TAIWANESE JOURNAL OF MATHEMATICS Vol. 17, No. 3, pp. 957-980, June 2013 DOI: 10.11650/tjm.17.2013.2234 This paper is available online at http://journal.taiwanmathsoc.org.tw

NOTE ON LOCAL INTEGRATED C-COSINE FUNCTIONS AND ABSTRACT CAUCHY PROBLEMS

Chung-Cheng Kuo

Abstract. Let α be a nonnegative number, and $C: X \to X$ a bounded linear operator on a Banach space X. In this paper, we shall deduce some basic properties of a nondegenerate local α -times integrated C-cosine function on X and some generation theorems of local α -times integrated C-cosine functions on X with or without the nondegeneracy, which can be applied to obtain some equivalence relations between the generation of a nondegenerate local α -times integrated C-cosine function on X with generator A and the unique existence of solutions of the abstract Cauchy problem:

$$ACP(A, f, x, y) \qquad \begin{cases} u''(t) = Au(t) + f(t) & \text{for } t \in (0, T_0), \\ u(0) = x, u'(0) = y, \end{cases}$$

just as the case of α -times integrated C-cosine function when $C: X \to X$ is injective and $A: D(A) \subset X \to X$ a closed linear operator in X such that $CA \subset AC$. Here $0 < T_0 \leq \infty, x, y \in X$, and f is an X-valued function defined on a subset of \mathbb{R} containing $(0, T_0)$.

1. INTRODUCTION

Let X be a Banach space over $\mathbb{F}(=\mathbb{R} \text{ or } \mathbb{C})$ with norm $\|\cdot\|$, and let L(X) denote the set of all bounded linear operators from X into itself. For each $0 < T_0 \leq \infty$, we consider the following abstract Cauchy problem:

(1.1)
$$\operatorname{ACP}(A, f, x, y) \qquad \begin{cases} u''(t) = Au(t) + f(t) & \text{ for } t \in (0, T_0), \\ u(0) = x, u'(0) = y, \end{cases}$$

Received July 16, 2012, accepted November 30, 2012.

Communicated by Yongzhi Xu.

²⁰¹⁰ Mathematics Subject Classification: 47D60, 47D62.

Key words and phrases: Local integrated C-cosine function, Generator, Abstract Cauchy problem. Research partially supported by the National Science Council of Taiwan.

where $x, y \in X$ are given, $A : D(A) \subset X \to X$ is a closed linear operator, and f is an X-valued function defined on a subset of \mathbb{R} containing $(0, T_0)$. A function u is called a strong solution of ACP(A, f, x, y), if $u \in C^2((0, T_0), X) \cap C^1([0, T_0), X) \cap C((0, T_0), [D(A)])$, and satisfies ACP(A, f, x, y). Here [D(A)] denotes the Banach space D(A) equipped with the graph norm $|x|_A = ||x|| + ||Ax||$ for $x \in D(A)$. For each $C \in L(X)$ and $\alpha > 0$, a family $C(\cdot)(= \{C(t) \mid 0 \le t < T_0\})$ in L(X) is called a local α -times integrated C-cosine function on X if it is strongly continuous, $C(\cdot)C = CC(\cdot)$, and satisfies

(1.2)
$$2C(t)C(s)x = \frac{1}{\Gamma(\alpha)} [(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s})(t+s-r)^{\alpha-1}C(r)Cxdr + \int_{|t-s|}^{t} (s-t+r)^{\alpha-1}C(r)Cxdr + \int_{|t-s|}^{s} (t-s+r)^{\alpha-1}C(r)Cxdr + \int_{0}^{|t-s|} (|t-s|+r)^{\alpha-1}C(r)Cxdr]$$

for all $0 \le t, s, t + s < T_0$ and $x \in X$ (see [12, 13]); or called a local (0-times integrated) *C*-cosine function on *X* if it is strongly continuous, $C(\cdot)C = CC(\cdot)$, and satisfies

(1.3)
$$\begin{aligned} & 2C(t)C(s)x\\ =& C(t+s)Cx + C(|t-s|)Cx \quad \text{ for all } 0 \leq t, s, t+s < T_0 \text{ and } x \in X, \end{aligned}$$

(see [4, 6, 18, 20]), where $\Gamma(\cdot)$ denotes the Gamma function. Moreover, we say that $C(\cdot)$ is nondegenerate, if x = 0 whenever C(t)x = 0 for all $0 \le t < T_0$. In this case, its (integral) generator $A : D(A) \subset X \to X$ is a closed linear operator in X defined by

 $\mathbf{D}(A) = \{x \in X \mid \text{, there exists a } y_x \in X \text{ such that } C(\cdot)x - j_\alpha(\cdot)Cx = \widetilde{S}(\cdot)y_x \text{ on } [0, T_0)\}$

and $Ax = y_x$ for all $x \in D(A)$. Here $j_{\alpha}(t) = \frac{t^{\alpha}}{\Gamma(\alpha+1)}$, $S(s)z = \int_0^s C(r)zdr$, and $\tilde{S}(t)z = \int_0^t S(s)zds$. In general, a local α -times integrated (resp.,0-times integrated) C-cosine function on X is called an α -times integrated C-cosine function (resp., (0-times integrated) C-cosine function) on X if $T_0 = \infty$ (see [7, 10, 11, 15, 17, 23-25] (resp., [9, 22])); or called a local α -times integrated cosine function on X if C = I, the identity operator on X (see [14, 20]), and a local α -times integrated cosine function on X if $T_0 = \infty$ (see [2, 26]); or called an α -times integrated cosine function on X if $T_0 = \infty$ (see [2, 26]); or called a cosine function on X is not necessarily extendable to an α -times

integrated cosine function on X except for $\alpha = 0$ (see [5]), the nondegeneracy of a local α -times integrated C-cosine function on X does not imply the injectivity of C except for $T_0 = \infty$ (see [11]), and the injectivity of C does not imply the nondegeneracy of a local α -times integrated C-cosine function on X except for $\alpha = 0$ (see [18]). Some basic properites of a nondegenerate α -times integrated C-cosine function on X have been established by many authors when $\alpha = 0$ (see [9, 22]), $\alpha \in \mathbb{N}$ (see [7, 15, 17, 23-25), and $\alpha > 0$ is arbitrary (see [11]), which can be applied to deduce some equivalence relations between the generation of a nondegenerate α -times integrated C-cosine function on X with generator A and the unique existence of strong or weak solutions of the abstract Cauchy problem ACP(A, f, x, y) with $T_0 = \infty$ (see [7, 10, 11, 24]). The purpose of this paper is to investigate the following basic properties of a nondegenerate C-cosine function on X when C is injective:

(1.4) C(0) = C on X if $\alpha = 0$, and C(0) = 0 (, the zero operator) on X if $\alpha > 0$;

$$(1.5) C^{-1}AC = A;$$

(1.6)
$$\widetilde{S}(t)x \in D(A) \quad \text{and } A\widetilde{S}(t)x \\ = C(t)x - j_{\alpha}(t)Cx \quad \text{for all } x \in X \quad \text{and } 0 \le t < T_0;$$

(1.7)
$$C(t)x \in D(A) \text{ and } AC(t)x$$
$$= C(t)Ax \text{ for all } x \in D(A) \text{ and } 0 \le t < T_0;$$

(1.8)
$$C(t)C(s) = C(s)C(t)$$
 for all $0 \le t, s, t+s < T_0;$

and then deduce some equivalence relations between the generation of a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on X with generator A and the unique existence of strong solutions of ACP(A, f, x, y), just as some results in [12,13] concerning the unique existence of strong and weak solutions of ACP(A, f, x, y). To do these, we shall first prove an important lemma which shows that a strongly continuous family $C(\cdot) = \{C(t) \mid 0 \le t < T_0\}$ in L(X) is a local α -times integrated C-cosine function on X (with closed subgenerator A) is equivalent to $S(\cdot)$ is a local $(\alpha + 2)$ -times integrated C-cosine function on X (with closed subgenerator A), and then show that a strongly continuous family $C(\cdot) = \{C(t) \mid 0 \le t < T_0\}$ in L(X)which commutes with C on X is a local α -times integrated C-cosine function on X is equivalent to $\tilde{S}(t)[C(s) - j_{\alpha}(s)C] = [C(t) - j_{\alpha}(t)C]\tilde{S}(s)$ for all $0 \le t, s, t + s < T_0$. We also show that $j_{\beta} * C(\cdot)$ is a local $(\alpha + \beta + 1)$ -times integrated C-cosine function on X (with closed subgenerator A) if $C(\cdot)$ is a local α -times integrated C-cosine function on X (with closed subgenerator A) and $\beta > -1$, which can be applied to show that its " only if " part is also true when β is a nonnegative integer, where $f * C(t)x = \int_0^t f(t-s)C(s)xds$ for all $x \in X$ and $f \in L^1_{loc}([0,T_0),\mathbb{F})$. In order, we

show that the generator of a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on X is the unique subgenerator of $C(\cdot)$ which contains all subgenerators of $C(\cdot)$ and each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$ when $C(\cdot)$ has a subgenerator. In particular, which is also so when C is injective. This can be applied to show that $CA \subset AC$ and $C(\cdot)$ is a nondegenerate local α -times integrated C-cosine function on X with generator $C^{-1}AC$ when C is injective and $C(\cdot)$ is a strongly continuous family in L(X) with closed subgenerator A. In this case, $C^{-1}\overline{A_0}C$ is the generator of $C(\cdot)$ for each subgenerator A_0 of $C(\cdot)$. Some illustrative examples concerning these theorems are also presented in the final part of this paper.

2. Basic Properties for Local α -Times Integrated C-Cosine Functions

We first deduce an important lemma which can be applied to obtain an equivalence relation between the generation of a local α -times integrated C-cosine function $C(\cdot)$ on X and the equality of

(2.1)
$$\widetilde{S}(t)[C(s) - j_{\alpha}(s)C] = [C(t) - j_{\alpha}(t)C]\widetilde{S}(s)$$

for all $0 \le t, s, t+s < T_0$, just as a result in [16] for the case of local α -times integrated C-semigroup when $C(\cdot)$ is a strongly continuous family in L(X) commuting with C on X.

