NOTE ON LOCAL INTEGRATED C-COSINE FUNCTIONS AND ABSTRACT CAUCHY PROBLEMS

Chung-Cheng Kuo

Abstract

Let α be a nonnegative number, and $C: X \rightarrow X$ a bounded linear operator on a Banach space X. In this paper, we shall deduce some basic properties of a nondegenerate local α-times integrated C-cosine function on X and some generation theorems of local α-times integrated C-cosine functions on X with or without the nondegeneracy, which can be applied to obtain some equivalence relations between the generation of a nondegenerate local α-times integrated C-cosine function on X with generator A and the unique existence of solutions of the abstract Cauchy problem:

$$
\operatorname{ACP}(A, f, x, y) \quad\left\{\begin{array}{l}
u^{\prime \prime}(t)=A u(t)+f(t) \quad \text { for } t \in\left(0, T_{0}\right) \\
u(0)=x, u^{\prime}(0)=y,
\end{array}\right.
$$

just as the case of α-times integrated C-cosine function when $C: X \rightarrow X$ is injective and $A: \mathrm{D}(A) \subset X \rightarrow X$ a closed linear operator in X such that $C A \subset A C$. Here $0<T_{0} \leq \infty, x, y \in X$, and f is an X-valued function defined on a subset of \mathbb{R} containing $\left(0, T_{0}\right)$.

1. Introduction

Let X be a Banach space over $\mathbb{F}(=\mathbb{R}$ or $\mathbb{C})$ with norm $\|\cdot\|$, and let $\mathrm{L}(X)$ denote the set of all bounded linear operators from X into itself. For each $0<T_{0} \leq \infty$, we consider the following abstract Cauchy problem:

$$
\operatorname{ACP}(A, f, x, y) \quad\left\{\begin{array}{l}
u^{\prime \prime}(t)=A u(t)+f(t) \quad \text { for } t \in\left(0, T_{0}\right), \tag{1.1}\\
u(0)=x, u^{\prime}(0)=y,
\end{array}\right.
$$

[^0]where $x, y \in X$ are given, $A: \mathrm{D}(A) \subset X \rightarrow X$ is a closed linear operator, and f is an X-valued function defined on a subset of \mathbb{R} containing $\left(0, T_{0}\right)$. A function u is called a strong solution of $\operatorname{ACP}(A, f, x, y)$, if $u \in \mathrm{C}^{2}\left(\left(0, T_{0}\right), X\right) \cap \mathrm{C}^{1}\left(\left[0, T_{0}\right), X\right) \cap$ $\mathrm{C}\left(\left(0, T_{0}\right),[\mathrm{D}(A)]\right)$, and satisfies $\operatorname{ACP}(A, f, x, y)$. Here $[\mathrm{D}(A)]$ denotes the Banach space $\mathrm{D}(A)$ equipped with the graph norm $|x|_{A}=\|x\|+\|A x\|$ for $x \in \mathrm{D}(A)$. For each $C \in \mathrm{~L}(X)$ and $\alpha>0$, a family $C(\cdot)\left(=\left\{C(t) \mid 0 \leq t<T_{0}\right\}\right)$ in $\mathrm{L}(X)$ is called a local α-times integrated C-cosine function on X if it is strongly continuous, $C(\cdot) C=C C(\cdot)$, and satisfies
\[

$$
\begin{align*}
2 C(t) C(s) x= & \frac{1}{\Gamma(\alpha)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha-1} C(r) C x d r\right. \\
& +\int_{|t-s|}^{t}(s-t+r)^{\alpha-1} C(r) C x d r \\
& +\int_{|t-s|}^{s}(t-s+r)^{\alpha-1} C(r) C x d r \tag{1.2}\\
& \left.+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha-1} C(r) C x d r\right]
\end{align*}
$$
\]

for all $0 \leq t, s, t+s<T_{0}$ and $x \in X$ (see [12, 13]); or called a local (0-times integrated) C-cosine function on X if it is strongly continuous, $C(\cdot) C=C C(\cdot)$, and satisfies

$$
\begin{align*}
& 2 C(t) C(s) x \tag{1.3}\\
= & C(t+s) C x+C(|t-s|) C x \quad \text { for all } 0 \leq t, s, t+s<T_{0} \text { and } x \in X,
\end{align*}
$$

(see $[4,6,18,20]$), where $\Gamma(\cdot)$ denotes the Gamma function. Moreover, we say that $C(\cdot)$ is nondegenerate, if $x=0$ whenever $C(t) x=0$ for all $0 \leq t<T_{0}$. In this case, its (integral) generator $A: \mathrm{D}(A) \subset X \rightarrow X$ is a closed linear operator in X defined by
$\mathrm{D}(A)=\left\{x \in X \mid\right.$, there exists a $y_{x} \in X$ such that $C(\cdot) x-j_{\alpha}(\cdot) C x=\widetilde{S}(\cdot) y_{x}$ on $\left.\left[0, T_{0}\right)\right\}$ and $A x=y_{x}$ for all $x \in \mathrm{D}(A)$. Here $j_{\alpha}(t)=\frac{t^{\alpha}}{\Gamma(\alpha+1)}, S(s) z=\int_{0}^{s} C(r) z d r$, and $\widetilde{S}(t) z=\int_{0}^{t} S(s) z d s$. In general, a local α-times integrated (resp., 0 -times integrated) C-cosine function on X is called an α-times integrated C-cosine function (resp., ($0-$ times integrated) C-cosine function) on X if $T_{0}=\infty$ (see [7,10, 11, 15, 17, 23-25] (resp., [9, 22])); or called a local α-times integrated cosine function on X if $C=I$, the identity operator on X (see [14, 20]), and a local α-times integrated cosine function on X is also called an α-times integrated cosine function on X if $T_{0}=\infty$ (see [2, 26]); or called a cosine function on X if $\alpha=0$ (see [1,3,5,8,19]). Moreover, a local α-times integrated cosine function on X is not necessarily extendable to an α-times
integrated cosine function on X except for $\alpha=0$ (see [5]), the nondegeneracy of a local α-times integrated C-cosine function on X does not imply the injectivity of C except for $T_{0}=\infty$ (see [11]), and the injectivity of C does not imply the nondegeneracy of a local α-times integrated C-cosine function on X except for $\alpha=0$ (see [18]). Some basic properites of a nondegenerate α-times integrated C-cosine function on X have been established by many authors when $\alpha=0$ (see [9, 22]), $\alpha \in \mathbb{N}$ (see [7, 15, $17,23-25$), and $\alpha>0$ is arbitrary (see [11]), which can be applied to deduce some equivalence relations between the generation of a nondegenerate α-times integrated C cosine function on X with generator A and the unique existence of strong or weak solutions of the abstract Cauchy problem $\operatorname{ACP}(A, f, x, y)$ with $T_{0}=\infty$ (see [7, 10, $11,24]$). The purpose of this paper is to investigate the following basic properties of a nondegenerate local α-times integrated C-cosine function on X when C is injective:

$$
\begin{align*}
& C(0)=C \text { on } X \text { if } \alpha=0, \text { and } C(0)=0(\text {, the zero operator }) \text { on } X \text { if } \alpha>0 \tag{1.4}\\
& \qquad C^{-1} A C=A \tag{1.5}\\
& \quad \widetilde{S}(t) x \in D(A) \quad \text { and } A \widetilde{S}(t) x \\
& =C(t) x-j_{\alpha}(t) C x \quad \text { for all } x \in X \quad \text { and } 0 \leq t<T_{0} \tag{1.6}\\
& \quad C(t) x \in D(A) \quad \text { and } A C(t) x \tag{1.7}\\
& =C(t) A x \quad \text { for all } x \in D(A) \quad \text { and } 0 \leq t<T_{0} \\
& \tag{1.8}\\
& C(t) C(s)=C(s) C(t) \quad \text { for all } 0 \leq t, s, t+s<T_{0}
\end{align*}
$$

and then deduce some equivalence relations between the generation of a nondegenerate local α-times integrated C-cosine function $C(\cdot)$ on X with generator A and the unique existence of strong solutions of $\operatorname{ACP}(A, f, x, y)$, just as some results in [12,13] concerning the unique existence of strong and weak solutions of $\operatorname{ACP}(A, f, x, y)$. To do these, we shall first prove an important lemma which shows that a strongly continuous family $C(\cdot)\left(=\left\{C(t) \mid 0 \leq t<T_{0}\right\}\right)$ in $\mathrm{L}(X)$ is a local α-times integrated C-cosine function on X (with closed subgenerator A) is equivalent to $\widetilde{S}(\cdot)$ is a local ($\alpha+2$)-times integrated C-cosine function on X (with closed subgenerator A), and then show that a strongly continuous family $C(\cdot)\left(=\left\{C(t) \mid 0 \leq t<T_{0}\right\}\right)$ in $\mathrm{L}(X)$ which commutes with C on X is a local α-times integrated C-cosine function on X is equivalent to $\widetilde{S}(t)\left[C(s)-j_{\alpha}(s) C\right]=\left[C(t)-j_{\alpha}(t) C\right] \widetilde{S}(s)$ for all $0 \leq t, s, t+s<T_{0}$. We also show that $j_{\beta} * C(\cdot)$ is a local $(\alpha+\beta+1)$-times integrated C-cosine function on X (with closed subgenerator A) if $C(\cdot)$ is a local α-times integrated C-cosine function on X (with closed subgenerator A) and $\beta>-1$, which can be applied to show that its " only if "part is also true when β is a nonnegative integer, where $f * C(t) x=\int_{0}^{t} f(t-s) C(s) x d s$ for all $x \in X$ and $f \in \mathrm{~L}_{l o c}^{1}\left(\left[0, T_{0}\right), \mathbb{F}\right)$. In order, we
show that the generator of a nondegenerate local α-times integrated C -cosine function $C(\cdot)$ on X is the unique subgenerator of $C(\cdot)$ which contains all subgenerators of $C(\cdot)$ and each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$ when $C(\cdot)$ has a subgenerator. In particular, which is also so when C is injective. This can be applied to show that $C A \subset A C$ and $C(\cdot)$ is a nondegenerate local α-times integrated C-cosine function on X with generator $C^{-1} A C$ when C is injective and $C(\cdot)$ is a strongly continuous family in $\mathrm{L}(X)$ with closed subgenerator A. In this case, $C^{-1} \overline{A_{0}} C$ is the generator of $C(\cdot)$ for each subgenerator A_{0} of $C(\cdot)$. Some illustrative examples concerning these theorems are also presented in the final part of this paper.

2. Basic Properties for Local α-Times Integrated C-Cosine Functions

We first deduce an important lemma which can be applied to obtain an equivalence relation between the generation of a local α-times integrated C-cosine function $C(\cdot)$ on X and the equality of

$$
\begin{equation*}
\widetilde{S}(t)\left[C(s)-j_{\alpha}(s) C\right]=\left[C(t)-j_{\alpha}(t) C\right] \widetilde{S}(s) \tag{2.1}
\end{equation*}
$$

for all $0 \leq t, s, t+s<T_{0}$, just as a result in [16] for the case of local α-times integrated C-semigroup when $C(\cdot)$ is a strongly continuous family in $\mathrm{L}(X)$ commuting with C on X.

