
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 17, No. 4, pp. 1311-1319, August 2013
DOI: 10.11650/tjm.17.2013.2463
This paper is available online at http://journal.taiwanmathsoc.org.tw

WEIGHTED REPRESENTATION FUNCTIONS ON Zm

Quan-Hui Yang and Yong-Gao Chen*

Abstract. Let m, k1, and k2 be three integers with m ≥ 2. For A ⊆ Zm

and n ∈ Zm, let r̂k1,k2(A, n) denote the number of solutions of the equation
n = k1a1 + k2a2 with a1, a2 ∈ A. In this paper, we characterize all m, k1, k2,
and A for which r̂k1,k2(Zm\A, n) = r̂k1,k2(A, n) for all n ∈ Zm. As a corollary,
we prove that there exists A ⊆ Zm such that r̂k1,k2(Zm \ A, n) = r̂k1,k2(A, n)
for all n ∈ Zm if and only if 2d | m, where d = (k1, m)(k2, m)/(k1, k2, m)2.
We also pose several problems for further research.

1. INTRODUCTION

Let N be the set of nonnegative integers. For a set A ⊆ N, let R1(A, n), R2(A, n),
R3(A, n) denote the number of solutions of a + a′ = n, a, a′ ∈ A, a + a′ = n, a, a′ ∈
A, a < a′, and a + a′ = n, a, a′ ∈ A, a � a′ respectively. We usually call them
representation functions. Representation functions first appeared in the famous Erd"os-
Turán conjecture (see [13]) and are named so by Nathanson (see [18]) about forty years
later. After that, they are studied by Erd"os, Sárközy and Sós in a series of papers [8-12].
Representation functions have recently been extensively studied by many authors (see
[1, 7, 14-16, 19-21, 23-25]) and are still a fruitful area of research in additive number
theory.
For i ∈ {1, 2, 3}, Sárközy asked whether there are sets A and B with infinite

symmetric difference such that Ri(A, n) = Ri(B, n) for all sufficiently large integers
n. It is known that the answer is negative for i = 1 (see Dombi [6]). Dombi [6] for
i = 2 and the second author and Wang [4] for i = 3 proved that there exists a set
A ⊆ N such that Ri(A, n) = Ri(N\A, n) for all n ≥ n0. Later, Lev [17], Sándor [22]
and Tang [24] provided several simple and nice proofs. The second author and Tang [3]

Received September 19, 2012, accepted January 26, 2013.
Communicated by Wen-Ching Li.
2010 Mathematics Subject Classification: 11B34, 11L03.
Key words and phrases: Representation function, Partition, Sárközy problem.
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determined those A for which Ri(A, n) = Ri(N \ A, n) ≥ 1 for all n ≥ n0. Recently,
the second author [2] determined those A for which Ri(A, n) = Ri(N \ A, n) ≥ cn
for all n ≥ n0.

Given any two positive integers k1 ≤ k2 and any set A of nonnegative integers,
let rk1,k2(A, n) denote the number of solutions of the equation n = k1a1 + k2a2 with
a1, a2 ∈ A. Cilleruelo and Rué [5] proved that if k2 ≥ k1 ≥ 2, then rk1,k2(A, n)
cannot be constant from some point on. Recently, the authors [26] proved that there
exists a set A ⊆ N such that rk1,k2(A, n) = rk1,k2(N \ A, n) for all sufficiently large
integers n if and only if k1 | k2 and k2 > k1. In this paper, we study the modular
version of this property.
First we give some notation here. For a positive integer m, let Zm be the set

of residue classes modulo m. Given any t integers k1, . . . , kt, any set A ⊆ Zm, and
any n ∈ Zm, let r̂k1,··· ,kt(A, n) denote the number of solutions of the equation n =
k1a1+· · ·+ktat with a1, . . . , at ∈ A. For d | m, the set A is said uniformly distributed
modulo d if |{x : x ∈ A, x ≡ i (mod d)}| = |A|/d for all i = 0, 1, . . . , d− 1. In this
paper, we characterize all m, k1, k2, and A for which r̂k1,k2(A, n) = r̂k1,k2(Zm \A, n)
for all n ∈ Zm. The following results are proved.