Lemma 2.1. Let $C(\cdot)$ be a strongly continuous family in L(X). Then $C(\cdot)$ is a local α -times integrated C-cosine function on X if and only if $\tilde{S}(\cdot)$ is a local $(\alpha+2)$ -times integrated C-cosine function on X.

Proof. We consider only the case $\alpha > 0$, for the case $\alpha = 0$ can be treated similarly. In this case, we shall first show that

$$(2.2) \qquad \frac{d}{dt} \frac{1}{\Gamma(\alpha+2)} [(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s})(t+s-r)^{\alpha+1} \widetilde{S}(r) Cx dr \\ + \int_{|t-s|}^{t} (s-t+r)^{\alpha+1} \widetilde{S}(r) Cx dr \\ + \int_{|t-s|}^{s} (t-s+r)^{\alpha+1} \widetilde{S}(r) Cx dr + \int_{0}^{|t-s|} (|t-s|+r)^{\alpha+1} \widetilde{S}(r) Cx dr] \\ = \frac{1}{\Gamma(\alpha+1)} [(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s})(t+s-r)^{\alpha} \widetilde{S}(r) Cx dr \\ + sgn(s-t) \int_{|t-s|}^{t} (s-t+r)^{\alpha} \widetilde{S}(r) Cx dr \\ + sgn(t-s) \int_{|t-s|}^{s} (t-s+r)^{\alpha} \widetilde{S}(r) Cx dr + \int_{0}^{|t-s|} (|t-s|+r)^{\alpha} \widetilde{S}(r) Cx dr]$$

and

$$(2.3) \qquad \qquad \frac{d^2}{dt^2} \frac{1}{\Gamma(\alpha+2)} [(\int_0^{t+s} - \int_0^t - \int_0^s)(t+s-r)^{\alpha+1} \widetilde{S}(r) Cx dr \\ + \int_{|t-s|}^t (s-t+r)^{\alpha+1} \widetilde{S}(r) Cx dr + \int_{|t-s|}^s (t-s+r)^{\alpha+1} \widetilde{S}(r) Cx dr \\ + \int_0^{|t-s|} (|t-s|+r)^{\alpha+1} \widetilde{S}(r) Cx dr] + 2j_\alpha(s) \widetilde{S}(t) Cx \\ = \frac{1}{\Gamma(\alpha)} [(\int_0^{t+s} - \int_0^t - \int_0^s)(t+s-r)^{\alpha-1} \widetilde{S}(r) Cx dr \\ + \int_{|t-s|}^t (s-t+r)^{\alpha-1} \widetilde{S}(r) Cx dr + \int_{|t-s|}^s (t-s+r)^{\alpha-1} \widetilde{S}(r) Cx dr \\ + \int_0^{|t-s|} (|t-s|+r)^{\alpha-1} \widetilde{S}(r) Cx dr] \end{cases}$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Indeed, for $0 \le s \le t < T_0$ with $t + s < T_0$, we have

$$\begin{split} &\frac{d}{dt} \Big[\frac{1}{\Gamma(\alpha+2)} (\int_0^{t+s} - \int_0^t - \int_0^s) (t+s-r)^{\alpha+1} \widetilde{S}(r) Cx dr \\ &+ \frac{1}{\Gamma(\alpha+2)} \int_{t-s}^t (s-t+r)^{\alpha+1} \widetilde{S}(r) Cx dr + \frac{1}{\Gamma(\alpha+2)} \int_0^s (t-s+r)^{\alpha+1} \widetilde{S}(r) Cx dr] \\ = & [\frac{1}{\Gamma(\alpha+1)} (\int_0^{t+s} - \int_0^t - \int_0^s) (t+s-r)^{\alpha} \widetilde{S}(r) Cx dr - j_{\alpha+1}(s) \widetilde{S}(t) Cx] \\ &+ [j_{\alpha+1}(s) \widetilde{S}(t) Cx - \frac{1}{\Gamma(\alpha+1)} \int_{t-s}^t (s-t+r)^{\alpha} \widetilde{S}(r) Cx dr] \\ &+ \frac{1}{\Gamma(\alpha+1)} \int_0^s (t-s+r)^{\alpha} \widetilde{S}(r) Cx dr \\ = & \frac{1}{\Gamma(\alpha+1)} [(\int_0^{t+s} - \int_0^t - \int_0^s) (t+s-r)^{\alpha} \widetilde{S}(r) Cx dr \\ &+ sgn(s-t) \int_{|t-s|}^t (s-t+r)^{\alpha} \widetilde{S}(r) Cx dr + sgn(t-s) \int_{|t-s|}^s (t-s+r)^{\alpha} \widetilde{S}(r) Cx dr \\ &+ \int_0^{|t-s|} (|t-s|+r)^{\alpha} \widetilde{S}(r) Cx dr] \end{split}$$

and

$$\begin{split} &\frac{d}{dt}[\frac{1}{\Gamma(\alpha+1)}(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s})(t+s-r)^{\alpha}\widetilde{S}(r)Cxdr \\ &-\frac{1}{\Gamma(\alpha+1)}\int_{t-s}^{t}(s-t+r)^{\alpha}\widetilde{S}(r)Cxdr \\ &+\frac{1}{\Gamma(\alpha+1)}\int_{0}^{s}(t-s+r)^{\alpha}\widetilde{S}(r)Cxdr]+2j_{\alpha}(s)\widetilde{S}(t)Cx \\ &=\frac{1}{\Gamma(\alpha)}(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s})(t+s-r)^{\alpha-1}\widetilde{S}(r)Cxdr-2j_{\alpha}(s)\widetilde{S}(t)Cx \\ &+\frac{1}{\Gamma(\alpha)}\int_{t-s}^{t}(s-t+r)^{\alpha-1}\widetilde{S}(r)Cxdr + 2j_{\alpha}(s)\widetilde{S}(t)Cx \\ &+\frac{1}{\Gamma(\alpha)}\int_{0}^{s}(t-s+r)^{\alpha-1}\widetilde{S}(r)Cxdr+2j_{\alpha}(s)\widetilde{S}(t)Cx \\ &=\frac{1}{\Gamma(\alpha)}(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s})(t+s-r)^{\alpha-1}\widetilde{S}(r)Cxdr \\ &+\frac{1}{\Gamma(\alpha)}\int_{t-s}^{t}(s-t+r)^{\alpha-1}\widetilde{S}(r)Cxdr + \frac{1}{\Gamma(\alpha)}\int_{0}^{s}(t-s+r)^{\alpha-1}\widetilde{S}(r)Cxdr \\ &=\frac{1}{\Gamma(\alpha)}[(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s})(t+s-r)^{\alpha-1}\widetilde{S}(r)Cxdr + \int_{|t-s|}^{t}(s-t+r)^{\alpha-1}\widetilde{S}(r)Cxdr \\ &+\int_{|t-s|}^{s}(t-s+r)^{\alpha-1}\widetilde{S}(r)Cxdr + \int_{0}^{|t-s|}(|t-s|+r)^{\alpha-1}\widetilde{S}(r)Cxdr]. \end{split}$$

That is, (2.2) and (2.3) both hold for all $0 \le s \le t < T_0$ with $t + s < T_0$. Similarly, we can show that (2.2) and (2.3) both also hold when $0 \le t \le s < T_0$ with $t + s < T_0$. Clearly, the right-hand side of (2.3) is symmetric in t, s with $0 \le t, s, t + s < T_0$. It follows that

$$(2.4) \qquad \qquad \frac{d^2}{ds^2} \frac{1}{\Gamma(\alpha+2)} [(\int_0^{t+s} - \int_0^t - \int_0^s)(t+s-r)^{\alpha+1} \widetilde{S}(r) Cx dr \\ + \int_{|t-s|}^t (s-t+r)^{\alpha+1} \widetilde{S}(r) Cx dr + \int_{|t-s|}^s (t-s+r)^{\alpha+1} \widetilde{S}(r) Cx dr \\ + \int_0^{|t-s|} (|t-s|+r)^{\alpha+1} \widetilde{S}(r) Cx dr] + 2j_\alpha(t) \widetilde{S}(s) Cx \\ = \frac{1}{\Gamma(\alpha)} [(\int_0^{t+s} - \int_0^t - \int_0^s)(t+s-r)^{\alpha-1} \widetilde{S}(r) Cx dr \\ + \int_{|t-s|}^t (s-t+r)^{\alpha-1} \widetilde{S}(r) Cx dr + \int_{|t-s|}^s (t-s+r)^{\alpha-1} \widetilde{S}(r) Cx dr \\ + \int_0^{|t-s|} (|t-s|+r)^{\alpha-1} \widetilde{S}(r) Cx dr] \end{cases}$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Using integration by parts twice, we obtain

$$(2.5) \qquad \begin{aligned} \frac{1}{\Gamma(\alpha)} [(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s})(t+s-r)^{\alpha-1}\widetilde{S}(r)Cxdr \\ &+ \int_{|t-s|}^{t} (s-t+r)^{\alpha-1}\widetilde{S}(r)Cxdr + \int_{|t-s|}^{s} (t-s+r)^{\alpha-1}\widetilde{S}(r)Cxdr \\ &+ \int_{0}^{|t-s|} (|t-s|+r)^{\alpha-1}\widetilde{S}(r)Cxdr] \\ = \frac{1}{\Gamma(\alpha+2)} [(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s})(t+s-r)^{\alpha+1}C(r)Cxdr \\ &+ \int_{|t-s|}^{t} (s-t+r)^{\alpha+1}C(r)Cxdr + \int_{|t-s|}^{s} (t-s+r)^{\alpha+1}C(r)Cxdr \\ &+ \int_{0}^{|t-s|} (|t-s|+r)^{\alpha+1}C(r)Cxdr] \end{aligned}$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Now if $\widetilde{S}(\cdot)$ is a local $(\alpha + 2)$ -times integrated *C*-cosine function on *X*. By (2.4) and (2.5), we have

$$\begin{split} &2\widetilde{S}(t)C(s)x = 2\frac{d^2}{ds^2}\widetilde{S}(t)\widetilde{S}(s)x \\ = &\frac{1}{\Gamma(\alpha+2)}[(\int_0^{t+s} -\int_0^t -\int_0^s)(t+s-r)^{\alpha+1}C(r)Cxdr \\ &+ \int_{|t-s|}^t (s-t+r)^{\alpha+1}C(r)Cxdr + \int_{|t-s|}^s (t-s+r)^{\alpha+1}C(r)Cxdr \\ &+ \int_0^{|t-s|} (|t-s|+r)^{\alpha+1}C(r)Cxdr] \end{split}$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$, so that