Lemma 2.1. Let $C(\cdot)$ be a strongly continuous family in $L(X)$. Then $C(\cdot)$ is a local α-times integrated C-cosine function on X if and only if $\widetilde{S}(\cdot)$ is a local $(\alpha+2)$ times integrated C-cosine function on X.

Proof. We consider only the case $\alpha>0$, for the case $\alpha=0$ can be treated similarly. In this case, we shall first show that

$$
\begin{align*}
& \frac{d}{d t} \frac{1}{\Gamma(\alpha+2)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha+1} \widetilde{S}(r) C x d r\right. \\
& +\int_{|t-s|}^{t}(s-t+r)^{\alpha+1} \widetilde{S}(r) C x d r \\
& \left.+\int_{|t-s|}^{s}(t-s+r)^{\alpha+1} \widetilde{S}(r) C x d r+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha+1} \widetilde{S}(r) C x d r\right] \\
& =\frac{1}{\Gamma(\alpha+1)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha} \widetilde{S}(r) C x d r\right. \tag{2.2}\\
& \quad+\operatorname{sgn}(s-t) \int_{|t-s|}^{t}(s-t+r)^{\alpha} \widetilde{S}(r) C x d r \\
& \left.\quad+\operatorname{sgn}(t-s) \int_{|t-s|}^{s}(t-s+r)^{\alpha} \widetilde{S}(r) C x d r+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha} \widetilde{S}(r) C x d r\right]
\end{align*}
$$

and

$$
\begin{align*}
& \frac{d^{2}}{d t^{2}} \frac{1}{\Gamma(\alpha+2)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha+1} \widetilde{S}(r) C x d r\right. \\
& +\int_{|t-s|}^{t}(s-t+r)^{\alpha+1} \widetilde{S}(r) C x d r+\int_{|t-s|}^{s}(t-s+r)^{\alpha+1} \widetilde{S}(r) C x d r \\
& \left.+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha+1} \widetilde{S}(r) C x d r\right]+2 j_{\alpha}(s) \widetilde{S}(t) C x \\
= & \frac{1}{\Gamma(\alpha)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha-1} \widetilde{S}(r) C x d r\right. \tag{2.3}\\
& +\int_{|t-s|}^{t}(s-t+r)^{\alpha-1} \widetilde{S}(r) C x d r+\int_{|t-s|}^{s}(t-s+r)^{\alpha-1} \widetilde{S}(r) C x d r \\
& \left.+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha-1} \widetilde{S}(r) C x d r\right]
\end{align*}
$$

for all $x \in \mathrm{X}$ and $0 \leq t, s, t+s<T_{0}$. Indeed, for $0 \leq s \leq t<T_{0}$ with $t+s<T_{0}$, we have

$$
\begin{aligned}
& \frac{d}{d t}\left[\frac{1}{\Gamma(\alpha+2)}\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha+1} \widetilde{S}(r) C x d r\right. \\
& \left.+\frac{1}{\Gamma(\alpha+2)} \int_{t-s}^{t}(s-t+r)^{\alpha+1} \widetilde{S}(r) C x d r+\frac{1}{\Gamma(\alpha+2)} \int_{0}^{s}(t-s+r)^{\alpha+1} \widetilde{S}(r) C x d r\right] \\
= & {\left[\frac{1}{\Gamma(\alpha+1)}\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha} \widetilde{S}(r) C x d r-j_{\alpha+1}(s) \tilde{S}(t) C x\right] } \\
& +\left[j_{\alpha+1}(s) \widetilde{S}(t) C x-\frac{1}{\Gamma(\alpha+1)} \int_{t-s}^{t}(s-t+r)^{\alpha} \tilde{S}(r) C x d r\right] \\
& +\frac{1}{\Gamma(\alpha+1)} \int_{0}^{s}(t-s+r)^{\alpha} \tilde{S}(r) C x d r \\
= & \frac{1}{\Gamma(\alpha+1)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha} \widetilde{S}(r) C x d r\right. \\
& +\operatorname{sgn}(s-t) \int_{|t-s|}^{t}(s-t+r)^{\alpha} \widetilde{S}(r) C x d r+\operatorname{sgn}(t-s) \int_{|t-s|}^{s}(t-s+r)^{\alpha} \widetilde{S}(r) C x d r \\
& \left.+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha} \widetilde{S}(r) C x d r\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{d}{d t}\left[\frac{1}{\Gamma(\alpha+1)}\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha} \widetilde{S}(r) C x d r\right. \\
& -\frac{1}{\Gamma(\alpha+1)} \int_{t-s}^{t}(s-t+r)^{\alpha} \tilde{S}(r) C x d r \\
& \left.+\frac{1}{\Gamma(\alpha+1)} \int_{0}^{s}(t-s+r)^{\alpha} \tilde{S}(r) C x d r\right]+2 j_{\alpha}(s) \widetilde{S}(t) C x \\
= & \frac{1}{\Gamma(\alpha)}\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha-1} \widetilde{S}(r) C x d r-2 j_{\alpha}(s) \widetilde{S}(t) C x \\
& +\frac{1}{\Gamma(\alpha)} \int_{t-s}^{t}(s-t+r)^{\alpha-1} \widetilde{S}(r) C x d r \\
& +\frac{1}{\Gamma(\alpha)} \int_{0}^{s}(t-s+r)^{\alpha-1} \widetilde{S}(r) C x d r+2 j_{\alpha}(s) \widetilde{S}(t) C x \\
= & \frac{1}{\Gamma(\alpha)}\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha-1} \widetilde{S}(r) C x d r \\
& +\frac{1}{\Gamma(\alpha)} \int_{t-s}^{t}(s-t+r)^{\alpha-1} \widetilde{S}(r) C x d r+\frac{1}{\Gamma(\alpha)} \int_{0}^{s}(t-s+r)^{\alpha-1} \widetilde{S}(r) C x d r \\
= & \frac{1}{\Gamma(\alpha)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha-1} \widetilde{S}(r) C x d r+\int_{|t-s|}^{t}(s-t+r)^{\alpha-1} \widetilde{S}(r) C x d r\right. \\
& \left.+\int_{|t-s|}^{s}(t-s+r)^{\alpha-1} \widetilde{S}(r) C x d r+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha-1} \widetilde{S}(r) C x d r\right] .
\end{aligned}
$$

That is, (2.2) and (2.3) both hold for all $0 \leq s \leq t<T_{0}$ with $t+s<T_{0}$. Similarly, we can show that (2.2) and (2.3) both also hold when $0 \leq t \leq s<T_{0}$ with $t+s<T_{0}$. Clearly, the right-hand side of (2.3) is symmetric in t, s with $0 \leq t, s, t+s<T_{0}$. It follows that

$$
\begin{align*}
& \quad \frac{d^{2}}{d s^{2}} \frac{1}{\Gamma(\alpha+2)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha+1} \widetilde{S}(r) C x d r\right. \\
& \quad+\int_{|t-s|}^{t}(s-t+r)^{\alpha+1} \widetilde{S}(r) C x d r+\int_{|t-s|}^{s}(t-s+r)^{\alpha+1} \widetilde{S}(r) C x d r \\
& \left.\quad+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha+1} \widetilde{S}(r) C x d r\right]+2 j_{\alpha}(t) \widetilde{S}(s) C x \\
& =\frac{1}{\Gamma(\alpha)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha-1} \widetilde{S}(r) C x d r\right. \tag{2.4}\\
& \quad+\int_{|t-s|}^{t}(s-t+r)^{\alpha-1} \widetilde{S}(r) C x d r+\int_{|t-s|}^{s}(t-s+r)^{\alpha-1} \widetilde{S}(r) C x d r \\
& \left.\quad+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha-1} \widetilde{S}(r) C x d r\right]
\end{align*}
$$

for all $x \in \mathrm{X}$ and $0 \leq t, s, t+s<T_{0}$. Using integration by parts twice, we obtain

$$
\begin{align*}
& \quad \frac{1}{\Gamma(\alpha)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha-1} \widetilde{S}(r) C x d r\right. \\
& \quad+\int_{|t-s|}^{t}(s-t+r)^{\alpha-1} \widetilde{S}(r) C x d r+\int_{|t-s|}^{s}(t-s+r)^{\alpha-1} \widetilde{S}(r) C x d r \\
& \left.\quad+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha-1} \widetilde{S}(r) C x d r\right] \\
& =\frac{1}{\Gamma(\alpha+2)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha+1} C(r) C x d r\right. \tag{2.5}\\
& \quad+\int_{|t-s|}^{t}(s-t+r)^{\alpha+1} C(r) C x d r+\int_{|t-s|}^{s}(t-s+r)^{\alpha+1} C(r) C x d r \\
& \left.\quad+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha+1} C(r) C x d r\right]
\end{align*}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$. Now if $\widetilde{S}(\cdot)$ is a local $(\alpha+2)$-times integrated C-cosine function on X. By (2.4) and (2.5), we have

$$
\begin{aligned}
& 2 \widetilde{S}(t) C(s) x=2 \frac{d^{2}}{d s^{2}} \widetilde{S}(t) \widetilde{S}(s) x \\
= & \frac{1}{\Gamma(\alpha+2)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha+1} C(r) C x d r\right. \\
& +\int_{|t-s|}^{t}(s-t+r)^{\alpha+1} C(r) C x d r+\int_{|t-s|}^{s}(t-s+r)^{\alpha+1} C(r) C x d r \\
& \left.+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha+1} C(r) C x d r\right]
\end{aligned}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$, so that

$$
\begin{align*}
& 2 C(t) C(s) x=2 \frac{d^{2}}{d t^{2}} \widetilde{S}(t) C(s) x \\
= & \frac{1}{\Gamma(\alpha)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha-1} C(r) C x d r\right. \\
& +\int_{|t-s|}^{t}(s-t+r)^{\alpha-1} C(r) C x d r \tag{2.6}\\
& +\int_{|t-s|}^{s}(t-s+r)^{\alpha-1} C(r) C x d r \\
& \left.+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha-1} C(r) C x d r\right]
\end{align*}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$. Hence $C(\cdot)$ is a local α-times integrated C-cosine function on X. Conversely, if $C(\cdot)$ is a local α-times integrated C-cosine function on X. We shall first apply Fubini's theorem for double integrals twice to obtain

$$
\begin{align*}
& 2 C(t) \widetilde{S}(s) x \\
= & \frac{1}{\Gamma(\alpha+2)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha+1} C(r) C x d r\right. \\
& +\int_{|t-s|}^{t}(s-t+r)^{\alpha+1} C(r) C x d r+\int_{|t-s|}^{s}(t-s+r)^{\alpha+1} C(r) C x d r \tag{2.7}\\
& \left.+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha+1} C(r) C x d r\right]+2 j_{\alpha}(t) \widetilde{S}(s) C x
\end{align*}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$. Indeed, if $x \in X$ is given, then for $0 \leq t, s, t+s<T_{0}$ with $t \geq s$, we have

