on additive properties of general sequences, II, Acta Math. Hungar,, 48 (1986), 201-211.
10. P. Erdös, A. Sárközy and V. T. Sós, Problems and results on additive properties of general sequences, III, Studia Sci. Math. Hungar., 22 (1987), 53-63.
11. P. Erdös, A. Sárközy and V. T. Sós, Problems and results on additive properties of general sequences, IV, in: Number Theory, Proceedings, Ootacamund, India, 1984, Lecture Notes in Math., Vol. 1122, Springer-Verlag, Berlin, 1985, pp. 85-104.
12. P. Erd厄̈s, A. Sárközy and V. T. Sós, Problems and results on additive properties of general sequences, V, Monatsh. Math., 102 (1986), 183-197.
13. P. Erdess and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc., 16 (1941), 212-215.
14. G. Grekos, L. Haddad, C. Helou and J. Pihko, Representation functions, Sidon sets and bases, Acta Arith., 130 (2007), 149-156.
15. G. Horváth, On additive representation function of general sequences, Acta Math. Hungar., 115 (2007), 169-175.
16. S. Z. Kiss, On the k-th difference of an additive representation function, Studia Sci. Math. Hungar., 48 (2011), 93-103.
17. V. F. Lev, Reconstructing integer sets from their representation functions, Electron. J. Combin., 11 (2004), R78.
18. M. B. Nathanson, Representation functions of sequences in additive number theory, Proc. Amer. Math. Soc., 72 (1978), 16-20.
19. M. B. Nathanson, Representation functions of additive bases for abelian semigroups, Int. J. Math. Math. Sci., 2004(30) (2004), 1589-1597.
20. M. B. Nathanson, Inverse problems for representation functions in additive number theory, Surveys in number theory, 89-117, Dev. Math., 17, Springer, New York, 2008.
21. J. L. Nicolas, I. Z. Ruzsa and A. Sárközy, On the parity of additive representation functions, J. Number Theory, 73 (1998), 292-317.
22. C. Sándor, Partitions of natural numbers and their representation functions, Integers, 4 (2004), A18.
23. A. Sárközy and V. T. Sós, On additive representation functions, in: The Mathematics of Paul Erdbs, (R. L. Graham and J. Nešetřil, eds.), Springer-Verlag, 1997, pp. 129-150.
24. M. Tang, Partitions of the set of natural numbers and their representation functions, Discrete Math., 308 (2008), 2614-2616.
25. Q.-H. Yang and F.-J. Chen, Partitions of \mathbb{Z}_{m} with the same representation functions, Australas. J. Combin., 53 (2012), 257-262.
26. Q.-H. Yang and Y.-G. Chen, Partitions of natural numbers with the same weighted representation functions, J. Number Theory, 132 (2012), 3047-3055.

Quan-Hui Yang and Yong-Gao Chen
School of Mathematical Sciences and Institute of Mathematics
Nanjing Normal University
Nanjing 210023
P. R. China
E-mail: yangquanhui01@163.com
ygchen@njnu.edu.cn

[^0]: Received September 19, 2012, accepted January 26, 2013.
 Communicated by Wen-Ching Li. 2010 Mathematics Subject Classification: 11B34, 11L03.
 Key words and phrases: Representation function, Partition, Sárközy problem.
 This work was supported by the National Natural Science Foundation of China, Grant No. 11071121 and the Project of Graduate Education Innovation of Jiangsu Province (CXZZ12-0381).
 *Corresponding author.