$$2C(t)C(s)x = 2\frac{d^2}{dt^2}\widetilde{S}(t)C(s)x$$

$$= \frac{1}{\Gamma(\alpha)} [(\int_0^{t+s} - \int_0^t - \int_0^s)(t+s-r)^{\alpha-1}C(r)Cxdr$$

$$+ \int_{|t-s|}^t (s-t+r)^{\alpha-1}C(r)Cxdr$$

$$+ \int_{|t-s|}^s (t-s+r)^{\alpha-1}C(r)Cxdr$$

$$+ \int_0^{|t-s|} (|t-s|+r)^{\alpha-1}C(r)Cxdr]$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Hence $C(\cdot)$ is a local α -times integrated C-cosine function on X. Conversely, if $C(\cdot)$ is a local α -times integrated C-cosine function on X. We shall first apply Fubini's theorem for double integrals twice to obtain

$$(2.7) \qquad \begin{aligned} & 2C(t)\widetilde{S}(s)x \\ & = \frac{1}{\Gamma(\alpha+2)} [(\int_0^{t+s} - \int_0^t - \int_0^s)(t+s-r)^{\alpha+1}C(r)Cxdr \\ & + \int_{|t-s|}^t (s-t+r)^{\alpha+1}C(r)Cxdr + \int_{|t-s|}^s (t-s+r)^{\alpha+1}C(r)Cxdr \\ & + \int_0^{|t-s|} (|t-s|+r)^{\alpha+1}C(r)Cxdr] + 2j_\alpha(t)\widetilde{S}(s)Cx \end{aligned}$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Indeed, if $x \in X$ is given, then for $0 \le t, s, t + s < T_0$ with $t \ge s$, we have

(2.8)
$$\frac{1}{\Gamma(\alpha)} \int_0^\tau \int_t^{t+s} (t+s-r)^{\alpha-1} C(r) Cx dr ds$$
$$= \frac{1}{\Gamma(\alpha)} \int_t^{t+\tau} \int_{r-t}^\tau (t+s-r)^{\alpha-1} C(r) Cx ds dr$$
$$= \frac{1}{\Gamma(\alpha+1)} \int_t^{t+\tau} (t+\tau-r)^{\alpha} C(r) Cx ds dr,$$

(2.9)
$$\frac{1}{\Gamma(\alpha)} \int_0^\tau \int_0^s (t+s-r)^{\alpha-1} C(r) Cx dr ds$$
$$= \frac{1}{\Gamma(\alpha)} \int_0^\tau \int_r^\tau (t+s-r)^{\alpha-1} C(r) Cx ds dr$$
$$= \frac{1}{\Gamma(\alpha+1)} \int_0^\tau (t+\tau-r)^\alpha C(r) Cx dr - j_\alpha(t) S(\tau) Cx,$$

(2.10)
$$\frac{1}{\Gamma(\alpha)} \int_0^\tau \int_{t-s}^t (s-t+r)^{\alpha-1} C(r) Cx dr ds$$
$$= \frac{1}{\Gamma(\alpha)} \int_{t-\tau}^t \int_{t-\tau}^\tau (s-t+r)^{\alpha-1} C(r) Cx ds dr$$
$$= \frac{1}{\Gamma(\alpha+1)} \int_{t-\tau}^t (\tau-t+r)^{\alpha} C(r) Cx dr,$$

and

(2.11)
$$\frac{1}{\Gamma(\alpha)} \int_0^\tau \int_0^s (t-s+r)^{\alpha-1} C(r) Cx dr ds$$
$$= \frac{1}{\Gamma(\alpha)} \int_0^\tau \int_r^\tau (t-s+r)^{\alpha-1} C(r) Cx ds drs$$
$$= j_\alpha(t) S(\tau) Cx - \frac{1}{\Gamma(\alpha+1)} \int_0^\tau (t-\tau+r)^\alpha C(r) Cx dr.$$

We observe from (2.8)-(2.11) that we also have

(2.12)
$$\frac{1}{\Gamma(\alpha+1)} \int_0^s \int_t^{t+\tau} (t+\tau-r)^{\alpha} C(r) C x dr d\tau$$
$$= \frac{1}{\Gamma(\alpha+2)} \int_t^{t+s} (t+s-r)^{\alpha+1} C(r) C x dr,$$

$$(2.13) \qquad \int_0^s \left[\frac{1}{\Gamma(\alpha+1)} \int_0^\tau (t+\tau-r)^\alpha C(r)Cxdr - j_\alpha(t)S(\tau)Cx\right]d\tau$$
$$= \left[\frac{1}{\Gamma(\alpha+2)} \int_0^s (t+s-r)^{\alpha+1}C(r)Cxdr - j_{\alpha+1}(t)S(s)Cx\right] - j_\alpha(t)\widetilde{S}(s)Cx,$$

(2.14)
$$\frac{1}{\Gamma(\alpha+1)} \int_0^s \int_{t-\tau}^t (\tau - t + r)^{\alpha} C(r) C x dr d\tau$$
$$= \frac{1}{\Gamma(\alpha+2)} \int_{t-s}^t (s - t + r)^{\alpha+1} C(r) C x dr,$$

and

(2.15)
$$\begin{aligned} &\int_0^s [j_\alpha(t)S(\tau)Cx - \frac{1}{\Gamma(\alpha+1)} \int_0^\tau (t-\tau+r)^\alpha C(r)Cxdr]d\tau \\ &= j_\alpha(t)\widetilde{S}(s)Cx + \left[\frac{1}{\Gamma(\alpha+2)} \int_0^s (t-s+r)^{\alpha+1}C(r)Cxdr - j_{\alpha+1}(t)S(s)Cx\right]. \end{aligned}$$

Combining (2.12)-(2.15), we obtain (2.7) for all $0 \le t, s, t + s < T_0$ with $t \ge s$. Similarly, we can show that (2.7) also holds when $0 \le t, s, t + s < T_0$ with $s \ge t$. By (2.3), (2.5) and (2.7), we have

$$\begin{split} &2C(t)\widetilde{S}(s)x\\ =&\frac{d^2}{dt^2}\frac{1}{\Gamma(\alpha+2)}[(\int_0^{t+s}-\int_0^t-\int_0^s)(t+s-r)^{\alpha+1}\widetilde{S}(r)Cxdr\\ &+\int_{|t-s|}^t(s-t+r)^{\alpha+1}\widetilde{S}(r)Cxdr+\int_{|t-s|}^s(t-s+r)^{\alpha+1}\widetilde{S}(r)Cxdr\\ &+\int_0^{|t-s|}(|t-s|+r)^{\alpha+1}\widetilde{S}(r)Cxdr] \end{split}$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Combining this and (2.2) with t = 0, we conclude that $\widetilde{S}(\cdot)$ is a local $(\alpha + 2)$ -times integrated C-cosine function on X.

Theorem 2.2. Let $C(\cdot)$ be a strongly continuous family in L(X) which commutes with C on X. Then $C(\cdot)$ is a local α -times integrated C-cosine function on X if and only if $\widetilde{S}(t)[C(s) - j_{\alpha}(s)C] = [C(t) - j_{\alpha}(t)C]\widetilde{S}(s)$ for all $0 \le t, s, t + s < T_0$.

Proof. Indeed, if $C(\cdot)$ is a local α -times integrated C-cosine function on X. By (2.3) and (2.4), we have $2C(t)\widetilde{S}(s)x + 2j_{\alpha}(s)\widetilde{S}(t)Cx = 2\widetilde{S}(t)C(s)x + 2j_{\alpha}(t)\widetilde{S}(s)Cx$ for all $x \in X$ and $0 \leq t, s, t + s < T_0$ or equivalently, $\widetilde{S}(t)[C(s) - j_{\alpha}(s)C] = [C(t) - j_{\alpha}(t)C]\widetilde{S}(s)$ for all $0 \leq t, s, t + s < T_0$. Conversely, if (2.1) holds for all $0 \leq t, s, t + s < T_0$. We may assume that $\alpha > 0$, then $\widetilde{S}(t)C(s)x - C(t)\widetilde{S}(s)x = j_{\alpha}(s)\widetilde{S}(t)Cx - j_{\alpha}(t)\widetilde{S}(s)Cx$ for all $x \in X$ and $0 \leq t, s, t + s < T_0$. Fix $x \in X$ and $0 \leq t, s, t + s < T_0$ with $t \geq s$, we have

(2.16)
$$\begin{split} \widehat{S}(t+s-r)C(r)x - C(t+s-r)\widehat{S}(r)x\\ = j_{\alpha}(r)\widetilde{S}(t+s-r)Cx - j_{\alpha}(t+s-r)\widetilde{S}(r)Cx \end{split}$$

for all $0 \le r \le t$, and

(2.17)
$$\widetilde{S}(s-t+r)C(r)x - C(s-t+r)\widetilde{S}(r)x$$
$$= j_{\alpha}(r)\widetilde{S}(s-t+r)Cx - j_{\alpha}(s-t+r)\widetilde{S}(r)Cx$$

for all $t-s \le r \le t$. Using integration by parts to left-hand sides of the integrations of (2.16)-(2.17) and change of variables to right-hand sides of the integrations of (2.16)-(2.17), we obtain

(2.18)
$$S(t)\widetilde{S}(s)x + \widetilde{S}(t)S(s)x \\ = \left(\int_0^{t+s} - \int_0^t - \int_0^s\right) j_\alpha(t+s-r)\widetilde{S}(r)Cxdr$$

and

(2.19)
$$S(t)S(s)x - S(t)S(s)x$$
$$= \int_0^s j_\alpha(t-s+r)\widetilde{S}(r)Cxdr - \int_{t-s}^t j_\alpha(s-t+r)\widetilde{S}(r)Cxdr,$$

so that

$$2S(t)S(s)x$$

$$= \left(\int_0^{t+s} \int_0^t - \int_0^s \right) j_\alpha(t+s-r)\widetilde{S}(r)Cxdr$$

$$+ \int_{t-s}^t j_\alpha(s-t+r)\widetilde{S}(r)Cxdr - \int_0^s j_\alpha(t-s+r)\widetilde{S}(r)Cxdr.$$