Theorem 1. Let m, k1, and k2 be three integers with m ≥ 2, A ⊆ Zm, and d =
(k1, m)(k2, m)/(k1, k2, m)2. Then r̂k1,k2(A, n) = r̂k1,k2(Zm \A, n) for all n ∈ Zm if
and only if |A| = m/2 and A is uniformly distributed modulo d.

Corollary 1. Let the notation be as in Theorem 1. Then there exists a set A ⊆ Zm

such that r̂k1,k2(A, n) = r̂k1,k2(Zm \ A, n) for all n ∈ Zm if and only if 2d | m.

For a nonzero integer k, let v2(k) = t if 2t | k and 2t+1 � k.

Corollary 2. Let the notation be as in Theorem 1. Then there exists a set A ⊆ Zm

such that r̂k1,k2(A, n) = r̂k1,k2(Zm \ A, n) for all n ∈ Zm if and only if m is even
and one of the following statements is true: (i) 2 | k1 + k2; (ii) 2 � k1 + k2 and
v2(k1k2) < v2(m).

Motivated by Lev [17] and the authors [26], we now pose the following problems
for further research.

Problem 1. Given any integers m, k1 and k2 with m ≥ 2, determine all pairs of
subsets A, B ⊆ Zm such that r̂k1,k2(A, n) = r̂k1,k2(B, n) for all n ∈ Zm.

Problem 2. For t ≥ 3, find all t + 1-tuples (m, k1, . . . , kt) of integers for which
there exists a set A ⊆ Zm such that r̂k1,...,kt(A, n) = r̂k1,...,kt(Zm \ A, n) for all
n ∈ Zm.
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2. PROOFS

For T ⊆ Zm and x ∈ Zm, let

ST (x) =
∑
t∈T

e2πitx/m.

Let A ⊆ Zm and B = Zm \ A. Then

r̂k1,k2(A, n) =
1
m

m−1∑
x=0

SA(k1x)SA(k2x)e−2πinx/m

for all n ∈ Zm. Let gA(x) = SA(k1x)SA(k2x) − SB(k1x)SB(k2x). Thus

(1) r̂k1,k2(A, n)− r̂k1,k2(B, n) =
1
m

m−1∑
x=0

gA(x)e−2πinx/m

for all n ∈ Zm.
In order to prove Theorem 1, we need the following Lemmas.

Lemma 1. Let m, k1, and k2 be three integers with m ≥ 2. If r̂k1,k2(A, n) =
r̂k1,k2(B, n) for all n ∈ Zm, then m is even and |A| = m/2.

Proof. If r̂k1,k2(A, n) = r̂k1,k2(B, n) for all n ∈ Zm, then

|A|2 =
∑

n∈Zm

r̂k1,k2(A, n) =
∑

n∈Zm

r̂k1,k2(B, n) = |B|2.

Hence |A| = |B|. Therefore, m = |A|+ |B| is even and |A| = m/2.

Lemma 2. If m � kix (i = 1, 2), then gA(x) = 0.

Proof. Since m � kix (i = 1, 2), it follows that

SA(k1x) + SB(k1x) =
m−1∑
j=0

e2πik1xj/m = 0,

SA(k2x) + SB(k2x) =
m−1∑
j=0

e2πik2xj/m = 0.

Hence gA(x) = SA(k1x)SA(k2x) − SB(k1x)SB(k2x) = 0.

Lemma 3. If |A| = m/2 and m | kix (i = 1, 2), then gA(x) = 0.



1314 Quan-Hui Yang and Yong-Gao Chen

Proof. Since m | kix (i = 1, 2), it follows that

SA(k1x) = |A| = SA(k2x) and SB(k1x) = |B| = SB(k2x).

Thus gA(x) = |A|2 − |B|2. By |A| = m/2 we have |B| = m/2. Therefore, gA(x)
= 0.

Lemma 4. If k and � are two integers, then

m−1∑
x=0
m|kx

ST (�x)e−2πinx/m = (k, m)
∑
t∈T

(k,m)|�t−n

1.