$$
\begin{align*}
& \frac{1}{\Gamma(\alpha)} \int_{0}^{\tau} \int_{t}^{t+s}(t+s-r)^{\alpha-1} C(r) C x d r d s \\
= & \frac{1}{\Gamma(\alpha)} \int_{t}^{t+\tau} \int_{r-t}^{\tau}(t+s-r)^{\alpha-1} C(r) C x d s d r \tag{2.8}\\
= & \frac{1}{\Gamma(\alpha+1)} \int_{t}^{t+\tau}(t+\tau-r)^{\alpha} C(r) C x d s d r
\end{align*}
$$

$$
\frac{1}{\Gamma(\alpha)} \int_{0}^{\tau} \int_{0}^{s}(t+s-r)^{\alpha-1} C(r) C x d r d s
$$

$$
\begin{equation*}
=\frac{1}{\Gamma(\alpha)} \int_{0}^{\tau} \int_{r}^{\tau}(t+s-r)^{\alpha-1} C(r) C x d s d r \tag{2.9}
\end{equation*}
$$

$$
=\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\tau}(t+\tau-r)^{\alpha} C(r) C x d r-j_{\alpha}(t) S(\tau) C x
$$

$$
\begin{align*}
& \frac{1}{\Gamma(\alpha)} \int_{0}^{\tau} \int_{t-s}^{t}(s-t+r)^{\alpha-1} C(r) C x d r d s \\
= & \frac{1}{\Gamma(\alpha)} \int_{t-\tau}^{t} \int_{t-r}^{\tau}(s-t+r)^{\alpha-1} C(r) C x d s d r \tag{2.10}\\
= & \frac{1}{\Gamma(\alpha+1)} \int_{t-\tau}^{t}(\tau-t+r)^{\alpha} C(r) C x d r
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{\Gamma(\alpha)} \int_{0}^{\tau} \int_{0}^{s}(t-s+r)^{\alpha-1} C(r) C x d r d s \\
= & \frac{1}{\Gamma(\alpha)} \int_{0}^{\tau} \int_{r}^{\tau}(t-s+r)^{\alpha-1} C(r) C x d s d r s \tag{2.11}\\
= & j_{\alpha}(t) S(\tau) C x-\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\tau}(t-\tau+r)^{\alpha} C(r) C x d r
\end{align*}
$$

We observe from (2.8)-(2.11) that we also have

$$
\begin{align*}
& \int_{0}^{s}\left[\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\tau}(t+\tau-r)^{\alpha} C(r) C x d r-j_{\alpha}(t) S(\tau) C x\right] d \tau \tag{2.13}\\
= & {\left[\frac{1}{\Gamma(\alpha+2)} \int_{0}^{s}(t+s-r)^{\alpha+1} C(r) C x d r-j_{\alpha+1}(t) S(s) C x\right]-j_{\alpha}(t) \widetilde{S}(s) C x }
\end{align*}
$$

$$
\frac{1}{\Gamma(\alpha+1)} \int_{0}^{s} \int_{t-\tau}^{t}(\tau-t+r)^{\alpha} C(r) C x d r d \tau
$$

$$
=\frac{1}{\Gamma(\alpha+2)} \int_{t-s}^{t}(s-t+r)^{\alpha+1} C(r) C x d r
$$

and

$$
\begin{align*}
& \int_{0}^{s}\left[j_{\alpha}(t) S(\tau) C x-\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\tau}(t-\tau+r)^{\alpha} C(r) C x d r\right] d \tau \\
= & j_{\alpha}(t) \widetilde{S}(s) C x+\left[\frac{1}{\Gamma(\alpha+2)} \int_{0}^{s}(t-s+r)^{\alpha+1} C(r) C x d r-j_{\alpha+1}(t) S(s) C x\right] . \tag{2.15}
\end{align*}
$$

Combining (2.12)-(2.15), we obtain (2.7) for all $0 \leq t, s, t+s<T_{0}$ with $t \geq s$. Similarly, we can show that (2.7) also holds when $0 \leq t, s, t+s<T_{0}$ with $s \geq t$. By (2.3), (2.5) and (2.7), we have

$$
\begin{aligned}
& 2 C(t) \widetilde{S}(s) x \\
= & \frac{d^{2}}{d t^{2}} \frac{1}{\Gamma(\alpha+2)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha+1} \widetilde{S}(r) C x d r\right. \\
& +\int_{|t-s|}^{t}(s-t+r)^{\alpha+1} \widetilde{S}(r) C x d r+\int_{|t-s|}^{s}(t-s+r)^{\alpha+1} \widetilde{S}(r) C x d r \\
& \left.+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha+1} \widetilde{S}(r) C x d r\right]
\end{aligned}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$. Combining this and (2.2) with $t=0$, we conclude that $\widetilde{S}(\cdot)$ is a local $(\alpha+2)$-times integrated C-cosine function on X.

Theorem 2.2. Let $C(\cdot)$ be a strongly continuous family in $L(X)$ which commutes with C on X. Then $C(\cdot)$ is a local α-times integrated C-cosine function on X if and only if $\widetilde{S}(t)\left[C(s)-j_{\alpha}(s) C\right]=\left[C(t)-j_{\alpha}(t) C\right] \widetilde{S}(s)$ for all $0 \leq t, s, t+s<T_{0}$.

Proof. Indeed, if $C(\cdot)$ is a local α-times integrated C-cosine function on X. By (2.3) and (2.4), we have $2 C(t) \widetilde{S}(s) x+2 j_{\alpha}(s) \widetilde{S}(t) C x=2 \widetilde{S}(t) C(s) x+2 j_{\alpha}(t) \widetilde{S}(s) C x$ for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$ or equivalently, $\widetilde{S}(t)\left[C(s)-j_{\alpha}(s) C\right]=[C(t)-$ $\left.j_{\alpha}(t) C\right] \widetilde{S}(s)$ for all $0 \leq t, s, t+s<T_{0}$. Conversely, if (2.1) holds for all $0 \leq$ $t, s, t+s<T_{0}$. We may assume that $\alpha>0$, then $\widetilde{S}(t) C(s) x-C(t) \widetilde{S}(s) x=$ $j_{\alpha}(s) \widetilde{S}(t) C x-j_{\alpha}(t) \widetilde{S}(s) C x$ for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$. Fix $x \in X$ and $0 \leq t, s, t+s<T_{0}$ with $t \geq s$, we have

$$
\begin{align*}
& \widetilde{S}(t+s-r) C(r) x-C(t+s-r) \widetilde{S}(r) x \\
= & j_{\alpha}(r) \widetilde{S}(t+s-r) C x-j_{\alpha}(t+s-r) \widetilde{S}(r) C x \tag{2.16}
\end{align*}
$$

for all $0 \leq r \leq t$, and

$$
\begin{align*}
& \widetilde{S}(s-t+r) C(r) x-C(s-t+r) \widetilde{S}(r) x \\
= & j_{\alpha}(r) \widetilde{S}(s-t+r) C x-j_{\alpha}(s-t+r) \widetilde{S}(r) C x \tag{2.17}
\end{align*}
$$

for all $t-s \leq r \leq t$. Using integration by parts to left-hand sides of the integrations of (2.16)-(2.17) and change of variables to right-hand sides of the integrations of (2.16)(2.17), we obtain

$$
\begin{align*}
& S(t) \widetilde{S}(s) x+\widetilde{S}(t) S(s) x \\
= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) j_{\alpha}(t+s-r) \widetilde{S}(r) C x d r \tag{2.18}
\end{align*}
$$

and

$$
\begin{align*}
& S(t) \widetilde{S}(s) x-\widetilde{S}(t) S(s) x \\
= & \int_{0}^{s} j_{\alpha}(t-s+r) \widetilde{S}(r) C x d r-\int_{t-s}^{t} j_{\alpha}(s-t+r) \widetilde{S}(r) C x d r \tag{2.19}
\end{align*}
$$

so that

$$
\begin{aligned}
& 2 \widetilde{S}(t) S(s) x \\
= & \left(\int_{0}^{t+s} \int_{0}^{t}-\int_{0}^{s}\right) j_{\alpha}(t+s-r) \widetilde{S}(r) C x d r \\
& +\int_{t-s}^{t} j_{\alpha}(s-t+r) \widetilde{S}(r) C x d r-\int_{0}^{s} j_{\alpha}(t-s+r) \widetilde{S}(r) C x d r
\end{aligned}
$$

Hence

$$
\begin{aligned}
& 2 \widetilde{S}(t) C(s) x \\
= & \left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right) j_{\alpha-1}(t+s-r) \widetilde{S}(r) C x d r \\
& +\int_{t-s}^{t} j_{\alpha-1}(s-t+r) \widetilde{S}(r) C x d r+\int_{0}^{s} j_{\alpha-1}(t-s+r) \widetilde{S}(r) C x d r \\
& -2 j_{\alpha}(t) \widetilde{S}(s) C x
\end{aligned}
$$

which implies that

$$
\begin{align*}
& 2 \widetilde{S}(t) C(s) x+2 j_{\alpha}(t) \widetilde{S}(s) C x \\
= & \frac{1}{\Gamma(\alpha)}\left[\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha-1} \widetilde{S}(r) C x d r\right. \\
& +\int_{|t-s|}^{t}(s-t+r)^{\alpha-1} \widetilde{S}(r) C x d r+\int_{|t-s|}^{s}(t-s+r)^{\alpha-1} \widetilde{S}(r) C x d r \tag{2.20}\\
& \left.+\int_{0}^{|t-s|}(|t-s|+r)^{\alpha-1} \widetilde{S}(r) C x d r\right] .
\end{align*}
$$

Similarly, we can show that (2.20) also holds when $x \in X$ and $0 \leq t, s, t+s<T_{0}$ with $s \geq t$. Combining this with (2.4), we have

$$
\begin{aligned}
& 2 \widetilde{S}(t) C(s) x \\
= & \frac{d^{2}}{d s^{2}}\left[\frac{1}{\Gamma(\alpha+2)}\left(\int_{0}^{t+s}-\int_{0}^{t}-\int_{0}^{s}\right)(t+s-r)^{\alpha+1} \widetilde{S}(r) C x d r\right. \\
& +\frac{1}{\Gamma(\alpha+2)} \int_{|t-s|}^{t}(s-t+r)^{\alpha+1} \widetilde{S}(r) C x d r \\
& +\frac{1}{\Gamma(\alpha+2)} \int_{|t-s|}^{s}(t-s+r)^{\alpha+1} \widetilde{S}(r) C x d r \\
& \left.+\frac{1}{\Gamma(\alpha+2)} \int_{0}^{|t-s|}(|t-s|+r)^{\alpha+1} \widetilde{S}(r) C x d r\right] .
\end{aligned}
$$

for all $x \in X$ and $0 \leq t, s, t+s<T_{0}$. Consequently, $\widetilde{S}(\cdot)$ is a local $(\alpha+2)$-times integrated C-cosine function on X. Similarly, we can show that the conclusion of this theorem is also true when $\alpha=0$.