Hence

$$2S(t)C(s)x$$

$$= \left(\int_0^{t+s} - \int_0^t - \int_0^s\right) j_{\alpha-1}(t+s-r)\widetilde{S}(r)Cxdr$$

$$+ \int_{t-s}^t j_{\alpha-1}(s-t+r)\widetilde{S}(r)Cxdr + \int_0^s j_{\alpha-1}(t-s+r)\widetilde{S}(r)Cxdr$$

$$- 2j_{\alpha}(t)\widetilde{S}(s)Cx,$$

which implies that

$$(2.20) \begin{aligned} & 2S(t)C(s)x + 2j_{\alpha}(t)S(s)Cx \\ &= \frac{1}{\Gamma(\alpha)} \bigg[\left(\int_{0}^{t+s} - \int_{0}^{t} - \int_{0}^{s} \right) (t+s-r)^{\alpha-1} \widetilde{S}(r)Cxdr \\ &+ \int_{|t-s|}^{t} (s-t+r)^{\alpha-1} \widetilde{S}(r)Cxdr + \int_{|t-s|}^{s} (t-s+r)^{\alpha-1} \widetilde{S}(r)Cxdr \\ &+ \int_{0}^{|t-s|} (|t-s|+r)^{\alpha-1} \widetilde{S}(r)Cxdr \bigg]. \end{aligned}$$

Similarly, we can show that (2.20) also holds when $x \in X$ and $0 \le t, s, t + s < T_0$ with $s \ge t$. Combining this with (2.4), we have

$$\begin{split} & 2\widetilde{S}(t)C(s)x \\ = & \frac{d^2}{ds^2} \bigg[\frac{1}{\Gamma(\alpha+2)} \bigg(\int_0^{t+s} - \int_0^t - \int_0^s \bigg) (t+s-r)^{\alpha+1} \widetilde{S}(r) Cx dr \\ & + \frac{1}{\Gamma(\alpha+2)} \int_{|t-s|}^t (s-t+r)^{\alpha+1} \widetilde{S}(r) Cx dr \\ & + \frac{1}{\Gamma(\alpha+2)} \int_{|t-s|}^s (t-s+r)^{\alpha+1} \widetilde{S}(r) Cx dr \\ & + \frac{1}{\Gamma(\alpha+2)} \int_0^{|t-s|} (|t-s|+r)^{\alpha+1} \widetilde{S}(r) Cx dr \bigg]. \end{split}$$

for all $x \in X$ and $0 \le t, s, t + s < T_0$. Consequently, $\tilde{S}(\cdot)$ is a local $(\alpha + 2)$ -times integrated C-cosine function on X. Similarly, we can show that the conclusion of this theorem is also true when $\alpha = 0$.

Proposition 2.3. Let $C(\cdot)$ be a local α -times integrated C-cosine function on X and $\beta > -1$. Then $j_{\beta} * C(\cdot)$ is a local $(\alpha + \beta + 1)$ -times integrated C-cosine function on X. Moreover, $C(\cdot)$ is a local α -times integrated C-cosine function on X if it is a

strongly continuous family in L(X) such that $S(\cdot)$ is a local $(\alpha + 1)$ -times integrated *C*-cosine function on *X*.

Proof. We set $C_{\beta}(\cdot) = j_{\beta} * C(\cdot)$ and $\widetilde{S}_{\beta}(\cdot) = j_1 * C_{\beta}(\cdot)$. Then $C_{\beta}(\cdot)C = CC_{\beta}(\cdot)$ and $\widetilde{S}_{\beta}(\cdot)C = C\widetilde{S}_{\beta}(\cdot)$, so that for $x \in X$ and $0 \le t < T_0$, we have

$$\begin{split} &[C_{\beta}(t) - j_{\alpha+\beta+1}(t)C]\widetilde{S}_{\beta}(\cdot)x\\ &= [j_{\beta}*C(t) - j_{\beta}*j_{\alpha}(t)C]j_{\beta}*\widetilde{S}(\cdot)x\\ &= j_{\beta}*([j_{\beta}*C(t) - j_{\beta}*j_{\alpha}(t)C]\widetilde{S}(\cdot)x)\\ &= j_{\beta}*(\int_{0}^{t}j_{\beta}(t-s)[C(s) - j_{\alpha}(s)C]\widetilde{S}(\cdot)xds)\\ &= j_{\beta}*(\int_{0}^{t}j_{\beta}(t-s)\widetilde{S}(s)[C(\cdot) - j_{\alpha}(\cdot)C]xds)\\ &= \int_{0}^{t}j_{\beta}(t-s)\widetilde{S}(s)j_{\beta}*[C(\cdot) - j_{\alpha}(\cdot)C]xds\\ &= j_{\beta}*\widetilde{S}(t)j_{\beta}*[C(\cdot) - j_{\alpha}(\cdot)C]x\\ &= \widetilde{S}_{\beta}(t)[C_{\beta}(\cdot) - j_{\alpha+\beta+1}(\cdot)C]x. \end{split}$$

on [0, s] for all $0 < s < T_0$ with $t + s < T_0$. Hence $C_{\beta}(\cdot)$ is a local $(\alpha + \beta + 1)$ -times integrated C-cosine function on X, which together with Lemma 2.1 implies that $C(\cdot)$ is a local α -times integrated C-cosine function on X if it is a strongly continuous family in L(X) such that $S(\cdot)$ is a local $(\alpha + 1)$ -times integrated C-cosine function on X.

Lemma 2.4. Let $C(\cdot)$ be a local α -times integrated C-cosine function on X. Assume that $CC(\cdot)x = 0$ on $[0, t_0)$ for some $x \in X$ and $0 < t_0 < T_0$. Then $CC(\cdot)x = 0$ on $[0, T_0)$. In particular, C(t)x = 0 for all $0 \le t < T_0$ if the injectivity of C is added.

Proof. Indeed, if $0 \le t < T_0$ is given, then $t + s < T_0$ for some $0 < s < t_0$. By hypothesis, we have $\widetilde{S}(s)C(t)x=C(t)\widetilde{S}(s)x = 0$ and $\widetilde{S}(s)j_{\alpha}(t)Cx=j_{\alpha}(t)C\widetilde{S}(s)x = 0$. By (1.2) and (1.3), we also have $C(s)\widetilde{S}(t)x=\widetilde{S}(t)C(s)x = 0$. By Theorem 2.2, we have $\widetilde{S}(s)[C(t)-j_{\alpha}(t)C]x=[C(s)-j_{\alpha}(s)C]\widetilde{S}(t)x$, so that $j_{\alpha}(s)\widetilde{S}(t)Cx=j_{\alpha}(s)C\widetilde{S}(t)x = 0$. Hence $\widetilde{S}(t)Cx = 0$. Since $0 \le t < T_0$ is arbitrary, we conclude that CC(t)x = C(t)Cx = 0 for all $0 \le t < T_0$. In particular, C(t)x = 0 for all $0 \le t < T_0$ if the injectivity of C is added.

Proposition 2.5. Let $C(\cdot)$ be a nondegenerate local α -times integrated C-cosine function on X. Assume that C is injective. Then (1.4)-(1.7) hold.

Proof. It is easy to see from (1.2)(resp.,(1.3)), the nondegeneracy of $C(\cdot)$ and the injectivity of C that (1.4) holds. Just as in the proof of [11, Prop. 1.5], we can show

that (1.5) also holds. Next, to show that (1.6) holds. Indeed, if $0 \le t_0 < T_0$ is fixed. Then for each $x \in X$ and $0 \le s < T_0$, we set $y = \widetilde{S}(t_0)x$. By Theorem 2.2, we have

$$\widetilde{S}(r)[C(s) - j_{\alpha}(s)C]y$$

$$= [C(r) - j_{\alpha}(r)C]\widetilde{S}(s)y$$

$$= \widetilde{S}(s)[C(r) - j_{\alpha}(r)C]y$$

$$= \widetilde{S}(s)([C(r) - j_{\alpha}(r)C]\widetilde{S}(t_{0})x)$$

$$= \widetilde{S}(s)(\widetilde{S}(r)[C(t_{0}) - j_{\alpha}(t_{0})C]x)$$

$$= [\widetilde{S}(s)\widetilde{S}(r)][C(t_{0}) - j_{\alpha}(t_{0})C]x$$

$$= \widetilde{S}(r)\widetilde{S}(s)[C(t_{0}) - j_{\alpha}(t_{0})C]x$$

for all $0 \leq r < T_0$ with $r + s, r + t < T_0$. Clearly, $\widetilde{S}(\cdot)$ is also nondegenerate. It follows from Lemma 2.4 that we have $[C(s) - j_{\alpha}(s)C]y = \widetilde{S}(s)[C(t_0) - j_{\alpha}(t_0)C]x$. Since $0 \leq s < T_0$ is arbitrary, we conclude that (1.6) holds. Now if $x \in D(A)$ is given. By (1.6) and the definition of D(A), we have $A\widetilde{S}(t)x = C(t)x - j_{\alpha}(t)Cx = \widetilde{S}(t)Ax$ for all $0 \leq t < T_0$. By the closedness of A, we also have $\frac{d^2}{dt^2}\widetilde{S}(t)x \in D(A)$ and $AC(t)x = A\frac{d^2}{dt^2}\widetilde{S}(t)x = \frac{d^2}{dt^2}A\widetilde{S}(t)x = \frac{d^2}{dt^2}\widetilde{S}(t)Ax = C(t)Ax$ for all $0 \leq t < T_0$.

Just as in the proof of [11, Lemma 1.6], the next lemma is also attained.

Lemma 2.6. Let $C(\cdot)$ be a nondegenerate local α -times integrated C-cosine function on X with generator A. Assume that C is injective, and $u \in C([0, t_0), X)$ satisfies $u(\cdot) = Aj_1 * u(\cdot)$ on $[0, t_0)$ for some $0 < t_0 < T_0$. Then $u \equiv 0$ on $[0, t_0)$.

Proposition 2.7. Let $C(\cdot)$ be a nondegenerate local α -times integrated C-cosine function on X with generator A. Assume that C is injective. Then (1.8) holds.