Proof. Let d = (k, m). Then

m−1∑
x=0
m|kx

ST (�x)e−2πinx/m =
m−1∑
x=0
m|kx

∑
t∈T

e2πi(�t−n)x/m

=
d−1∑
s=0

∑
t∈T

e2πi(�t−n)s/d =
∑
t∈T

d−1∑
s=0

e2πi(�t−n)s/d = d
∑
t∈T

d|�t−n

1.

Proof of Theorem 1. Let d1 = (k1, m), d2 = (k2, m), and d3 = (d1, d2). Then
d = d1d2/d2

3. By Lemma 1 we may assume that m is even and |A| = |B| = m/2.
From equality (1), by Lemmas 2-4, we have

r̂k1,k2(A, n)− r̂k1,k2(B, n)

=
1
m

m−1∑
x=0

m�k1x,m�k2x

gA(x)e−2πinx/m +
1
m

m−1∑
x=0

m|k1x

gA(x)e−2πinx/m

+
1
m

m−1∑
x=0

m|k2x

gA(x)e−2πinx/m − 1
m

m−1∑
x=0

m|k1x,m|k2x

gA(x)e−2πinx/m

=
1
m

m−1∑
x=0

m|k1x

gA(x)e−2πinx/m +
1
m

m−1∑
x=0

m|k2x

gA(x)e−2πinx/m

=
1
2

m−1∑
x=0

m|k1x

(SA(k2x) − SB(k2x)) e−2πinx/m
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+
1
2

m−1∑
x=0

m|k2x

(SA(k1x)− SB(k1x)) e−2πinx/m

=
1
2
d1

⎛
⎜⎜⎝

∑
a∈A

d1|k2a−n

1 −
∑
b∈B

d1|k2b−n

1

⎞
⎟⎟⎠ +

1
2
d2

⎛
⎜⎜⎝

∑
a∈A

d2|k1a−n

1−
∑
b∈B

d2|k1b−n

1

⎞
⎟⎟⎠ .

It follows that

(2) r̂k1,k2(A, n) = r̂k1,k2(B, n)

is equivalent to

(3) d1

∑
a∈A

d1|k2a−n

1 + d2

∑
a∈A

d2|k1a−n

1 = d1

∑
b∈B

d1|k2b−n

1 + d2

∑
b∈B

d2|k1b−n

1.

First, we prove the necessity in Theorem 1. Suppose that (2) holds for all integers
n. Then (3) holds for all integers n. Thus, replacing n by d1n in (3), we have

(4) d1

∑
a∈A

d1|k2a−d1n

1 + d2

∑
a∈A

d2|k1a−d1n

1 = d1

∑
b∈B

d1|k2b−d1n

1 + d2

∑
b∈B

d2|k1b−d1n

1

for all integers n. Let di = d3d
′
i and ki = d3k

′
i (i = 1, 2). Since d3 = (d1, d2) and

di = (ki, m), we see that d′i and k′
i are integers (i = 1, 2). By (4), we have

(5) d1

∑
a∈A

d′1|k′
2a

1 + d2

∑
a∈A

d′2|k′
1a−d′1n

1 = d1

∑
b∈B

d′1|k′
2b

1 + d2

∑
b∈B

d′2|k′
1b−d′1n

1.

Since (d1, k2) = (k1, m, k2) = d3, it follows that (d′1, k′
2) = 1. Similarly, we have that

(d′2, k
′
1) = 1. Thus the sum of the two sides of (5) is

(6) d1

∑
t∈Zm,d′1|k′

2t

1 + d2

∑
t∈Zm,d′2|k′

1t−d′1n

1 = d1

∑
t∈Zm,d′1|t

1 + d2

∑
t∈Zm,d′2|t

1 = 2d3m.