Proposition 2.3. Let $C(\cdot)$ be a local α-times integrated C-cosine function on X and $\beta>-1$. Then $j_{\beta} * C(\cdot)$ is a local $(\alpha+\beta+1)$-times integrated C-cosine function on X. Moreover, $C(\cdot)$ is a local α-times integrated C-cosine function on X if it is a
strongly continuous family in $L(X)$ such that $S(\cdot)$ is a local $(\alpha+1)$-times integrated C-cosine function on X.

Proof. We set $C_{\beta}(\cdot)=j_{\beta} * C(\cdot)$ and $\widetilde{S}_{\beta}(\cdot)=j_{1} * C_{\beta}(\cdot)$. Then $C_{\beta}(\cdot) C=C C_{\beta}(\cdot)$ and $\widetilde{S}_{\beta}(\cdot) C=C \widetilde{S}_{\beta}(\cdot)$, so that for $x \in X$ and $0 \leq t<T_{0}$, we have

$$
\begin{aligned}
& {\left[C_{\beta}(t)-j_{\alpha+\beta+1}(t) C\right] \widetilde{S}_{\beta}(\cdot) x } \\
= & {\left[j_{\beta} * C(t)-j_{\beta} * j_{\alpha}(t) C\right] j_{\beta} * \widetilde{S}(\cdot) x } \\
= & j_{\beta} *\left(\left[j_{\beta} * C(t)-j_{\beta} * j_{\alpha}(t) C\right] \widetilde{S}(\cdot) x\right) \\
= & j_{\beta} *\left(\int_{0}^{t} j_{\beta}(t-s)\left[C(s)-j_{\alpha}(s) C\right] \widetilde{S}(\cdot) x d s\right) \\
= & j_{\beta} *\left(\int_{0}^{t} j_{\beta}(t-s) \widetilde{S}(s)\left[C(\cdot)-j_{\alpha}(\cdot) C\right] x d s\right) \\
= & \int_{0}^{t} j_{\beta}(t-s) \widetilde{S}(s) j_{\beta} *\left[C(\cdot)-j_{\alpha}(\cdot) C\right] x d s \\
= & j_{\beta} * \widetilde{S}(t) j_{\beta} *\left[C(\cdot)-j_{\alpha}(\cdot) C\right] x \\
= & \widetilde{S}_{\beta}(t)\left[C_{\beta}(\cdot)-j_{\alpha+\beta+1}(\cdot) C\right] x .
\end{aligned}
$$

on $[0, s]$ for all $0<s<T_{0}$ with $t+s<T_{0}$. Hence $C_{\beta}(\cdot)$ is a local $(\alpha+\beta+1)$-times integrated C-cosine function on X, which together with Lemma 2.1 implies that $C(\cdot)$ is a local α-times integrated C-cosine function on X if it is a strongly continuous family in $\mathrm{L}(X)$ such that $S(\cdot)$ is a local $(\alpha+1)$-times integrated C-cosine function on X.

Lemma 2.4. Let $C(\cdot)$ be a local α-times integrated C-cosine function on X. Assume that $C C(\cdot) x=0$ on $\left[0, t_{0}\right)$ for some $x \in X$ and $0<t_{0}<T_{0}$. Then $C C(\cdot) x=0$ on $\left[0, T_{0}\right)$. In particular, $C(t) x=0$ for all $0 \leq t<T_{0}$ if the injectivity of C is added.

Proof. Indeed, if $0 \leq t<T_{0}$ is given, then $t+s<T_{0}$ for some $0<s<t_{0}$. By hypothesis, we have $\widetilde{S}(s) C(t) x=C(t) \widetilde{S}(s) x=0$ and $\widetilde{S}(s) j_{\alpha}(t) C x=j_{\alpha}(t) C \widetilde{S}(s) x=0$. By (1.2) and (1.3), we also have $C(s) \widetilde{S}(t) x=\widetilde{S}(t) C(s) x=0$. By Theorem 2.2, we have $\widetilde{S}(s)\left[C(t)-j_{\alpha}(t) C\right] x=\left[C(s)-j_{\alpha}(s) C\right] \widetilde{S}(t) x$, so that $j_{\alpha}(s) \widetilde{S}(t) C x=j_{\alpha}(s) C \widetilde{S}(t) x=$ 0 . Hence $\widetilde{S}(t) C x=0$. Since $0 \leq t<T_{0}$ is arbitrary, we conclude that $C C(t) x=$ $C(t) C x=0$ for all $0 \leq t<T_{0}$. In particular, $C(t) x=0$ for all $0 \leq t<T_{0}$ if the injectivity of C is added.

Proposition 2.5. Let $C(\cdot)$ be a nondegenerate local α-times integrated C-cosine function on X. Assume that C is injective. Then (1.4)-(1.7) hold .

Proof. It is easy to see from (1.2)(resp.,(1.3)), the nondegeneracy of $C(\cdot)$ and the injectivity of C that (1.4) holds. Just as in the proof of [11, Prop. 1.5], we can show
that (1.5) also holds. Next, to show that (1.6) holds. Indeed, if $0 \leq t_{0}<T_{0}$ is fixed. Then for each $x \in X$ and $0 \leq s<T_{0}$, we set $y=\widetilde{S}\left(t_{0}\right) x$. By Theorem 2.2, we have

$$
\begin{aligned}
& \widetilde{S}(r)\left[C(s)-j_{\alpha}(s) C\right] y \\
= & {\left[C(r)-j_{\alpha}(r) C\right] \widetilde{S}(s) y } \\
= & \widetilde{S}(s)\left[C(r)-j_{\alpha}(r) C\right] y \\
= & \widetilde{S}(s)\left(\left[C(r)-j_{\alpha}(r) C\right] \widetilde{S}\left(t_{0}\right) x\right) \\
= & \left.\widetilde{S}(s) \widetilde{S}(r)\left[C\left(t_{0}\right)-j_{\alpha}\left(t_{0}\right) C\right] x\right) \\
= & {[\widetilde{S}(s) \widetilde{S}(r)]\left[C\left(t_{0}\right)-j_{\alpha}\left(t_{0}\right) C\right] x } \\
= & \widetilde{S}(r) \widetilde{S}(s)\left[C\left(t_{0}\right)-j_{\alpha}\left(t_{0}\right) C\right] x
\end{aligned}
$$

for all $0 \leq r<T_{0}$ with $r+s, r+t<T_{0}$. Clearly, $\widetilde{S}(\cdot)$ is also nondegenerate. It follows from Lemma 2.4 that we have $\left[C(s)-j_{\alpha}(s) C\right] y=\widetilde{S}(s)\left[C\left(t_{0}\right)-j_{\alpha}\left(t_{0}\right) C\right] x$. Since $0 \leq s<T_{0}$ is arbitrary, we conclude that (1.6) holds. Now if $x \in D(A)$ is given. By (1.6) and the definition of $D(A)$, we have $A \widetilde{S}(t) x=C(t) x-j_{\alpha}(t) C x=\widetilde{S}(t) A x$ for all $0 \leq t<T_{0}$. By the closedness of A, we also have $\frac{d^{2}}{d t^{2}} \widetilde{S}(t) x \in D(A)$ and $A C(t) x=A \frac{d^{2}}{d t^{2}} \widetilde{S}(t) x=\frac{d^{2}}{d t^{2}} A \widetilde{S}(t) x=\frac{d^{2}}{d t^{2}} \widetilde{S}(t) A x=C(t) A x$ for all $0 \leq t<T_{0}$.

Just as in the proof of [11, Lemma 1.6], the next lemma is also attained.
Lemma 2.6. Let $C(\cdot)$ be a nondegenerate local α-times integrated C-cosine function on X with generator A. Assume that C is injective, and $u \in C\left(\left[0, t_{0}\right), X\right)$ satisfies $u(\cdot)=A j_{1} * u(\cdot)$ on $\left[0, t_{0}\right)$ for some $0<t_{0}<T_{0}$. Then $u \equiv 0$ on $\left[0, t_{0}\right)$.

Proposition 2.7. Let $C(\cdot)$ be a nondegenerate local α-times integrated C-cosine function on X with generator A. Assume that C is injective. Then (1.8) holds.

Proof. To show that $C(t) C(s) x=C(s) \underset{S}{(t) x}$ for all $x \in X$ and $0 \leq t, s<T_{0}$, we need only to show that $\widetilde{S}(t) \widetilde{S}(s) x=\widetilde{S}(s) \widetilde{S}(t) x$ for all $x \in X$ and $0 \leq t, s<T_{0}$. Indeed, if $x \in X$ and $0 \leq s<T_{0}$ are given. By (1.7) and the closedness of A, we have

$$
\begin{aligned}
& \widetilde{S}(\cdot) \widetilde{S}(s) x-A j_{1} * \widetilde{S}(\cdot) \widetilde{S}(s) x \\
= & j_{\alpha+2}(\cdot) C \widetilde{S}(s) x \\
= & \widetilde{S}(s) j_{\alpha+2}(\cdot) C x \\
= & \left.\widetilde{S}(s) \widetilde{S}(\cdot) x-A j_{1} * \widetilde{S}(\cdot) x\right] \\
= & \widetilde{S}(s) \widetilde{S}(\cdot) x-\widetilde{S}(s) A j_{1} * \widetilde{S}(\cdot) x \\
= & \widetilde{S}(s) \widetilde{S}(\cdot) x-A j_{1} * \widetilde{S}(s) \widetilde{S}(\cdot) x
\end{aligned}
$$

on $\left[0, T_{0}\right.$), and so $[\widetilde{S}(\cdot) \widetilde{S}(s) x-\widetilde{S}(s) \widetilde{S}(\cdot) x]=A j_{1} *[\widetilde{S}(\cdot) \widetilde{S}(s) x-\widetilde{S}(s) \widetilde{S}(\cdot) x]$ on $\left[0, T_{0}\right)$. Hence $\widetilde{S}(\cdot) \widetilde{S}(s) x=\widetilde{S}(s) \widetilde{S}(\cdot) x$ on $\left[0, T_{0}\right)$, which implies that $\widetilde{S}(t) \widetilde{S}(s) x=\widetilde{S}(s) \widetilde{S}(t) x$ for all $0 \leq t, s<T_{0}$. Consequently, (1.8) holds.

Definition 2.8. Let $C(\cdot)$ be a strongly continuous family in $\mathrm{L}(X)$. A linear operator A in X is called a subgenerator of $C(\cdot)$ if

$$
\begin{equation*}
C(t) x-j_{\alpha}(t) C x=\int_{0}^{t} \int_{0}^{s} C(r) A x d r d s \tag{2.21}
\end{equation*}
$$

for all $x \in D(A)$ and $0 \leq t<T_{0}$, and

$$
\begin{equation*}
\int_{0}^{t} \int_{0}^{s} C(r) x d r d s \in D(A) \text { and } A \int_{0}^{t} \int_{0}^{s} C(r) x d r d s=C(t) x-j_{\alpha}(t) C x \tag{2.22}
\end{equation*}
$$

for all $x \in X$ and $0 \leq t<T_{0}$. A subgenerator A of $C(\cdot)$ is called the maximal subgenerator of $C(\cdot)$ if it is an extension of each subgenerator of $C(\cdot)$ to $D(A)$.