Proof. To show that C(t)C(s)x=C(s)C(t)x for all $x \in X$ and $0 \le t, s < T_0$, we need only to show that $\widetilde{S}(t)\widetilde{S}(s)x=\widetilde{S}(s)\widetilde{S}(t)x$ for all $x \in X$ and $0 \le t, s < T_0$. Indeed, if $x \in X$ and $0 \le s < T_0$ are given. By (1.7) and the closedness of A, we have

$$\begin{split} \widetilde{S}(\cdot)\widetilde{S}(s)x - Aj_1 * \widetilde{S}(\cdot)\widetilde{S}(s)x \\ &= j_{\alpha+2}(\cdot)C\widetilde{S}(s)x \\ &= \widetilde{S}(s)j_{\alpha+2}(\cdot)Cx \\ &= \widetilde{S}(s)[\widetilde{S}(\cdot)x - Aj_1 * \widetilde{S}(\cdot)x] \\ &= \widetilde{S}(s)\widetilde{S}(\cdot)x - \widetilde{S}(s)Aj_1 * \widetilde{S}(\cdot)x \\ &= \widetilde{S}(s)\widetilde{S}(\cdot)x - Aj_1 * \widetilde{S}(s)\widetilde{S}(\cdot)x \end{split}$$

on $[0, T_0)$, and so $[\widetilde{S}(\cdot)\widetilde{S}(s)x - \widetilde{S}(s)\widetilde{S}(\cdot)x] = Aj_1 * [\widetilde{S}(\cdot)\widetilde{S}(s)x - \widetilde{S}(s)\widetilde{S}(\cdot)x]$ on $[0, T_0)$. Hence $\widetilde{S}(\cdot)\widetilde{S}(s)x = \widetilde{S}(s)\widetilde{S}(\cdot)x$ on $[0, T_0)$, which implies that $\widetilde{S}(t)\widetilde{S}(s)x = \widetilde{S}(s)\widetilde{S}(t)x$ for all $0 \le t, s < T_0$. Consequently, (1.8) holds.

Definition 2.8. Let $C(\cdot)$ be a strongly continuous family in L(X). A linear operator A in X is called a subgenerator of $C(\cdot)$ if

(2.21)
$$C(t)x - j_{\alpha}(t)Cx = \int_0^t \int_0^s C(r)Axdrds$$

for all $x \in D(A)$ and $0 \le t < T_0$, and

(2.22)
$$\int_0^t \int_0^s C(r) x dr ds \in D(A)$$
 and $A \int_0^t \int_0^s C(r) x dr ds = C(t) x - j_\alpha(t) C x$

for all $x \in X$ and $0 \le t < T_0$. A subgenerator A of $C(\cdot)$ is called the maximal subgenerator of $C(\cdot)$ if it is an extension of each subgenerator of $C(\cdot)$ to D(A).

Theorem 2.9. Let $C(\cdot)$ be a strongly continuous family in L(X) which commutes with C on X. Assume that $C(\cdot)$ has a subgenerator. Then $C(\cdot)$ is a local α -times integrated C-cosine function on X. Moreover, $C(\cdot)$ is nondegenerate if the injectivity of C is added.

Proof. Indeed, if A is a subgenerator of $C(\cdot)$. By (2.22), we have

$$[C(t)x - j_{\alpha}(t)C]\widetilde{S}(\cdot)x = \widetilde{S}(t)A\widetilde{S}(\cdot)x = \widetilde{S}(t)[C(\cdot)x - j_{\alpha}(\cdot)C]x$$

on $[0, T_0)$ for all $x \in X$ and $0 \le t < T_0$. Applying Theorem 2.2, we get that $C(\cdot)$ is a local α -times integrated C-cosine function on X. Now if the injectivity of C is added, and $C(\cdot)x = 0$ on $[0, T_0)$ for some $x \in X$. By (2.22), we have $j_{\alpha}(\cdot)Cx = 0$ on $[0, T_0)$, and so Cx = 0. Hence x = 0, which implies that $C(\cdot)$ is nondegenerate.

Corollary 2.10. Let $C(\cdot)$ be a local α -times integrated C-cosine function on X. Assume that C is injective. Then $C(\cdot)$ is nondegenerate if and only if it has a subgenerator.

Theorem 2.11. Let $C(\cdot)$ be a local α -times integrated C-cosine function on X which has a subgenerator. Assume that $A : D(A) \subset X \to X$ defined by

D(A)

 $= \{x \in X | \text{ there exists a unique } y_x \in X \text{ such that } C(\cdot)x - j_{\alpha}(\cdot)Cx = \widetilde{S}(\cdot)y_x \text{ on } [0, T_0)\}$

and $Ax = y_x$ for all $x \in D(A)$, is a closed linear operator in X. Then A is the maximal subgenerator of $C(\cdot)$. Moreover, each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$.

Proof. Indeed, if A_0 is a subgenerator of $C(\cdot)$. Clearly, $A_0 \subset A$. It is easy to see from Zorn's lemma that $C(\cdot)$ has a subgenerator B which is an extension of A_0 , but does not have a proper extension that is still a subgenerator of $C(\cdot)$, which together with the definition of A implies that B is the maximal subgenerator of $C(\cdot)$. To show that A = B or equivalently, $A \subset B$, we shall first show that B is closable. Indeed, if $x_k \in D(B), x_k \to 0$, and $Bx_k \to y$ in X. Then $x_k \in D(A)$ and $Ax_k = Bx_k \to y$. By the closedness of A, we have y = 0. In order to show that $B = \overline{B}$ (the closure of B) or equivalently, \overline{B} is a subgenerator of $C(\cdot)$. Indeed, if $x \in D(\overline{B})$ is given, then $x_k \to x$ and $Bx_k \to \overline{B}x$ in X for sequence $\{x_k\}_{k=1}^{\infty}$ in D(B). By (2.21), we have $C(t)x_k - j_\alpha(t)Cx_k = \int_0^t \int_0^s C(r)Bx_k drds$ for all $k \in \mathbb{N}$ and $0 \le t < T_0$. Letting $k \to \infty$, we get $C(t)x - j_\alpha(t)Cx = \int_0^t \int_0^s C(r)\overline{B}x drds$ for all $0 \le t < T_0$. Since $B \subset$ $\overline{B} \subset A$, we also have $C(t)z - j_\alpha(t)Cz = B \int_0^t \int_0^s C(r)z drds = \overline{B} \int_0^t \int_0^s C(r)z drds$ for all $z \in X$ and $0 \le t < T_0$. Consequently, the closure of B is a subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$. In particular, A = B.

Corollary 2.12. Let $C(\cdot)$ be a nondegenerate local α -times integrated C-cosine function on X with generator A. Assume that $C(\cdot)$ has a subgenerator. Then A is the maximal subgenerator of $C(\cdot)$. Moreover, each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$.

Corollary 2.13. Let $C(\cdot)$ be a nondegenerate local α -times integrated C-cosine function on X with generator A. Assume that C is injective. Then A is the maximal subgenerator of $C(\cdot)$. Moreover, each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$.

Proof. This follows from (2.21), (2.22) and the definition of A.

Theorem 2.14. Let A be a closed subgenerator of a strongly continuous family $C(\cdot)$ in L(X). Assume that C is injective. Then $CA \subset AC$, and $C(\cdot)$ is a nondegenerate local α -times integrated C-cosine function on X with generator $C^{-1}AC$. In particular, $C^{-1}\overline{A_0}C$ is the generator of $C(\cdot)$ for each subgenerator A_0 of $C(\cdot)$.

Proof. We first show that $CA \subset AC$. Indeed, if $x \in D(A)$ is given, then $j_{\alpha+2}(t)Cx = \widetilde{S}(t)x - j_1 * \widetilde{S}(t)Ax \in D(A)$ and

$$Aj_{\alpha+2}(t)Cx = A\widetilde{S}(t)x - Aj_1 * \widetilde{S}(t)Ax$$

= $A\widetilde{S}(t)x - [\widetilde{S}(t)Ax - j_{\alpha+2}(t)CAx]$
= $j_{\alpha+2}(t)CAx$

for all $0 \le t < T_0$, so that CAx = ACx. Hence $CA \subset AC$. To show that $C(\cdot)$ is a nondegenerate local α -times integrated C-cosine function on X. By Theorem 2.9, we

remain only to show that $CC(\cdot) = C(\cdot)C$ or equivalently, $C\widetilde{S}(\cdot) = \widetilde{S}(\cdot)C$. Just as in the proof of Proposition 2.7, we have $[\widetilde{S}(\cdot)Cx - C\widetilde{S}(\cdot)x] = Aj_1 * [\widetilde{S}(\cdot)Cx - C\widetilde{S}(\cdot)x]$ on $[0, T_0)$. By a parallel argument of [11, Lemma 1.6], we also have $\widetilde{S}(\cdot)Cx = C\widetilde{S}(\cdot)x$ on $[0, T_0)$. Now if *B* denotes the generator of $C(\cdot)$. By Corollary 2.13, we have $A \subset B$. By (1.5), we also have $C^{-1}AC \subset C^{-1}BC = B$. Conversely, if $x \in D(B)$ is given, then $j_{\alpha+2}(t)Cx = \widetilde{S}(t)x - j_1 * \widetilde{S}(t)Bx \in D(A)$ for all $0 \le t < T_0$, so that $Cx \in D(A)$ and

$$Aj_{\alpha+2}(\cdot)Cx = AS(\cdot)x - Aj_1 * S(\cdot)Bx$$

= $A\widetilde{S}(\cdot)x - [\widetilde{S}(\cdot)Bx - j_{\alpha+2}(\cdot)CBx]$
= $A\widetilde{S}(\cdot)x - [B\widetilde{S}(\cdot)x - j_{\alpha+2}(\cdot)CBx]$
= $j_{\alpha+2}(\cdot)CBx$

on $[0, T_0)$. Hence $ACx = CBx \in R(C)$, which implies that $x \in D(C^{-1}AC)$ and $C^{-1}ACx = Bx$. Consequently, $B \subset C^{-1}AC$.

Remark 2.15. Let $C(\cdot)$ be a strongly continuous family in L(X). Then $C(\cdot)$ is a local α -times integrated C-cosine function on X with closed subgenerator A if and only if $S(\cdot)$ is a local $(\alpha + 1)$ -times integrated C-cosine function on X with closed subgenerator A.

Remark 2.16. A strongly continuous family in L(X) may not have a subgenerator; a local α -times integrated C-cosine function on X is degenerate when it has a subgenerator but does not have a maximal subgenerator; and a closed linear operator in X generates at most one nondegenerate local α -times integrated C-cosine function on X when C is injective.

