
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 17, No. 3, pp. 857-872, June 2013
DOI: 10.11650/tjm.17.2013.2202
This paper is available online at http://journal.taiwanmathsoc.org.tw

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A CLASS OF
SUBLINEAR SCHRÖDINGER-MAXWELL EQUATIONS

Zhisu Liu, Shangjiang Guo and Ziheng Zhang

Abstract. In this paper we are concerned with a class of sublinear Schrödinger-
Maxwell equations{ −�u+ V (x)u+ φu = f(x, u), in R

3,

−�φ = u2, lim
|x|→+∞

φ(x) = 0, in R
3,

where V : R
3 → R and f : R

3 × R → R. Under certain assumptions on V
and f , some new criteria on the existence and multiplicity of negative energy
solutions for the above system are established via the genus properties in critical
point theory. Recent results from the literature are significantly improved.

1. INTRODUCTION

Consider the following coupled nonlinear Schrödinger-Maxwell equations, also
known as the nonlinear Schrödinger-Poisson equations

(SM)

⎧⎨
⎩

−�u + V (x)u+ φu = f(x, u), in R
3,

−�φ = u2, lim
|x|→+∞

φ(x) = 0, in R3,

where V : R
3 → R and f : R

3 × R → R. Indeed, such a system and similar ones
arise in many mathematical physical context, such as in quantum electrodynamics, to
describe the interaction between a charge particle interacting with the electromagnetic
field, and also in semiconductor theory, in nonlinear optics and in plasma physics (we
refer to [10] for more details in the physics aspects). In particular, if we are looking
for electrostatic-type solutions, we just have to solve (SM).
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In recent years, problem (SM) with V (x) ≡ 1 or being radially symmetric, has
been widely studied under various conditions on f , see for example [3, 4, 5, 6, 7, 13,
19, 20]. More precisely, in [3, 20], in order to avoid the lack of compactness of the
Sobolev embeddingH1(R3) ↪→ Ls(R3) (2 < s < 6), the standard work space H1(R3)
was replaced by the radial function space H1

r (R3) where the embedding H1
r (R3) ↪→

Ls(R3) (2 < s < 6) is compact. Ruiz [20] dealt with (SM) with V (x) ≡ 1 and
f(u) = up (1 < p < 5) and got some general existence, nonexistence and multiplicity
results and Ambrosetti and Ruiz [3] obtained existence of multiple bound state solutions.
For the sublinear term f(s) = min{|s|r, |s|p} with 0 < r < 1 < p, Kristály and Repovš
[15] handled the form f(x, u) = λα(x)f(u) for (SM) with V (x) ≡ 1. For large
parameters, the system has at least two nontrivial solutions, while for small parameters,
no solution exists. When V (x) and f(x, u) are 1-periodic in each xi, i = 1, 2, 3
in (SM), Zhao [26] obtained the existence of infinitely many geometrically distinct
solutions by using the nonlinear superposition principle established in [1]. If V (x)
is periodic or asymptotically periodic and f(x, u) does not satisfy the Ambrosetti-
Rabinowitz condition, Alves, et al [2] established the existence of positive ground
state solutions by using the mountain pass theorem. We recall here that (u, φ) ∈
H1(R3) × D1,2(R3) is said to be a ground state solution to problem (SM), if (u, φ)
solves (SM) and minimizes the action functional associated to (SM) among all possible
nontrivial solutions. The case of nonradial potential V has also been considered in
[12, 16, 21, 25, 26] and the references mentioned therein. In particular, Wang and Zhou
[25] got the existence and nonexistence results of (SM) when f(u) is asymptotically
linear at infinity. In [8], Azzollini and Pomponio proved the existence of ground
state solutions for problem (SM) with f(x, u) = |u|p−1u, 3 < p < 5 and Zhao [26]
generalized results in [8] to the case where 2 < p ≤ 3. Chen and Tang [12] proved
that (SM) had infinitely many high energy solutions under the condition that f(x, u)
is superlinear at infinity in u by fountain theorem. Soon after, Li, Su and Wei [16]
improved their results.
For the case that V (x) is nonradial potential and f(t, u) is sublinear at infinity

in u, as far as the authors are aware, there is only one result up to now. When
f(x, u) = (p + 1)b(x)|u|p−1u, where 0 < p < 1 is a constant and b : R3 → R

is a positive continuous function such that b ∈ L
2

1−p (R3), by using variant fountain
theorem [27], Sun [23] established the following theorem on the existence of infinitely
many nontrivial solutions of problem (SM) under the assumption that V satisfies certain
conditions.