Theorem 2.9. Let $C(\cdot)$ be a strongly continuous family in $L(X)$ which commutes with C on X. Assume that $C(\cdot)$ has a subgenerator. Then $C(\cdot)$ is a local α-times integrated C-cosine function on X. Moreover, $C(\cdot)$ is nondegenerate if the injectivity of C is added.

Proof. Indeed, if A is a subgenerator of $C(\cdot)$. By (2.22), we have

$$
\left[C(t) x-j_{\alpha}(t) C\right] \widetilde{S}(\cdot) x=\widetilde{S}(t) A \widetilde{S}(\cdot) x=\widetilde{S}(t)\left[C(\cdot) x-j_{\alpha}(\cdot) C\right] x
$$

on $\left[0, T_{0}\right.$) for all $x \in X$ and $0 \leq t<T_{0}$. Applying Theorem 2.2, we get that $C(\cdot)$ is a local α-times integrated C-cosine function on X. Now if the injectivity of C is added, and $C(\cdot) x=0$ on $\left[0, T_{0}\right)$ for some $x \in X$. By (2.22), we have $j_{\alpha}(\cdot) C x=0$ on $\left[0, T_{0}\right.$), and so $C x=0$. Hence $x=0$, which implies that $C(\cdot)$ is nondegenerate.

Corollary 2.10. Let $C(\cdot)$ be a local α-times integrated C-cosine function on X. Assume that C is injective. Then $C(\cdot)$ is nondegenerate if and only if it has a subgenerator.

Theorem 2.11. Let $C(\cdot)$ be a local α-times integrated C-cosine function on X which has a subgenerator. Assume that $A: D(A) \subset X \rightarrow X$ defined by

$$
\begin{aligned}
& D(A) \\
= & \left\{x \in X \mid \text { there exists a unique } y_{x} \in X \text { such that } C(\cdot) x-j_{\alpha}(\cdot) C x=\widetilde{S}(\cdot) y_{x} \text { on }\left[0, T_{0}\right)\right\}
\end{aligned}
$$

and $A x=y_{x}$ for all $x \in D(A)$, is a closed linear operator in X. Then A is the maximal subgenerator of $C(\cdot)$. Moreover, each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$.

Proof. Indeed, if A_{0} is a subgenerator of $C(\cdot)$. Clearly, $A_{0} \subset A$. It is easy to see from Zorn's lemma that $C(\cdot)$ has a subgenerator B which is an extension of A_{0}, but does not have a proper extension that is still a subgenerator of $C(\cdot)$, which together with the definition of A implies that B is the maximal subgenerator of $C(\cdot)$. To show that $A=B$ or equivalently, $A \subset B$, we shall first show that B is closable. Indeed, if $x_{k} \in D(B), x_{k} \rightarrow 0$, and $B x_{k} \rightarrow y$ in X. Then $x_{k} \in D(A)$ and $A x_{k}=B x_{k} \rightarrow y$. By the closedness of A, we have $y=0$. In order to show that $B=\bar{B}$ (the closure of B) or equivalently, \bar{B} is a subgenerator of $C(\cdot)$. Indeed, if $x \in D(\bar{B})$ is given, then $x_{k} \rightarrow x$ and $B x_{k} \rightarrow \bar{B} x$ in X for sequence $\left\{x_{k}\right\}_{k=1}^{\infty}$ in $D(B)$. By (2.21), we have $C(t) x_{k}-j_{\alpha}(t) C x_{k}=\int_{0}^{t} \int_{0}^{s} C(r) B x_{k} d r d s$ for all $k \in \mathbb{N}$ and $0 \leq t<T_{0}$. Letting $k \rightarrow \infty$, we get $C(t) x-j_{\alpha}(t) C x=\int_{0}^{t} \int_{0}^{s} C(r) \bar{B} x d r d s$ for all $0 \leq t<T_{0}$. Since $B \subset$ $\bar{B} \subset A$, we also have $C(t) z-j_{\alpha}(t) C z=B \int_{0}^{t} \int_{0}^{s} C(r) z d r d s=\bar{B} \int_{0}^{t} \int_{0}^{s} C(r) z d r d s$ for all $z \in X$ and $0 \leq t<T_{0}$. Consequently, the closure of B is a subgenerator of $C(\cdot)$. Similarly, we can show that A is also a subgenerator of $C(\cdot)$ and each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$. In particular, $A=B$.

Corollary 2.12. Let $C(\cdot)$ be a nondegenerate local α-times integrated C-cosine function on X with generator A. Assume that $C(\cdot)$ has a subgenerator. Then A is the maximal subgenerator of $C(\cdot)$. Moreover, each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$.

Corollary 2.13. Let $C(\cdot)$ be a nondegenerate local α-times integrated C-cosine function on X with generator A. Assume that C is injective. Then A is the maximal subgenerator of $C(\cdot)$. Moreover, each subgenerator of $C(\cdot)$ is closable and its closure is also a subgenerator of $C(\cdot)$.

Proof. This follows from (2.21), (2.22) and the definition of A.
Theorem 2.14. Let A be a closed subgenerator of a strongly continuous family $C(\cdot)$ in $L(X)$. Assume that C is injective. Then $C A \subset A C$, and $C(\cdot)$ is a nondegenerate local α-times integrated C-cosine function on X with generator $C^{-1} A C$. In particular, $C^{-1} \overline{A_{0}} C$ is the generator of $C(\cdot)$ for each subgenerator A_{0} of $C(\cdot)$.

Proof. We first show that $C A \subset A C$. Indeed, if $x \in D(A)$ is given, then $j_{\alpha+2}(t) C x=\widetilde{S}(t) x-j_{1} * \widetilde{S}(t) A x \in D(A)$ and

$$
\begin{aligned}
A j_{\alpha+2}(t) C x & =A \widetilde{S}(t) x-A j_{1} * \widetilde{S}(t) A x \\
& =A \widetilde{S}(t) x-\left[\widetilde{S}(t) A x-j_{\alpha+2}(t) C A x\right] \\
& =j_{\alpha+2}(t) C A x
\end{aligned}
$$

for all $0 \leq t<T_{0}$, so that $C A x=A C x$. Hence $C A \subset A C$. To show that $C(\cdot)$ is a nondegenerate local α-times integrated C-cosine function on X. By Theorem 2.9, we
remain only to show that $C C(\cdot)=C(\cdot) C$ or equivalently, $C \widetilde{S}(\cdot)=\widetilde{S}(\cdot) C$. Just as in the proof of Proposition 2.7, we have $[\widetilde{S}(\cdot) C x-C \widetilde{S}(\cdot) x]=A j_{1} *[\widetilde{S}(\cdot) C x-C \widetilde{S}(\cdot) x]$ on $\left[0, T_{0}\right)$. By a parallel argument of [11, Lemma 1.6], we also have $\widetilde{S}(\cdot) C x=C \widetilde{S}(\cdot) x$ on $\left[0, T_{0}\right)$. Now if B denotes the generator of $C(\cdot)$. By Corollary 2.13 , we have $A \subset B$. By (1.5), we also have $C^{-1} A C \subseteq C^{-1} B C=B$. Conversely, if $x \in D(B)$ is given, then $j_{\alpha+2}(t) C x=\widetilde{S}(t) x-j_{1} * \widetilde{S}(t) B x \in D(A)$ for all $0 \leq t<T_{0}$, so that $C x \in D(A)$ and

$$
\begin{aligned}
A j_{\alpha+2}(\cdot) C x & =A \widetilde{S}(\cdot) x-A j_{1} * \widetilde{S}(\cdot) B x \\
& =A \widetilde{S}(\cdot) x-\left[\widetilde{S}(\cdot) B x-j_{\alpha+2}(\cdot) C B x\right] \\
& =A \widetilde{S}(\cdot) x-\left[B \widetilde{S}(\cdot) x-j_{\alpha+2}(\cdot) C B x\right] \\
& =j_{\alpha+2}(\cdot) C B x
\end{aligned}
$$

on $\left[0, T_{0}\right)$. Hence $A C x=C B x \in R(C)$, which implies that $x \in D\left(C^{-1} A C\right)$ and $C^{-1} A C x=B x$. Consequently, $B \subset C^{-1} A C$.

Remark 2.15. Let $C(\cdot)$ be a strongly continuous family in $\mathrm{L}(X)$. Then $C(\cdot)$ is a local α-times integrated C-cosine function on X with closed subgenerator A if and only if $S(\cdot)$ is a local $(\alpha+1)$-times integrated C-cosine function on X with closed subgenerator A.

Remark 2.16. A strongly continuous family in $\mathrm{L}(X)$ may not have a subgenerator; a local α-times integrated C-cosine function on X is degenerate when it has a subgenerator but does not have a maximal subgenerator; and a closed linear operator in X generates at most one nondegenerate local α-times integrated C-cosine function on X when C is injective.

3. Abstract Cauchy Problems

In the following, we always assume that $\alpha>0, C \in \mathrm{~L}(X)$ is injective, and A a closed linear operator in X such that $C A \subset A C$. We first note some basic properties concerning the strong solutions of $\operatorname{ACP}(A, f, x, y)$, just as results in [11] when A is the generator of a nondegenerate α-times integrated C-cosine function on X.

Proposition 3.1. Let A be a closed subgenerator of a nondegenerate local $(\alpha+1)$ times integrated C-cosine function $C(\cdot)$ on X. Then for each $x \in D(A) C(\cdot) x$ is the unique solution of $A C P\left(j_{\alpha-1}(\cdot) C x, 0,0\right)$ in $C\left(\left[0, T_{0}\right),[D(A)]\right)$.

Proposition 3.2. Let A be a closed subgenerator of a nondegenerate local α-times integrated C-cosine function $C(\cdot)$ on X and $C^{1}=\{x \in X \mid C(\cdot) x$ is continuously differentiable on $\left.\left(0, T_{0}\right)\right\}$. Then
(i) $S(t) C^{1} \subset D(A)$ for all $0<t<T_{0}$;
(ii) for each $x \in C^{1} \quad S(\cdot) x$ is the unique solution of $A C P\left(j_{\alpha-1}(\cdot) C x, 0,0\right)$;
(iii) for each $x \in D(A) \quad S(\cdot) x$ is the unique solution of $A C P\left(j_{\alpha-1}(\cdot) C x, 0,0\right)$ in $C^{1}\left(\left[0, T_{0}\right),[D(A)]\right)$.

Proposition 3.3. Let A be the generator of a nondegenerate local α-times integrated C-cosine function $C(\cdot)$ on X and $x \in X$. Assume that $C(t) x \in R(C)$ for all $0 \leq t<T_{0}$, and $C^{-1} C(\cdot) x$ is continuously differentiable on $\left(0, T_{0}\right)$. Then $C^{-1} S(t) x \in D(A)$ for all $0<t<T_{0}$, and $C^{-1} S(\cdot) x$ is the unique solution of $A C P\left(j_{\alpha-1}(\cdot) x, 0,0\right)$.

Applying Theorem 2.14, we can investigate an important result concerning the relation between the generation of a nondegenerate local α-times integrated C-cosine function on X with generator A and the unique existence of strong solutions of $\operatorname{ACP}(A, f, x, y)$, which has been established by another method in [11] when $T_{0}=\infty$ or in [9] when $\alpha=0$ and $T_{0}=\infty$.