3. Abstract Cauchy Problems

In the following, we always assume that $\alpha > 0$, $C \in L(X)$ is injective, and A a closed linear operator in X such that $CA \subset AC$. We first note some basic properties concerning the strong solutions of ACP(A, f, x, y), just as results in [11] when A is the generator of a nondegenerate α -times integrated C-cosine function on X.

Proposition 3.1. Let A be a closed subgenerator of a nondegenerate local $(\alpha+1)$ times integrated C-cosine function $C(\cdot)$ on X. Then for each $x \in D(A)$ $C(\cdot)x$ is the unique solution of $ACP(j_{\alpha-1}(\cdot)Cx, 0, 0)$ in $C([0, T_0), [D(A)])$.

Proposition 3.2. Let A be a closed subgenerator of a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on X and $C^1 = \{x \in X \mid C(\cdot)x \text{ is continuously differentiable on } (0, T_0)\}$. Then

- (*i*) $S(t)C^1 \subset D(A)$ for all $0 < t < T_0$;
- (ii) for each $x \in C^1$ $S(\cdot)x$ is the unique solution of $ACP(j_{\alpha-1}(\cdot)Cx, 0, 0)$;
- (iii) for each $x \in D(A)$ $S(\cdot)x$ is the unique solution of $ACP(j_{\alpha-1}(\cdot)Cx, 0, 0)$ in $C^1([0, T_0), [D(A)])$.

Proposition 3.3. Let A be the generator of a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on X and $x \in X$. Assume that $C(t)x \in R(C)$ for all $0 \leq t < T_0$, and $C^{-1}C(\cdot)x$ is continuously differentiable on $(0, T_0)$. Then $C^{-1}S(t)x \in D(A)$ for all $0 < t < T_0$, and $C^{-1}S(\cdot)x$ is the unique solution of $ACP(j_{\alpha-1}(\cdot)x, 0, 0)$.

Applying Theorem 2.14, we can investigate an important result concerning the relation between the generation of a nondegenerate local α -times integrated C-cosine function on X with generator A and the unique existence of strong solutions of ACP(A, f, x, y), which has been established by another method in [11] when $T_0 = \infty$ or in [9] when $\alpha = 0$ and $T_0 = \infty$.

Theorem 3.4. The following statements are equivalent :

- (*i*) A is a subgenerator of a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on X;
- (ii) for each $x \in X$ and $g \in L^1_{loc}([0,T_0),X)$ the problem $ACP(j_{\alpha}(\cdot)Cx + j_{\alpha} * Cg(\cdot),0,0)$ has a unique solution in $C^2([0,T_0),X) \cap C([0,T_0),[D(A)])$;
- (iii) for each $x \in X$ the problem $ACP(j_{\alpha}(\cdot)Cx, 0, 0)$ has a unique solution in $C^{2}([0, T_{0}), X) \cap C([0, T_{0}), [D(A)]);$
- (iv) for each $x \in X$ the integral equation $v(\cdot)=Aj_1 * v(\cdot) + j_{\alpha}(\cdot)Cx$ has a unique solution $v(\cdot; x)$ in $C([0, T_0), X)$.

In this case, $\widetilde{S}(\cdot)x + \widetilde{S} * g(\cdot)$ is the unique solution of $ACP(j_{\alpha}(\cdot)Cx + j_{\alpha} * Cg(\cdot), 0, 0)$ and $v(\cdot; x) = C(\cdot)x$.

Proof. We first show that "(i) \Rightarrow (ii)" holds. Indeed, if $x \in X$ and $g \in L^1_{loc}([0,T_0), X)$ are given. We set $u(\cdot) = \widetilde{S}(\cdot)x + \widetilde{S} * g(\cdot)$, then $u \in C^2([0,T_0), X) \cap C([0,T_0), [D(A)])$, u(0) = u'(0) = 0, and

$$\begin{aligned} Au(t) &= \mathbf{A}\widetilde{S}(t)x + A \int_0^t \widetilde{S}(t-s)g(s)ds \\ &= C(t)x - j_\alpha(t)Cx + \int_0^t [C(t-s) - j_\alpha(t-s)C]g(s)ds \\ &= C(t)x + \int_0^t C(t-s)g(s)ds - [j_\alpha(t)Cx + j_\alpha * Cg(t)] \\ &= u''(t) - [j_\alpha(t)Cx + j_\alpha * Cg(t)] \end{aligned}$$

for all $0 \le t < T_0$. Hence u is a solution of $ACP(j_\alpha(\cdot)Cx + j_\alpha * Cg(\cdot), 0, 0)$ in $C^{2}([0, T_{0}), X) \cap C([0, T_{0}), [D(A)])$. The uniqueness of solutions for $ACP(j_{\alpha}(\cdot)Cx +$ $j_{\alpha} * Cg(\cdot), 0, 0$ follows directly from the uniqueness of solutions for ACP(0, 0, 0). Clearly, "(ii) \Rightarrow (iii)" holds, and (*iii*) and (*iv*) both are equivalent. We remain only to show that "(iv) \Rightarrow (i)" holds. Indeed, if $C(t): X \to X$ is defined by $C(t)x = v(\cdot; x)$ for all $x \in X$ and $0 \le t < T_0$. Clearly, $C(\cdot)$ is strongly continuous, and satisfies (2.22). Combining the uniqueness of solutions for the integral equation $v(\cdot)=Aj_1 * i$ $v(\cdot) + j_{\alpha}(\cdot)Cx$ with the assumption $CA \subset AC$, we have $v(\cdot; Cx) = Cv(\cdot; x)$ for each $x \in X$, which implies that C(t) for $0 \le t < T_0$ are linear, and commute with C. Now let $\{t_k\}_{k=1}^{\infty}$ be an increasing sequence in $(0, T_0)$ such that $t_k \to T_0$, and $C([0, T_0), X)$ a Frechet space with the quasi-norm $|\cdot|$ defined by $|v| = \sum_{k=1}^{\infty} \frac{||v||_k}{2^k(1+||v||_k)}$ for $v \in C([0, T_0), X)$. Here $||v||_k = \max_{t \in [0, t_k]} ||v(t)||$ for all $k \in \mathbb{N}$. To show that $C(\cdot)$ is a family in L(X), we need only to the linear map $\eta: X \to C([0, T_0), X)$ defined by $\eta(x) = v(\cdot; x)$ for $x \in X$, is continuous or equivalently, $\eta: X \to C([0, T_0), X)$ is a closed linear operator. Indeed, if $\{x_k\}_{k=1}^{\infty}$ is a sequence in X such that $x_k \to x$ in X and $\eta(x_k) \to v$ in $C([0, T_0), X)$, then $v(\cdot; x_k) = Aj_1 * v(\cdot; x_k) + j_\alpha(\cdot)Cx_k$ on $[0, T_0)$. Combining the closedness of A with the uniform convergence of $\{\eta(x_k)\}_{k=1}^{\infty}$ on $[0, t_k]$, we have $v(\cdot)=Aj_1 * v(\cdot) + j_\alpha(\cdot)Cx$ on $[0, T_0)$. By the uniqueness of solutions for integral equations, we have $v(\cdot)=v(\cdot;x)=\eta(x)$. Consequently, $\eta: X \to C([0,T_0),X)$ is a closed linear operator. To show that A is a subgenerator of $C(\cdot)$, we remain only to show that $\hat{S}(t)A \subset A\hat{S}(t)$ for all $0 \leq t < T_0$. Indeed, if $x \in D(A)$ is given, then $\widetilde{S}(t)x - j_{\alpha+2}(t)Cx = Aj_1 * \widetilde{S}(t)x = j_1 * A\widetilde{S}(t)x$ for all $0 \le t < T_0$, and so

$$S(t)Ax - Aj_1 * S(t)Ax$$

= $j_{\alpha+2}(t)CAx$
= $Aj_{\alpha+2}(t)Cx$
= $A\widetilde{S}(t)x - Aj_1 * \widetilde{S}(t)Ax$

for all $0 \le t < T_0$. Hence $Aj_1 * [\tilde{S}(\cdot)Ax - A\tilde{S}(\cdot)x] = \tilde{S}(\cdot)Ax - A\tilde{S}(\cdot)x$ on $[0, T_0)$. By the uniqueness of solutions of ACP(0, 0, 0), we have $\tilde{S}(\cdot)Ax = A\tilde{S}(\cdot)x$ on $[0, T_0)$. Applying Theorem 2.11, we get that $C(\cdot)$ is a nondegenerate local α -times integrated C-cosine function on X with subgenerator A.

By slightly modifying the proof of [11, Theorem 2.4], we can apply Theorem 3.4 to obtain the next result.

Theorem 3.5. Assume that $R(C) \subset R(\lambda - A)$ for some $\lambda \in \mathbb{F}$, and $ACP(j_{\alpha-1}(\cdot) x, 0, 0)$ has a unique solution in $C([0, T_0), [D(A)])$ for each $x \in D(A)$ with $(\lambda - A)x \in R(C)$. Then A is a subgenerator of a nondegenerate local $(\alpha + 1)$ -times integrated C-cosine function on X.

Proof. Clearly, it suffices to show that the integral equation

(3.1)
$$v(\cdot) = A \int_0^{\cdot} \int_0^s v(r) dr ds + j_{\alpha+1}(\cdot) Cx$$

has a (unique) solution $v(\cdot; x)$ in $C([0, T_0), X)$ for each $x \in X$. Indeed, if $x \in X$ is given, then there exists a $y_x \in D(A)$ such that $(\lambda - A)y_x = Cx$. By hypothesis, $ACP(j_{\alpha-1}(\cdot)y_x, 0, 0)$ has a unique solution $u(\cdot; y_x)$ in $C([0, T_0), [D(A)])$. By the closedness of A and the continuity of $Au(\cdot)$, we have $\int_0^t \int_0^s u(r; y_x) dr ds \in D(A)$ and

$$A\int_{0}^{t}\int_{0}^{s}u(r;y_{x})drds = \int_{0}^{t}\int_{0}^{s}Au(r;y_{x})drds = u(t;y_{x}) - j_{\alpha+1}(t)y_{x} \in \mathbf{D}(A)$$

for all $0 \le t < T_0$, so that

(3.2)
$$(\lambda - A)u(t; y_x) = (\lambda - A)[A \int_0^t \int_0^s u(r; y_x) dr ds + j_{\alpha+1}(t)y_x] = A \int_0^t \int_0^s (\lambda - A)u(r; y_x) dr ds + j_{\alpha+1}(t)Cx$$

for all $0 \le t < T_0$. Hence $v(\cdot; x) = (\lambda - A)u(\cdot; y_x)$ is a solution of (3.1) in $C([0, T_0), X)$.