Theorem 1.1. [23]. Assume that the following conditions hold:

(V0) V ∈ C(R3,R) satisfies inf
x∈R3

V (x) = a > 0, where a is a constant;

(V1) For every M > 0, meas{x ∈ R
3 : V (x) ≤ M} < ∞, where meas denotes the

Lebesgue measure in R3;
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(F0) F (x, u) = b(x)|u|p+1, where F (x, u) =
∫ u
0 f(x, y)dy, b : R

3 → R
+ is a positive

continuous function such that b ∈ L
2

1−p (R3) and 0 < p < 1 is a constant.

Then system (SM) possesses infinitely many negative energy solutions {(uk, φk)} sat-
isfying

1
2

∫
R3

(|∇uk|2 + V (x)u2
k)dx− 1

4

∫
R3

|∇φk|2dx

+
1
2

∫
R3

φku
2
kdx−

∫
R3

F (x, uk)dx→ 0−, as k → ∞.

In the above theorem, assumptions (V0) and (V1) imply a coercive condition on V ,
which was firstly introduced in [9] and is used to overcome the lack of compactness of
embedding of the working space E (see Section 2), and (F0) contains a strict restriction
on f . In fact, there are much sublinear functions in mathematical physics in problem
like (SM) except for f(x, u) = (p+ 1)b(x)|u|p−1u. In the present paper, motivated by
paper [24], we will use the genus properties in critical theory to generalize Theorem
1.1 by removing assumption (V1) and relaxing assumption (F0).
Now, we state our main results.

Theorem 1.2. Assume that (V0) and the following conditions hold:

(F1) f ∈ C(R3 × R,R) and there exist two constants 0 < p < 1, 1
3 ≤ q < 1 and a

positive function b ∈ L 2
1−p (R3) and a nonnegative function b1 ∈ L3(R3) such

that

|f(x, u)| ≤ (p+ 1)b(x)|u|p + (q + 1)b1(x)|u|q, ∀(x, u)∈R
3 × R;

(F2) There exist a nonzero measure open set Ω ⊂ R
3 and three constants δ, η > 0

and p′ ∈ (0, 1) such that

F (x, u) ≥ η|u|p′+1, ∀(x, u) ∈ Ω × [−δ, δ],
where

(1.1) F (x, u) :=
∫ u

0
f(x, y)dy, x ∈ R

3, u ∈ R.

Then system (SM) possesses at least one nontrivial solution.

Theorem 1.3. Assume that V and f satisfy (V0), (F1), (F2) and the following
condition:

(F3) f(x,−u) = −f(x, u), ∀(x, z) ∈ R3 × R.
Then system (SM) possesses infinitelymany negative energy solutions {(uk, φk)}
satisfying
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1
2

∫
R3

(|∇uk|2 + V (x)u2
k)dx− 1

4

∫
R3

|∇φk|2dx

+
1
2

∫
R3
φku

2
kdx−

∫
R3
F (x, uk)dx < 0, as k → ∞.

In fact, it is easy to see that assumption (F2) is satisfied if the following condition
holds:

(F′2) There exist a nonzero measure open set Ω ⊂ R
3 and three constants δ, η > 0 and

p′ ∈ (0, 1) such that

uf(x, u) ≥ η|u|p′+1, ∀(x, u) ∈ Ω × [−δ, δ].

Therefore, by Theorems 1.2 and 1.3, we have the following corollary.

Corollary 1.1. In Theorems 1.2 and 1.3, if assumption (F2) is replaced by (F′2),
then the conclusions still hold.

Remark 1.1. If f(x, u) = (p+1)b(x)|u|p−1u, then F (x, u) = b(x)|u|p+1. Hence,
assumption (F0) implies that (F1), (F2) and (F3) with p = p′, b1(x) ≡ 0.

Remark 1.2. Our results can be applied to some indefinite sign sublinear functions
which can not been implied by the sublinear term in [23]. For example, let

f(x, u) =
4 cosx1

3e|x|
|u|−2/3u+

3 sinx2

2e3|x|
|u|−1/2u, ∀(x, u) ∈ R

3 × R,

where x = (x1, x2, x3)�. Clearly,

|f(x, u)| ≤ 4
3e|x|

|u|1/3 +
3

2e3|x|
|u|1/2, ∀(x, u) ∈ R

3 × R,

F (x, u) =
cosx1

e|x|
|u|4/3 +

sinx2

e3|x|
|u|3/2

≥ cos 1
e

|u|4/3, ∀(x, u) ∈ (0, 1)3 × [−1, 1].

Thus (F1), (F2) and (F3) are satisfied with
1
3

= p = p′, q =
1
2
, b(x) =

4
3e|x|

, b1(x) =
3

2e3|x|
,

δ = 1, η =
cos 1
e

, Ω = (0, 1)3.