By (5) and (6), we have

(7) d1

∑
a∈A

d′1|k′
2a

1 + d2

∑
a∈A

d′2|k′
1a−d′1n

1 = d3m for all integers n.
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Since (d1, d2) = d3, we see that (d′1, d′2) = 1. Hence there exists an integer t1 such that
d′1t1 ≡ 1 (mod d′2). Thus k′

1a − d′1t1k
′
1n ≡ k′

1(a − n) (mod d′2). By (7), replacing
n by t1k

′
1n, and (d′2, k

′
1) = 1, we have

d2

∑
a∈A,d′2|a−n

1 = d3m − d1

∑
a∈A,d′1|k′

2a

1,

so that

(8)
∑
a∈A

d′2|a−n1

1 =
∑
a∈A

d′2|a−n2

1 for all integers n1, n2.

Hence A is uniformly distributed modulo d′2. Similarly, A is uniformly distributed
modulo d′1. Since (d′1, d′2) = 1, the set A is uniformly distributed modulo d′1d′2 =
d1d2/d2

3 = d.
Now we prove the sufficiency in Theorem 1. Suppose that A is uniformly dis-

tributed modulo d′1d
′
2 = d. Then A is uniformly distributed modulo d′1. So |{a ∈ A :

d′1|a − n}| = |A|/d′1 for all integers n. Since (k′
2, d

′
1) = 1, it follows that |{a ∈ A :

d′1|k′
2a−n}| = |A|/d′1 for all integers n. That is, |{a ∈ A : d1|k2a−d3n}| = d3|A|/d1

for all integers n. Similarly, |{a ∈ A : d2|k1a − d3n}| = d3|A|/d2 for all integers n.
Hence

(9) d1

∑
a∈A

d1|k2a−d3n

1 + d2

∑
a∈A

d2|k1a−d3n

1 = 2d3|A| for all integers n.

Since A is uniformly distributed modulo d, the set B = Zm \ A is also uniformly
distributed modulo d. Similarly, we have that

(10) d1

∑
b∈B

d1|k2b−d3n

1 + d2

∑
b∈B

d2|k1b−d3n

1 = 2d3|B| for all integers n.

Noting that |A| = |B|, by (9) and (10), the equality (3) holds for all integers n
with d3|n. If d3 � n, by d3 | d1, d3 | d2, and d2 | k2, we have d1 � k2a − n. Similarly,
if d3 � n, then d2 � k1a − n, d2 � k1b − n, and d1 � k2b − n. So (3) holds trivially for
all integers n with d3 � n. Thus (3) holds for all integers n. Therefore, (2) holds for
all n ∈ Zm.

Proof of Corollary 1. Suppose that there exists a set A ⊆ Zm such that r̂k1,k2(A, n)
= r̂k1,k2(Zm \ A, n) for all n ∈ Zm. By Theorem 1, |A| = m/2 and A is uniformly
distributed modulo d. So m is even and d | m/2. Thus 2d | m. Conversely, suppose
that 2d | m. Let

A =
d−1⋃
i=0

{
i + d� : � = 1, . . . ,

m

2d

}
.
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Then |A| = m/2 andA is uniformly distributedmodulo d. By Theorem 1, r̂k1,k2(A, n) =
r̂k1,k2(Zm \ A, n) for all n ∈ Zm.

Proof of Corollary 2. By Corollary 1, there exists a set A ⊆ Zm such that
r̂k1,k2(A, n) = r̂k1,k2(Zm \ A, n) for all n ∈ Zm if and only if 2d | m.
Since d1 | m and d2 | m, by (d1/d3, d2/d3) = 1 and d = d1d2/d2

3 we have d | m.
So 2d | m is equivalent to v2(2d) ≤ v2(m). Without loss of generality, we assume that
v2(k1) ≤ v2(k2). Noting that

v2(2d) = 1 + v2(d1) + v2(d2) − 2v2(d3)

= 1 + min{v2(k2), v2(m)} − min{v2(k1), v2(m)},

the inequality v2(2d) ≤ v2(m) is equivalent to that m is even and one of (i) and (ii) is
true. Therefore, there exists a set A ⊆ Zm such that r̂k1,k2(A, n) = r̂k1,k2(Zm \ A, n)
for all n ∈ Zm if and only if m is even and one of (i) and (ii) is true.
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23. A. Sárközy and V. T. Sós, On additive representation functions, in: The Mathematics of
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