Combining Theorem 3.4 with Theorem 3.5, the next theorem is also attained.

Theorem 3.6. Assume that $R(C) \subset R(\lambda - A)$ for some $\lambda \in \mathbb{F}$, and $ACP(j_{\alpha-1}(\cdot) x, 0, 0)$ has a unique solution in $C^1([0, T_0), [D(A)])$ for each $x \in D(A)$ with $(\lambda - A)x \in R(C)$. Then A is a subgenerator of a nondegenerate local α -times integrated C-cosine function on X.

Proof. Indeed, if $x \in X$ is given, and $u(\cdot; y_x)$ and $v(\cdot; x)$ both are given as in the proof of Theorem 3.5. By hypothesis, $v(\cdot; x)$ is continuously differentiable on $[0, T_0)$ and $v'(t; x) = (\lambda - A)u'(t; y_x)$ for all $0 \le t < T_0$. By (3.2), we also have $v'(t; x) = A \int_0^t v(r; x)dr + j_\alpha(t)Cx$ for all $0 \le t < T_0$. In particular, v'(0; x) = 0, and so $v'(\cdot; x) = Aj_1 * v'(\cdot; x) + j_\alpha(\cdot)Cx$ on $[0, T_0)$. Hence $v'(\cdot; x)$ is a (unique) solution of the integral equation $v(\cdot) = Aj_1 * v(\cdot) + j_\alpha(\cdot)Cx$ in $C([0, T_0), X)$.

Since $C^{-1}AC = A$ and $R((\lambda - A)^{-1}C) = C(D(A))$ if $\rho(A) \neq \emptyset$ (see [21]), we can apply Proposition 3.1, Theorem 3.5 and Theorem 3.6 to obtain the next two corollaries.

Corollary 3.7. Let $A : D(A) \to X$ be a closed linear operator with nonempty resolvent set. Then A is the generator of a nondegenerate local $(\alpha+1)$ -times integrated

C-cosine function on X if and only if for each $x \in D(A)$ $ACP(j_{\alpha-1}(\cdot)Cx, 0, 0)$ has a unique solution in $C([0, T_0), [D(A)])$.

Corollary 3.8. Let $A : D(A) \to X$ be a closed linear operator with nonempty resolvent set. Then A is the generator of a nondegenerate local α -times integrated C-cosine function on X if and only if for each $x \in D(A)$ $ACP(j_{\alpha-1}(\cdot)Cx, 0, 0)$ has a unique solution in $C^1([0, T_0), [D(A)])$.

Just as in [11, Theorems 2.9 and 2.10], we can apply Theorem 3.4 to obtain the next two theorems.

Theorem 3.9. Let $A : D(A) \to X$ be a densely defined closed linear operator. Then the following are equivalent :

- (*i*) A is a subgenerator of a nondegenerate local $(\alpha + 1)$ -times integrated C-cosine function $S(\cdot)$ on X;
- (ii) for each $x \in D(A)$ $ACP(j_{\alpha-1}(\cdot)Cx, 0, 0)$ has a unique solution $u(\cdot; Cx)$ in $C([0, T_0), [D(A)])$ which depends continuously on x. That is, if $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $(D(A), \|\cdot\|)$, then $\{u(\cdot; Cx_n)\}_{n=1}^{\infty}$ converges uniformly on compact subsets of $[0, T_0)$.

Proof. (i) \Rightarrow (ii). It is easy to see from the definition of a subgenerator of $S(\cdot)$ that $S(\cdot)x$ is the unique solution of ACP $(j_{\alpha-1}(\cdot)Cx, 0, 0)$ in

 $C([0, T_0), [D(A)])$ which depends continuously on $x \in D(A)$. (ii) \Rightarrow (i). In view of Theorem 3.4, we need only to show that for each $x \in X$ (3.1) has a unique solution $v(\cdot; x)$ in $C([0, T_0), X)$. Indeed, if $x \in X$ is given. By the denseness of D(A), we have $x_m \to x$ in X for some sequence $\{x_m\}_{m=1}^{\infty}$ in D(A). We set $u(\cdot; Cx_m)$ to denote the unique solution of $ACP(j_{\alpha-1}(\cdot)Cx_m, 0, 0)$ in $C([0, T_0), [D(A)])$. By hypothesis, we have $u(\cdot; Cx_m) \to u(\cdot)$ uniformly on compact subsets of $[0, T_0)$ for some $u \in C([0, T_0), X)$, so that $\int_0^{\cdot} \int_0^s u(r; Cx_m) dr ds \to \int_0^{\cdot} \int_0^s u(r) dr ds$ uniformly on compact subsets of $[0, T_0)$. Since $Au(\cdot; Cx_m) = u''(\cdot; Cx_m) - j_{\alpha-1}(\cdot)Cx_m$ on $(0, T_0)$, we have

(3.3)
$$A \int_0^{\cdot} \int_0^s u(r; Cx_m) dr ds$$
$$= \int_0^{\cdot} \int_0^s Au(r; Cx_m) dr ds = u(\cdot; Cx_m) - j_{\alpha+1}(\cdot) Cx_m$$

on $[0, T_0)$ for all $m \in \mathbb{N}$. Clearly, the right-hand side of the last equality of (3.3) converges uniformly to $u(\cdot) - j_{\alpha+1}(\cdot)Cx$ on compact subsets of $[0, T_0)$. It follows from the closedness of A that $\int_0^t \int_0^s u(r)drds \in D(A)$ for all $0 \le t < T_0$ and $A \int_0^\cdot \int_0^s u(r)drds = u(\cdot) - j_{\alpha+1}(\cdot)Cx$ on $[0, T_0)$, which implies that $u(\cdot)$ is a (unique) solution of (3.1) in $C([0, T_0), X)$.

Theorem 3.10. Let $A : D(A) \to X$ be a densely defined (closed) linear operator. Then the following are equivalent :

- (*i*) A is a subgenerator of a nondegenerate local α -times integrated C-cosine function $C(\cdot)$ on X;
- (ii) for each $x \in D(A)$ $ACP(j_{\alpha-1}(\cdot)Cx, 0, 0)$ has a unique solution $u(\cdot; Cx)$ in $C^1([0, T_0), [D(A)])$ which depends continuously differentiable on x. That is, if $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $(D(A), \|\cdot\|)$, then $\{u(\cdot; Cx_n)\}_{n=1}^{\infty}$ and $\{u'(\cdot; Cx_n)\}_{n=1}^{\infty}$ both converge uniformly on compact subsets of $[0, T_0)$.

Proof. (i)⇒(ii). For each $0 \le t < T_0$ and $x \in X$, we set $S(t)x = \int_0^t C(r)xdr$. Then $S(\cdot)x$ is the unique solution of $ACP(j_{\alpha-1}(\cdot)Cx, 0, 0)$ in $C^1([0, T_0), [D(A)])$. Now if $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $(D(A), \|\cdot\|)$. We set $u(\cdot; Cx_n) = S(\cdot)x_n$ for $n \in \mathbb{N}$, then $\{u(\cdot; Cx_n)\}_{n=1}^{\infty}$ and $\{u'(\cdot; Cx_n)\}_{n=1}^{\infty}$ both converge uniformly on compact subsets of $[0, T_0)$. (ii)⇒(i). For each $x \in X$ and $0 \le t < T_0$, we define $u(t) = \lim_{n \to \infty} u(t; Cx_n)$ whenever $\{x_n\}_{n=1}^{\infty}$ is a sequence in D(A) which converges to x in X. By hypothesis, $u(\cdot; Cx_m) \to u(\cdot)$ and $u'(\cdot; Cx_m) \to u'(\cdot)$ uniformly on compact subsets of $[0, T_0)$ for some $u \in C^1([0, T_0), X)$. Just as in the proof of Theorem 3.9, we also have

(3.4)
$$A \int_0^t \int_0^s u'(r; Cx_m) dr ds = A \int_0^t u(r; Cx_m) dr ds = u'(\cdot; Cx_m) - j_\alpha(\cdot) Cx_m$$

on $[0, T_0)$ for all $m \in \mathbb{N}$. Similarly, we also have $A \int_0^{\cdot} \int_0^s u'(r) dr ds = u'(\cdot) - j_{\alpha}(\cdot)Cx$ on $[0, T_0)$, which implies that $u'(\cdot)$ is a solution of the integral equation $v(\cdot) = Aj_1 * v(\cdot) + j_{\alpha}(\cdot)Cx$ in $C([0, T_0), X)$. The uniqueness of solutions for the integral equation $v(\cdot) = Aj_1 * v(\cdot) + j_{\alpha}(\cdot)Cx$ in $C([0, T_0), X)$ follows from the uniqueness of solutions for the integral equation (3.1) in $C([0, T_0), X)$.

We end this paper with several illustrative examples.

Example 1. Let $X = C_b(\mathbb{R})$, and C(t) for $t \ge 0$ be bounded linear operators on X defined by $C(t)f(x) = \frac{1}{2}[f(x+t) + f(x-t)]$ for all $x \in \mathbb{R}$. Then for each $\beta > -1$, $j_\beta * C(\cdot)$ is a $(\beta + 1)$ -times integrated cosine function on X with generator $\frac{d^2}{dx^2}$, but $C(\cdot)$ is not a cosine function on X.