Theorem 3.4. The following statements are equivalent :
(i) A is a subgenerator of a nondegenerate local α-times integrated C-cosine function $C(\cdot)$ on X;
(ii) for each $x \in X$ and $g \in L_{l o c}^{1}\left(\left[0, T_{0}\right), X\right)$ the problem $A C P\left(j_{\alpha}(\cdot) C x+j_{\alpha}\right.$ * $C g(\cdot), 0,0)$ has a unique solution in $C^{2}\left(\left[0, T_{0}\right), X\right) \cap C\left(\left[0, T_{0}\right),[D(A)]\right)$;
(iii) for each $x \in X$ the problem $A C P\left(j_{\alpha}(\cdot) C x, 0,0\right)$ has a unique solution in $C^{2}\left(\left[0, T_{0}\right), X\right) \cap C\left(\left[0, T_{0}\right),[D(A)]\right) ;$
(iv) for each $x \in X$ the integral equation $v(\cdot)=A j_{1} * v(\cdot)+j_{\alpha}(\cdot) C x$ has a unique solution $v(\cdot ; x)$ in $C\left(\left[0, T_{0}\right), X\right)$.
In this case, $\widetilde{S}(\cdot) x+\widetilde{S} * g(\cdot)$ is the unique solution of $A C P\left(j_{\alpha}(\cdot) C x+j_{\alpha} * C g(\cdot), 0,0\right)$ and $v(\cdot ; x)=C(\cdot) x$.

Proof. We first show that "(i) \Rightarrow (ii)" holds. Indeed, if $x \in X$ and $g \in$ $\mathrm{L}_{l o c}^{1}\left(\left[0, T_{0}\right), X\right)$ are given. We set $u(\cdot)=\widetilde{S}(\cdot) x+\widetilde{S} * g(\cdot)$, then $u \in \mathrm{C}^{2}\left(\left[0 . T_{0}\right), X\right) \cap$ $\mathrm{C}\left(\left[0, T_{0}\right),[\mathrm{D}(A)]\right), u(0)=u^{\prime}(0)=0$, and

$$
\begin{aligned}
A u(t) & =\mathrm{A} \widetilde{S}(t) x+A \int_{0}^{t} \widetilde{S}(t-s) g(s) d s \\
& =C(t) x-j_{\alpha}(t) C x+\int_{0}^{t}\left[C(t-s)-j_{\alpha}(t-s) C\right] g(s) d s \\
& =C(t) x+\int_{0}^{t} C(t-s) g(s) d s-\left[j_{\alpha}(t) C x+j_{\alpha} * C g(t)\right] \\
& =u^{\prime \prime}(t)-\left[j_{\alpha}(t) C x+j_{\alpha} * C g(t)\right]
\end{aligned}
$$

for all $0 \leq t<T_{0}$. Hence u is a solution of $\operatorname{ACP}\left(j_{\alpha}(\cdot) C x+j_{\alpha} * C g(\cdot), 0,0\right)$ in $\mathrm{C}^{2}\left(\left[0, T_{0}\right), X\right) \cap \mathrm{C}\left(\left[0, T_{0}\right),[\mathrm{D}(A)]\right)$. The uniqueness of solutions for $\operatorname{ACP}\left(j_{\alpha}(\cdot) C x+\right.$ $\left.j_{\alpha} * C g(\cdot), 0,0\right)$ follows directly from the uniqueness of solutions for $\operatorname{ACP}(0,0,0)$. Clearly, "(ii) \Rightarrow (iii)" holds, and (iii) and (iv) both are equivalent. We remain only to show that "(iv) \Rightarrow (i)" holds. Indeed, if $C(t): X \rightarrow X$ is defined by $C(t) x=v(\cdot ; x)$ for all $x \in X$ and $0 \leq t<T_{0}$. Clearly, $C(\cdot)$ is strongly continuous, and satisfies (2.22). Combining the uniqueness of solutions for the integral equation $v(\cdot)=A j_{1} *$ $v(\cdot)+j_{\alpha}(\cdot) C x$ with the assumption $C A \subset A C$, we have $v(\cdot ; C x)=C v(\cdot ; x)$ for each $x \in X$, which implies that $C(t)$ for $0 \leq t<T_{0}$ are linear, and commute with C. Now let $\left\{t_{k}\right\}_{k=1}^{\infty}$ be an increasing sequence in $\left(0, T_{0}\right)$ such that $t_{k} \rightarrow T_{0}$, and $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$ a Frechet space with the quasi-norm $|\cdot|$ defined by $|v|=\sum_{k=1}^{\infty} \frac{\|v\|_{k}}{2^{k}\left(1+\|v\|_{k}\right)}$ for $v \in \mathrm{C}\left(\left[0, T_{0}\right), X\right)$. Here $\|v\|_{k}=\max _{t \in\left[0, t_{k}\right]}\|v(t)\|$ for all $k \in \mathbb{N}$. To show that $C(\cdot)$ is a family in $\mathrm{L}(X)$, we need only to the linear map $\eta: X \rightarrow \mathrm{C}\left(\left[0, T_{0}\right), X\right)$ defined by $\eta(x)=v(\cdot ; x)$ for $x \in X$, is continuous or equivalently, $\eta: X \rightarrow \mathrm{C}\left(\left[0, T_{0}\right), X\right)$ is a closed linear operator. Indeed, if $\left\{x_{k}\right\}_{k=1}^{\infty}$ is a sequence in X such that $x_{k} \rightarrow x$ in X and $\eta\left(x_{k}\right) \rightarrow v$ in $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$, then $v\left(\cdot ; x_{k}\right)=A j_{1} * v\left(\cdot ; x_{k}\right)+j_{\alpha}(\cdot) C x_{k}$ on $\left[0, T_{0}\right)$. Combining the closedness of A with the uniform convergence of $\left\{\eta\left(x_{k}\right)\right\}_{k=1}^{\infty}$ on $\left[0, t_{k}\right]$, we have $v(\cdot)=A j_{1} * v(\cdot)+j_{\alpha}(\cdot) C x$ on $\left[0, T_{0}\right)$. By the uniqueness of solutions for integral equations, we have $v(\cdot)=v(\cdot ; x)=\eta(x)$. Consequently, $\eta: X \rightarrow \mathrm{C}\left(\left[0, T_{0}\right), X\right)$ is a closed linear operator. To show that A is a subgenerator of $C(\cdot)$, we remain only to show that $\widetilde{S}(t) A \subset A \widetilde{S}(t)$ for all $0 \leq t<T_{0}$. Indeed, if $x \in D(A)$ is given, then $\widetilde{S}(t) x-j_{\alpha+2}(t) C x=A j_{1} * \widetilde{S}(t) x=j_{1} * \bar{A} \widetilde{S}(t) x$ for all $0 \leq t<T_{0}$, and so

$$
\begin{aligned}
& \widetilde{S}(t) A x-A j_{1} * \widetilde{S}(t) A x \\
= & j_{\alpha+2}(t) C A x \\
= & A j_{\alpha+2}(t) C x \\
= & A \widetilde{S}(t) x-A j_{1} * \widetilde{S}(t) A x
\end{aligned}
$$

for all $0 \leq t<T_{0}$. Hence $A j_{1} *[\widetilde{S}(\cdot) A x-A \widetilde{S}(\cdot) x]=\widetilde{S}(\cdot) A x-A \widetilde{S}(\cdot) x$ on $\left[0, T_{0}\right)$. By the uniqueness of solutions of $\operatorname{ACP}(0,0,0)$, we have $\widetilde{S}(\cdot) A x=A \widetilde{S}(\cdot) x$ on $\left[0, T_{0}\right)$. Applying Theorem 2.11, we get that $C(\cdot)$ is a nondegenerate local α-times integrated C-cosine function on X with subgenerator A.

By slightly modifying the proof of [11, Theorem 2.4], we can apply Theorem 3.4 to obtain the next result.

Theorem 3.5. Assume that $R(C) \subset R(\lambda-A)$ for some $\lambda \in \mathbb{F}$, and $A C P\left(j_{\alpha-1}(\cdot)\right.$ $x, 0,0)$ has a unique solution in $C\left(\left[0, T_{0}\right),[D(A)]\right)$ for each $x \in D(A)$ with $(\lambda-A) x \in$ $R(C)$. Then A is a subgenerator of a nondegenerate local $(\alpha+1)$-times integrated C-cosine function on X.

Proof. Clearly, it suffices to show that the integral equation

$$
\begin{equation*}
v(\cdot)=A \int_{0} \int_{0}^{s} v(r) d r d s+j_{\alpha+1}(\cdot) C x \tag{3.1}
\end{equation*}
$$

has a (unique) solution $v(\cdot ; x)$ in $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$ for each $x \in X$. Indeed, if $x \in X$ is given, then there exists a $y_{x} \in \mathrm{D}(A)$ such that $(\lambda-A) y_{x}=C x$. By hypothesis, $\operatorname{ACP}\left(j_{\alpha-1}(\cdot) y_{x}, 0,0\right)$ has a unique solution $u\left(\cdot ; y_{x}\right)$ in $\mathrm{C}\left(\left[0, T_{0}\right),[\mathrm{D}(A)]\right)$. By the closedness of A and the continuity of $A u(\cdot)$, we have $\int_{0}^{t} \int_{0}^{s} u\left(r ; y_{x}\right) d r d s \in \mathrm{D}(A)$ and

$$
A \int_{0}^{t} \int_{0}^{s} u\left(r ; y_{x}\right) d r d s=\int_{0}^{t} \int_{0}^{s} A u\left(r ; y_{x}\right) d r d s=u\left(t ; y_{x}\right)-j_{\alpha+1}(t) y_{x} \in \mathrm{D}(A)
$$

for all $0 \leq t<T_{0}$, so that

$$
\begin{align*}
(\lambda-A) u\left(t ; y_{x}\right) & =(\lambda-A)\left[A \int_{0}^{t} \int_{0}^{s} u\left(r ; y_{x}\right) d r d s+j_{\alpha+1}(t) y_{x}\right] \\
& =A \int_{0}^{t} \int_{0}^{s}(\lambda-A) u\left(r ; y_{x}\right) d r d s+j_{\alpha+1}(t) C x \tag{3.2}
\end{align*}
$$

for all $0 \leq t<T_{0}$. Hence $v(\cdot ; x)=(\lambda-A) u\left(\cdot ; y_{x}\right)$ is a solution of (3.1) in $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$.

Combining Theorem 3.4 with Theorem 3.5, the next theorem is also attained.
Theorem 3.6. Assume that $R(C) \subset R(\lambda-A)$ for some $\lambda \in \mathbb{F}$, and $A C P\left(j_{\alpha-1}(\cdot)\right.$ $x, 0,0)$ has a unique solution in $C^{1}\left(\left[0, T_{0}\right),[D(A)]\right)$ for each $x \in D(A)$ with $(\lambda-A) x \in$ $R(C)$. Then A is a subgenerator of a nondegenerate local α-times integrated C-cosine function on X.

Proof. Indeed, if $x \in X$ is given, and $u\left(\cdot ; y_{x}\right)$ and $v(\cdot ; x)$ both are given as in the proof of Theorem 3.5. By hypothesis, $v(\cdot ; x)$ is continuously differentiable on $\left[0, T_{0}\right)$ and $v^{\prime}(t ; x)=(\lambda-A) u^{\prime}\left(t ; y_{x}\right)$ for all $0 \leq t<T_{0}$. By (3.2), we also have $v^{\prime}(t ; x)=A \int_{0}^{t} v(r ; x) d r+j_{\alpha}(t) C x$ for all $0 \leq t<T_{0}$. In particular, $v^{\prime}(0 ; x)=0$, and so $v^{\prime}(\cdot ; x)=A j_{1} * v^{\prime}(\cdot ; x)+j_{\alpha}(\cdot) C x$ on $\left[0, T_{0}\right)$. Hence $v^{\prime}(\cdot ; x)$ is a (unique) solution of the integral equation $v(\cdot)=A j_{1} * v(\cdot)+j_{\alpha}(\cdot) C x$ in $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$.

Since $C^{-1} A C=A$ and $R\left((\lambda-A)^{-1} C\right)=C(\mathrm{D}(A))$ if $\rho(A) \neq \emptyset$ (see [21]), we can apply Proposition 3.1, Theorem 3.5 and Theorem 3.6 to obtain the next two corollaries.

Corollary 3.7. Let $A: D(A) \rightarrow X$ be a closed linear operator with nonempty resolvent set. Then A is the generator of a nondegenerate local $(\alpha+1)$-times integrated
C-cosine function on X if and only if for each $x \in D(A) A C P\left(j_{\alpha-1}(\cdot) C x, 0,0\right)$ has a unique solution in $C\left(\left[0, T_{0}\right),[D(A)]\right)$.

Corollary 3.8. Let $A: D(A) \rightarrow X$ be a closed linear operator with nonempty resolvent set. Then A is the generator of a nondegenerate local α-times integrated C-cosine function on X if and only if for each $x \in D(A) A C P\left(j_{\alpha-1}(\cdot) C x, 0,0\right)$ has a unique solution in $C^{1}\left(\left[0, T_{0}\right),[D(A)]\right)$.

Just as in [11, Theorems 2.9 and 2.10], we can apply Theorem 3.4 to obtain the next two theorems.

Theorem 3.9. Let $A: D(A) \rightarrow X$ be a densely defined closed linear operator. Then the following are equivalent :
(i) A is a subgenerator of a nondegenerate local $(\alpha+1)$-times integrated C-cosine function $S(\cdot)$ on X;
(ii) for each $x \in D(A) A C P\left(j_{\alpha-1}(\cdot) C x, 0,0\right)$ has a unique solution $u(\cdot ; C x)$ in $C\left(\left[0, T_{0}\right),[D(A)]\right)$ which depends continuously on x. That is, if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $(D(A),\|\cdot\|)$, then $\left\{u\left(\cdot ; C x_{n}\right)\right\}_{n=1}^{\infty}$ converges uniformly on compact subsets of $\left[0, T_{0}\right)$.

Proof. (i) \Rightarrow (ii). It is easy to see from the definition of a subgenerator of $S(\cdot)$ that $S(\cdot) x$ is the unique solution of $\operatorname{ACP}\left(j_{\alpha-1}(\cdot) C x, 0,0\right)$ in $\mathrm{C}\left(\left[0, T_{0}\right),[\mathrm{D}(A)]\right)$ which depends continuously on $x \in \mathrm{D}(A)$. (ii) $\Rightarrow(\mathrm{i})$. In view of Theorem 3.4, we need only to show that for each $x \in X$ (3.1) has a unique solution $v(\cdot ; x)$ in $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$. Indeed, if $x \in X$ is given. By the denseness of $\mathrm{D}(A)$, we have $x_{m} \rightarrow x$ in X for some sequence $\left\{x_{m}\right\}_{m=1}^{\infty}$ in $D(A)$. We set $u\left(\cdot ; C x_{m}\right)$ to denote the unique solution of $\operatorname{ACP}\left(j_{\alpha-1}(\cdot) C x_{m}, 0,0\right)$ in $\mathrm{C}\left(\left[0, T_{0}\right),[\mathrm{D}(A)]\right)$. By hypothesis, we have $u\left(\cdot ; C x_{m}\right) \rightarrow u(\cdot)$ uniformly on compact subsets of $\left[0, T_{0}\right)$ for some $u \in \mathrm{C}\left(\left[0, T_{0}\right), X\right)$, so that $\int_{0}^{v} \int_{0}^{s} u\left(r ; C x_{m}\right) d r d s \rightarrow \int_{0}^{v} \int_{0}^{s} u(r) d r d s$ uniformly on compact subsets of $\left[0, T_{0}\right)$. Since $A u\left(\cdot ; C x_{m}\right)=u^{\prime \prime}\left(\cdot ; C x_{m}\right)-j_{\alpha-1}(\cdot) C x_{m}$ on $\left(0, T_{0}\right)$, we have

$$
\begin{align*}
& A \int_{0} \int_{0}^{s} u\left(r ; C x_{m}\right) d r d s \\
= & \int_{0} \int_{0}^{s} A u\left(r ; C x_{m}\right) d r d s=u\left(\cdot ; C x_{m}\right)-j_{\alpha+1}(\cdot) C x_{m} \tag{3.3}
\end{align*}
$$

on $\left[0, T_{0}\right.$) for all $m \in \mathbb{N}$. Clearly, the right-hand side of the last equality of (3.3) converges uniformly to $u(\cdot)-j_{\alpha+1}(\cdot) C x$ on compact subsets of $\left[0, T_{0}\right)$. It follows from the closedness of A that $\int_{0}^{t} \int_{0}^{s} u(r) d r d s \in \mathrm{D}(A)$ for all $0 \leq t<T_{0}$ and $A \int_{0}^{s} \int_{0}^{s} u(r) d r d s=u(\cdot)-j_{\alpha+1}(\cdot) C x$ on $\left[0, T_{0}\right)$, which implies that $u(\cdot)$ is a (unique) solution of (3.1) in $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$.

Theorem 3.10. Let $A: D(A) \rightarrow X$ be a densely defined (closed) linear operator. Then the following are equivalent :
(i) A is a subgenerator of a nondegenerate local α-times integrated C-cosine function $C(\cdot)$ on X;
(ii) for each $x \in D(A) A C P\left(j_{\alpha-1}(\cdot) C x, 0,0\right)$ has a unique solution $u(\cdot ; C x)$ in $C^{1}\left(\left[0, T_{0}\right),[D(A)]\right)$ which depends continuously differentiable on x. That is, if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $(D(A),\|\cdot\|)$, then $\left\{u\left(\cdot ; C x_{n}\right)\right\}_{n=1}^{\infty}$ and $\left\{u^{\prime}\left(\cdot ; C x_{n}\right)\right\}_{n=1}^{\infty}$ both converge uniformly on compact subsets of $\left[0, T_{0}\right)$.
Proof. (i) \Rightarrow (ii). For each $0 \leq t<T_{0}$ and $x \in X$, we set $S(t) x=\int_{0}^{t} C(r) x d r$. Then $S(\cdot) x$ is the unique solution of $\operatorname{ACP}\left(j_{\alpha-1}(\cdot) C x, 0,0\right)$ in $C^{1}\left(\left[0, T_{0}\right),[\mathrm{D}(A)]\right)$. Now if $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $(\mathrm{D}(A),\|\cdot\|)$. We set $u\left(\cdot ; C x_{n}\right)=S(\cdot) x_{n}$ for $n \in \mathbb{N}$, then $\left\{u\left(\cdot ; C x_{n}\right)\right\}_{n=1}^{\infty}$ and $\left\{u^{\prime}\left(\cdot ; C x_{n}\right)\right\}_{n=1}^{\infty}$ both converge uniformly on compact subsets of $\left[0, T_{0}\right)$. (ii) \Rightarrow (i). For each $x \in X$ and $0 \leq t<T_{0}$, we define $u(t)=\lim _{n \rightarrow \infty} u\left(t ; C x_{n}\right)$ whenever $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a sequence in $D(A)$ which converges to x in X. By hypothesis, $u\left(\cdot ; C x_{m}\right) \rightarrow u(\cdot)$ and $u^{\prime}\left(\cdot ; C x_{m}\right) \rightarrow u^{\prime}(\cdot)$ uniformly on compact subsets of $\left[0, T_{0}\right)$ for some $u \in \mathrm{C}^{1}\left(\left[0, T_{0}\right), X\right)$. Just as in the proof of Theorem 3.9, we also have

$$
\begin{equation*}
A \int_{0}^{t} \int_{0}^{s} u^{\prime}\left(r ; C x_{m}\right) d r d s=A \int_{0}^{t} u\left(r ; C x_{m}\right) d r d s=u^{\prime}\left(\cdot ; C x_{m}\right)-j_{\alpha}(\cdot) C x_{m} \tag{3.4}
\end{equation*}
$$

on $\left[0, T_{0}\right.$) for all $m \in \mathbb{N}$. Similarly, we also have $A \int_{0}^{\cdot} \int_{0}^{s} u^{\prime}(r) d r d s=u^{\prime}(\cdot)-j_{\alpha}(\cdot) C x$ on $\left[0, T_{0}\right)$, which implies that $u^{\prime}(\cdot)$ is a solution of the integral equation $v(\cdot)=A j_{1} *$ $v(\cdot)+j_{\alpha}(\cdot) C x$ in $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$. The uniqueness of solutions for the integral equation $v(\cdot)=A j_{1} * v(\cdot)+j_{\alpha}(\cdot) C x$ in $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$ follows from the uniqueness of solutions for the integral equation (3.1) in $\mathrm{C}\left(\left[0, T_{0}\right), X\right)$.

We end this paper with several illustrative examples.
Example 1. Let $X=C_{b}(\mathbb{R})$, and $\mathrm{C}(t)$ for $t \geq 0$ be bounded linear operators on X defined by $\mathrm{C}(t) f(x)=\frac{1}{2}[f(x+t)+f(x-t)]$ for all $x \in \mathbb{R}$. Then for each $\beta>-1$, $j_{\beta} * C(\cdot)$ is a $(\beta+1)$-times integrated cosine function on X with generator $\frac{d^{2}}{d x^{2}}$, but $\mathrm{C}(\cdot)$ is not a cosine function on X .