Example 2. Let k be a fixed nonnegative integer, and let C(t) for $t \ge 0$ and C be bounded linear operators on c_0 (the family of all convergent sequences in \mathbb{F} with limit 0) defined by $C(t)x = \{x_n(n-k)e^{-n}\int_0^t j_{\alpha-1}(t-s)\cosh nsds\}_{n=1}^{\infty}$ and $Cx = \{x_n(n-k)e^{-n}\}_{n=1}^{\infty}$ for all $x = \{x_n\}_{n=1}^{\infty} \in c_0$, then $\{C(t)|0 \le t < 1\}$ is a local α -times integrated C-cosine function on c_0 which is degenerate except for k = 0 and generator A defined by $Ax = \{n^2x_n\}_{n=1}^{\infty}$ for all $x = \{x_n\}_{n=1}^{\infty} \in c_0$

with $\{n^2x_n\}_{n=1}^{\infty} \in c_0$, and for each r > 1 $\{C(t)|0 \le t < r\}$ is not a local α -times integrated C-cosine function on c_0 . Now if $k \in \mathbb{N}$, then $A_a : c_0 \to c_0$ for $a \in \mathbb{F}$ defined by $A_a x = \{n^2y_n\}_{n=1}^{\infty}$ for all $x = \{x_n\}_{n=1}^{\infty} \in c_0$ with $\{n^2x_n\}_{n=1}^{\infty} \in c_0$, are subgenerators of $\{C(t)|0 \le t < 1\}$ which do not have proper extensions that are still subgenerators of $\{C(t)|0 \le t < 1\}$. Here $y_n = ak^2x_k$ if n = k, and $y_n = n^2x_n$ otherwise. Consequently, $\{C(t)|0 \le t < 1\}$ does not have a maximal subgenerator.

Example 3. Let $C \in L(X)$ be fixed, and let $C(\cdot)$ be an α -times integrated C-cosine function on X defined by $C(t) = j_{\alpha}(t)C$ for $t \ge 0$. Then $C(\cdot)$ is nondegenerate with generator 0 (the zero operator on X) if and only if C is injective. Now if $D(\cdot)$ is a nondegenerate local α -times integrated D-cosine function on a Banach space Y over \mathbb{F} . Then $C(\cdot)$ defined by C(t)(x, y) = (C(t)x, D(t)y) for all $0 \le t < T_0$ and $(x, y) \in C(t)$ $X \times Y$, is a local α -times integrated (C,D)-cosine function on the product Banach space $X \times Y$. Here $(C, D) : X \times Y \to X \times Y$ is defined by (C, D)(x, y) = (Cx, Dy) for all $(x, y) \in X \times Y$. In this case, $C(\cdot)$ is nondegenerate with generator (0, D) defined by (0, D)(x, y) = (0, Dy) for all $x \in X$ and $y \in D$ if and only if C is injective. Next if X is the direct sum of X_1 and X_2 for some nonzero subspaces X_1 and X_2 of X, $C: X \to X$ is the projection of X to a nonzero subspace of X_1 , and $A: X \to X$ is the projection of X to a nonzero subspace of X_2 , then $A: X \to X$ and the zero operator on X are subgenerators of $C(\cdot)$ which do not have common proper extensions that are still subgenerators of $\{C(t)|0 \le t < 1\}$. In particular, $C(\cdot)$ does not have a maximal subgenerator. Similarly, we can show that (0, D) and (A, D) are subgenerators of the degenerate local α -times integrated (C, D)-cosine function $C(\cdot)$ on $X \times Y$ which do not have common proper extensions that are still subgenerators of $C(\cdot)$. In particular, $C(\cdot)$ does not have a maximal subgenerator.

Example 4. Let $X = C_b(\mathbb{R})($ or $L^{\infty}(\mathbb{R}))$, and A be the maximal differential operator in X defined by $Au = \sum_{j=0}^k a_j D^j u$ on \mathbb{R} for all $u \in D(A)$, then $UC_b(\mathbb{R})$ (or $C_0(\mathbb{R})) = \overline{D(A)}$. Here $a_0, a_1, \dots, a_k \in \mathbb{C}$ and $D^j u(x) = u^{(j)}(x)$ for all $x \in \mathbb{R}$. It is shown in [2, Theorem 6.7] that A generates an exponentially bounded, norm continuous 1-times integrated cosine function $C(\cdot)$ on X which is defined by $(C(t)f)(x) = \frac{1}{\sqrt{2\pi}}(\widetilde{\phi_t} * f)(x)$ for all $f \in X$ and $t \ge 0$ if the real-valued polynomial $p(x) = \sum_{j=0}^k a_j(ix)^j$ satisfies $\sup_{x \in \mathbb{R}} p(x) < \infty$. Here $\widetilde{\phi_t}$ denotes the inverse Fourier transform of ϕ_t with $\phi_t(x) = \int_0^t \cosh(\sqrt{p(x)}s) ds$. Applying Theorem 3.4, we get that for each $f \in X$ and continuous function g on $[0, T_0) \times \mathbb{R}$ with $\int_0^t \sup_{x \in \mathbb{R}} |g(s, x)| ds < \infty$ for all $0 \le t < T_0$, the function u on $[0, T_0) \times \mathbb{R}$ defined by $u(t, x) = \frac{1}{\sqrt{2\pi}} \int_0^t \int_{-\infty}^\infty (t - s)\widetilde{\phi_s}(x - y)f(y) dy ds + \frac{1}{\sqrt{2\pi}} \int_0^t \int_{-\infty}^\infty (t - r - s)\widetilde{\phi_s}(x - y)g(s, y) dy ds dr$ for all

 $0 \le t < T_0$ and $x \in \mathbb{R}$, is the unique solution of

$$\begin{cases} \frac{\partial^2 u(t,x)}{\partial t^2} \\ = \sum_{j=0}^k a_j (\frac{\partial}{\partial x})^j u(t,x) + tf(x) + \int_0^t (t-s)g(s,x)ds \text{ for } t \in (0,T_0) \text{ and a.e. } x \in \mathbb{R}, \\ u(0,x) = 0 \text{ and } \frac{\partial u}{\partial t}(0,x) = 0 \quad \text{ for a.e. } x \in \mathbb{R} \end{cases}$$

in $C^{2}([0, T_{0}), X) \cap C([0, T_{0}), [D(A)]).$

References

- 1. W. Arendt, C. J. K. Batty, H. Hieber and F. Neubrander, *Vector-Valued Laplace Transforms and Cauchy Problems*, Vol. 96, Birkhauser Verlag, Basel-Boston-Berlin, 2001.
- W. Arendt and H. Kellermann, *Integrated Solutions of Volterra Integrodifferential Equations and Applications*, Pitman Res. Notes Math., Vol. 190, Longman, Harlow, 1989, pp. 21-51.
- H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, in North-Holland Math. Stud., Vol. 108, North-Holland, Amsterdam, 1985.
- M. C. Gao, Local C-Semigroups and C-Cosine Functions, Acta Math. Sci., 19 (1999), 201-213.
- 5. J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, 1985.
- F. Huang and T. Huang, Local C-Cosine Family Theory and Application, *Chin. Ann. Math.*, 16 (1995), 213-232.
- Z. Huang and S. Wang, Strongly Continuous Integrated C-Cosine Operator Function and the Application to the Second Order Abstract Cauchy Problem, in: *Functional Analysis in China*, Kluwer Academic Publishes, Holland, 1996, pp. 330-350.
- 8. S. Kanda, Cosine Families and Weak Solution of Second Order Differential Equations, *Proc. Japan Acad. Ser. A. Math. Sci.*, **54** (1978), 119-123.
- 9. C.-C. Kuo and S.-Y. Shaw, C-Cosine Functions and the Abstract Cauchy Problem I, II, J. Math. Anal. Appl., 210 (1997), 632-646, 647-666.
- C.-C. Kuo, On exponentially bounded α-Times Integrated C-Cosine Functions, Yokohama Math. J., 52 (2005), 59-72.
- C.-C. Kuo, On α-Times Integrated C-Cosine Functions and Abstract Cauchy Problem I, J. Math. Anal. Appl., 313 (2006), 142-162.
- C.-C. Kuo, On Existence and Approximation of Solutions of Second Order Abstract Cauchy Problem, *Taiwanese J. Math.*, 14(3B) (2010), 1093-1109.

- 13. C.-C. Kuo, On Local Integrated C-Cosine Function and Weak Solution of Second Order Abstract Cauchy Problem, *Taiwanese J. Math.*, **14(5)** (2010), 2027-2042.
- 14. C.-C. Kuo, On Perturbation of local integrated cosine functions, *Taiwanese J. Math.*, **16(5)** (2012), 1613-1628.
- Y.-C. Li and S.-Y. Shaw, On Generators of Integrated C-Semigroups and C-Cosine Functions, *Semigroup Forum*, 47 (1993), 29-35.
- Y.-C. Li and S.-Y. Shaw, On Local α-Times Integrated C-Semigroups, Abstract and Applied Anal., 2007, Article ID34890, 18 pages.
- 17. S.-Y. Shaw and Y.-C. Li, On *N*-Times Integrated C-Cosine Functions, in: *Evolution Equation*, Dekker, New York, 1994, pp. 393-406.
- 18. S.-Y. Shaw and Y.-C. Li, Characterization and generator of local C-osine and C-sine Functions, *Inter. J. Evolution Equations*, **1(4)** (2005), 373-401.
- 19. Sova, Cosine Operator Functions, Rozprawy Mat., 49 (1966), 1-47.
- T. Takenaka and S. Piskarev, Local C-Cosine Families and N-Times Integrated Local Cosine Families, *Taiwanese J. Math.*, 8 (2004), 515-546.
- 21. N. Takenaka and I. Miyadera, C-semigroups and the Abstract Cauchy Problem, J. Math. Anal. Appl., 170 (1992), 196-206.
- 22. H.-Y. Wang, C-Cosine Operator Functions and the Second Order Abstract Cauchy Problem, *Northeast Math. J.*, **11(1)** (1995), 1-10.
- 23. S.-W. Wang and Z. Huang, Strongly Continuous Integrated C-Cosine Operator Functions, *Studia Math.*, **126** (1997), 273-289.
- 24. T.-J. Xiao and J. Liang, *The Cauchy Problem for Higher-Order Abstract Differential Equations*, Lectures Notes in Math., 1701, Springer, 1998.
- R. Zhao and Z. Huang, Properties of Subgenerators of Integrated C-Cosine Operator Functions, Northeast Math. J., 14(3) (1998), 281-290.
- 26. Q. Zheng, Coercive Differential Operators and Fractionally Integrated Cosine Functions, *Taiwanese J. Math.*, **6** (2002), 59-65.

Chung-Chen Kuo Department of Mathematics Fu Jen University New Taipei City 24205, Taiwan E-mail: cckuo@math.fju.edu.tw