Example 2. Let k be a fixed nonnegative integer, and let $C(t)$ for $t \geq 0$ and C be bounded linear operators on c_{0} (the family of all convergent sequences in \mathbb{F} with limit 0) defined by $C(t) x=\left\{x_{n}(n-k) e^{-n} \int_{0}^{t} j_{\alpha-1}(t-s) \cosh n s d s\right\}_{n=1}^{\infty}$ and $C x=\left\{x_{n}(n-k) e^{-n}\right\}_{n=1}^{\infty}$ for all $x=\left\{x_{n}\right\}_{n=1}^{\infty} \in c_{0}$, then $\{C(t) \mid 0 \leq t<1\}$ is a local α-times integrated C -cosine function on c_{0} which is degenerate except for $k=0$ and generator A defined by $A x=\left\{n^{2} x_{n}\right\}_{n=1}^{\infty}$ for all $x=\left\{x_{n}\right\}_{n=1}^{\infty} \in c_{0}$
with $\left\{n^{2} x_{n}\right\}_{n=1}^{\infty} \in c_{0}$, and for each $r>1\{C(t) \mid 0 \leq t<r\}$ is not a local α-times integrated C-cosine function on c_{0}. Now if $k \in \mathbb{N}$, then $A_{a}: c_{0} \rightarrow c_{0}$ for $a \in \mathbb{F}$ defined by $A_{a} x=\left\{n^{2} y_{n}\right\}_{n=1}^{\infty}$ for all $x=\left\{x_{n}\right\}_{n=1}^{\infty} \in c_{0}$ with $\left\{n^{2} x_{n}\right\}_{n=1}^{\infty} \in c_{0}$, are subgenerators of $\{C(t) \mid 0 \leq t<1\}$ which do not have proper extensions that are still subgenerators of $\{C(t) \mid 0 \leq t<1\}$. Here $y_{n}=a k^{2} x_{k}$ if $n=k$, and $y_{n}=n^{2} x_{n}$ otherwise. Consequently, $\{C(t) \mid 0 \leq t<1\}$ does not have a maximal subgenerator.

Example 3. Let $\mathrm{C} \in \mathrm{L}(\mathrm{X})$ be fixed, and let $\mathrm{C}(\cdot)$ be an α-times integrated C -cosine function on X defined by $C(t)=j_{\alpha}(t) C$ for $t \geq 0$. Then $\mathrm{C}(\cdot)$ is nondegenerate with generator 0 (the zero operator on X) if and only if C is injective. Now if $D(\cdot)$ is a nondegenerate local α-times integrated D-cosine function on a Banach space Y over \mathbb{F}. Then $\widetilde{C}(\cdot)$ defined by $\widetilde{C}(t)(x, y)=(C(t) x, D(t) y)$ for all $0 \leq t<T_{0}$ and $(x, y) \in$ $X \times Y$, is a local α-times integrated (C,D)-cosine function on the product Banach space $X \times Y$. Here $(C, D): X \times Y \rightarrow X \times Y$ is defined by $(C, D)(x, y)=(C x, D y)$ for all $(x, y) \in X \times Y$. In this case, $\widetilde{C}(\cdot)$ is nondegenerate with generator $(0, D)$ defined by $(0, D)(x, y)=(0, D y)$ for all $x \in X$ and $y \in D$ if and only if C is injective. Next if X is the direct sum of X_{1} and X_{2} for some nonzero subspaces X_{1} and X_{2} of X, $C: X \rightarrow X$ is the projection of X to a nonzero subspace of X_{1}, and $A: X \rightarrow X$ is the projection of X to a nonzero subspace of X_{2}, then $A: X \rightarrow X$ and the zero operator on X are subgenerators of $C(\cdot)$ which do not have common proper extensions that are still subgenerators of $\{C(t) \mid 0 \leq t<1\}$. In particular, $C(\cdot)$ does not have a maximal subgenerator. Similarly, we can show that $(0, D)$ and (A, D) are subgenerators of the degenerate local α-times integrated (C, D)-cosine function $\widetilde{C}(\cdot)$ on $X \times Y$ which do not have common proper extensions that are still subgenerators of $\widetilde{C}(\cdot)$. In particular, $\widetilde{C}(\cdot)$ does not have a maximal subgenerator.

Example 4. Let $X=C_{b}(\mathbb{R})\left(\right.$ or $\left.L^{\infty}(\mathbb{R})\right)$, and A be the maximal differential operator in X defined by $A u=\sum_{j=0}^{k} a_{j} D^{j} u$ on \mathbb{R} for all $u \in D(A)$, then $U C_{b}(\mathbb{R})$ (or $C_{0}(\mathbb{R})$) $=\overline{D(A)}$. Here $a_{0}, a_{1}, \cdots, a_{k} \in \mathbb{C}$ and $D^{j} u(x)=u^{(j)}(x)$ for all $x \in \mathbb{R}$. It is shown in [2, Theorem 6.7] that A generates an exponentially bounded, norm continuous 1 -times integrated cosine function $\mathrm{C}(\cdot)$ on X which is defined by $(C(t) f)(x)=\frac{1}{\sqrt{2 \pi}}\left(\widetilde{\phi}_{t} * f\right)(x)$ for all $f \in X$ and $t \geq 0$ if the real-valued polynomial $p(x)=\sum_{j=0}^{k} a_{j}(i x)^{j}$ satisfies $\sup _{x \in \mathbb{R}} p(x)<\infty$. Here $\widetilde{\phi}_{t}$ denotes the inverse Fourier transform of ϕ_{t} with $\phi_{t}(x)=\int_{0}^{t} \cosh (\sqrt{p(x)} s) d s$. Applying Theorem 3.4, we get that for each $f \in X$ and continuous function g on $\left[0, T_{0}\right) \times \mathbb{R}$ with $\int_{0}^{t} \sup _{x \in \mathbb{R}}|g(s, x)| d s<\infty$ for all $0 \leq t<T_{0}$, the function u on $\left[0, T_{0}\right) \times \mathbb{R}$ defined by $u(t, x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{t} \int_{-\infty}^{\infty}(t-$ s) $\widetilde{\phi_{s}}(x-y) f(y) d y d s+\frac{1}{\sqrt{2 \pi}} \int_{0}^{t} \int_{0}^{t-r} \int_{-\infty}^{\infty}(t-r-s) \widetilde{\phi_{s}}(x-y) g(s, y) d y d s d r$ for all
$0 \leq t<T_{0}$ and $x \in \mathbb{R}$, is the unique solution of

$$
\left\{\begin{array}{l}
\quad \frac{\partial^{2} u(t, x)}{\partial t^{2}} \\
=\sum_{j=0}^{k} a_{j}\left(\frac{\partial}{\partial x}\right)^{j} u(t, x)+t f(x)+\int_{0}^{t}(t-s) g(s, x) d s \text { for } t \in\left(0, T_{0}\right) \text { and a.e. } x \in \mathbb{R} \\
u(0, x)=0 \text { and } \frac{\partial u}{\partial t}(0, x)=0 \quad \text { for a.e. } x \in \mathbb{R}
\end{array}\right.
$$

in $\mathrm{C}^{2}\left(\left[0, T_{0}\right), \mathrm{X}\right) \cap \mathrm{C}\left(\left[0, T_{0}\right),[\mathrm{D}(\mathrm{A})]\right)$.

References

1. W. Arendt, C. J. K. Batty, H. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Vol. 96, Birkhauser Verlag, Basel-Boston-Berlin, 2001.
2. W. Arendt and H. Kellermann, Integrated Solutions of Volterra Integrodifferential Equations and Applications, Pitman Res. Notes Math., Vol. 190, Longman, Harlow, 1989, pp. 21-51.
3. H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, in NorthHolland Math. Stud., Vol. 108, North-Holland, Amsterdam, 1985.
4. M. C. Gao, Local C-Semigroups and C-Cosine Functions, Acta Math. Sci., 19 (1999), 201-213.
5. J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, 1985.
6. F. Huang and T. Huang, Local C-Cosine Family Theory and Application, Chin. Ann. Math., 16 (1995), 213-232.
7. Z. Huang and S. Wang, Strongly Continuous Integrated C-Cosine Operator Function and the Application to the Second Order Abstract Cauchy Problem, in: Functional Analysis in China, Kluwer Academic Publishes, Holland, 1996, pp. 330-350.
8. S. Kanda, Cosine Families and Weak Solution of Second Order Differential Equations, Proc. Japan Acad. Ser. A. Math. Sci., 54 (1978), 119-123.
9. C.-C. Kuo and S.-Y. Shaw, C-Cosine Functions and the Abstract Cauchy Problem I, II, J. Math. Anal. Appl., 210 (1997), 632-646, 647-666.
10. C.-C. Kuo, On exponentially bounded α-Times Integrated C-Cosine Functions, Yokohama Math. J., 52 (2005), 59-72.
11. C.-C. Kuo, On α-Times Integrated C-Cosine Functions and Abstract Cauchy Problem I, J. Math. Anal. Appl., 313 (2006), 142-162.
12. C.-C. Kuo, On Existence and Approximation of Solutions of Second Order Abstract Cauchy Problem, Taiwanese J. Math., 14(3B) (2010), 1093-1109.
13. C.-C. Kuo, On Local Integrated C-Cosine Function and Weak Solution of Second Order Abstract Cauchy Problem, Taiwanese J. Math., 14(5) (2010), 2027-2042.
14. C.-C. Kuo, On Perturbation of local integrated cosine functions, Taiwanese J. Math., 16(5) (2012), 1613-1628.
15. Y.-C. Li and S.-Y. Shaw, On Generators of Integrated C-Semigroups and C-Cosine Functions, Semigroup Forum, 47 (1993), 29-35.
16. Y.-C. Li and S.-Y. Shaw, On Local α-Times Integrated C-Semigroups, Abstract and Applied Anal., 2007, Article ID34890, 18 pages.
17. S.-Y. Shaw and Y.-C. Li, On N-Times Integrated C-Cosine Functions, in: Evolution Equation, Dekker, New York, 1994, pp. 393-406.
18. S.-Y. Shaw and Y.-C. Li, Characterization and generator of local C-osine and C-sine Functions, Inter. J. Evolution Equations, 1(4) (2005), 373-401.
19. Sova, Cosine Operator Functions, Rozprawy Mat., 49 (1966), 1-47.
20. T. Takenaka and S. Piskarev, Local C-Cosine Families and N-Times Integrated Local Cosine Families, Taiwanese J. Math., 8 (2004), 515-546.
21. N. Takenaka and I. Miyadera, C-semigroups and the Abstract Cauchy Problem, J. Math. Anal. Appl., 170 (1992), 196-206.
22. H.-Y. Wang, C-Cosine Operator Functions and the Second Order Abstract Cauchy Problem, Northeast Math. J., 11(1) (1995), 1-10.
23. S.-W. Wang and Z. Huang, Strongly Continuous Integrated C-Cosine Operator Functions, Studia Math., 126 (1997), 273-289.
24. T.-J. Xiao and J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations, Lectures Notes in Math., 1701, Springer, 1998.
25. R. Zhao and Z. Huang, Properties of Subgenerators of Integrated C-Cosine Operator Functions, Northeast Math. J., 14(3) (1998), 281-290.
26. Q. Zheng, Coercive Differential Operators and Fractionally Integrated Cosine Functions, Taiwanese J. Math., 6 (2002), 59-65.

Chung-Chen Kuo
Department of Mathematics
Fu Jen University
New Taipei City 24205, Taiwan
E-mail: cckuo@math.fju.edu.tw

[^0]: Received July 16, 2012, accepted November 30, 2012.
 Communicated by Yongzhi Xu.
 2010 Mathematics Subject Classification: 47D60, 47D62.
 Key words and phrases: Local integrated C-cosine function, Generator, Abstract Cauchy problem. Research partially supported by the National Science Council of Taiwan.