Throughout this paper, C > 0 denotes various positive generic constants. The
remainder of this paper is organized as follows. In Section 2, some preliminary results
are presented. The proofs of our main results are given in Section 3.
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2. NOTATION AND PRELIMINARIES

Hereafter, we recall the following notations. For any 1 ≤ s ≤ +∞, we denote by
‖ · ‖s the usual norm of the Lebesgue space Ls(R3). Let

E :=
{
u ∈ H1(R3) :

∫
R3

(|∇u|2 + V (x)u2)dx < +∞
}

equipped with the inner product

(u, v) :=
∫

R3
[∇u∇v + V (x)u(x)v(x)]dx, u, v ∈ E,

and the norm

‖u‖ = (u, u)
1
2 =

(∫
R3

(|∇u|2 + V (x)u2)dx
)1

2

.

Then E is a Hilbert space with the above inner product. D1,2(R3) is the completion
of C∞

0 (R3) with respect to the norm

‖u‖D1,2 :=
(∫

R3

|∇u|2dx
)1

2

.

Note that E is continuously embedded into Ls(R3) for all s ∈ [2, 2∗], where 2∗ = 6
is the critical exponent for the Sobolev embeddings in dimension 3. Therefore, there
exists a constant C > 0 such that

(2.1) ‖u‖s ≤ C‖u‖, ∀u ∈ E.

For every u ∈ E , by the Lax-Milgram theorem, there exists a unique φu ∈ D1,2(R3)
such that

−�φu = u2

and

(2.2)
∫

R3

u2vdx =
∫

R3

∇φu · ∇vdx, ∀v ∈ D1,2(R3).

Moreover, φu can be expressed by (see [14]):

(2.3) φu =
∫

R3

u2(y)
|x− y|dy =

1
|x| ∗ u

2.

Now we collect some properties of the functions φu (see [5, 11, 23]).

Lemma 2.1. For any u ∈ E , we have
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(1) ‖φu‖2
D1,2 =

∫
R3 φuu

2dx ≤ C‖u‖4
12/5 ≤ C‖u‖4;

(2) φu ≥ 0;
(3) for any t > 0, φut = t2φu, where ut = tu;
(4) if un ⇀ u in E , then φun ⇀ φu in D1,2(R3).

Now we define the following integral momentums

(2.4) Φ1(u) :=
1
4

∫
R3

φuu
2dx, Φ2(u) :=

∫
R3

F (x, u)dx.

Lemma 2.2. Φ′
1 : E → E∗ is weakly continuous, where E∗ is the dual space of

E .

The proof is similar to Lemma 2.3 (i) in [26], so we omit the details.

Lemma 2.3. Assume that (V0) and (F1) hold. Then the functional I : E → R

defined by

(2.5) I(u) =
1
2
‖u‖2 +

1
4

∫
R3

φuu
2dx−

∫
R3

F (x, u)dx

is well defined and of class C1(E; R) and

(2.6) 〈I ′(u), v〉 =
∫

R3

(∇u · ∇v + V (x)uv + φuuv − f(x, u)v)dx, v ∈ E.

Furthermore, if u ∈ E is a critical point of the functional I , then the pair (u, φu) ∈
E ×D1,2(R3), with φu defined as in (2.3), is a solution of system (SM).

Proof. It is clear that (SM) is the Euler-Lagrange equations of the functional
Φ : E ×D1,2(R3) → R defined by

Φ(u, φ) =
1
2
‖u‖2 − 1

4

∫
R3

|∇φ|2dx+
1
2

∫
R3
φu2dx−

∫
R3
F (x, u)dx.

Evidently, the action functional Φ exhibits a strong indefiniteness, namely it is un-
bounded both from below and above in infinite dimensional subspaces. In fact, using
the reduction method described in [4,6], one gets

Φ(u, φu) = I(u) =
1
2
‖u‖2 +

1
4

∫
R3
φuu

2dx−
∫

R3
F (x, u)dx,

which is a variable functional that does not present such a strongly indefinite nature.
By (F1) and (1.1), one has

(2.7) |F (x, u)| ≤ b(x)|u|p+1 + b1(x)|u|q+1, ∀(x, u) ∈ R
3 × R.
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For any u ∈ E , it follows from (V0), (2.1), (2.7) and the Hölder inequality that

(2.8)

∫
R3

|F (x, u)|dx ≤
∫

R3

[b(x)|u|p+1 + b1(x)|u|q+1]dx

≤a−(p+1)
2

(∫
R3

|b(x)| 2
1−pdx

)1−p
2
(∫

R3
V (x)u2dx

)p+1
2

+
(∫

R3

|b1(x)|3dx
)1

3
(∫

R3

u
3
2
(q+1)dx

)2
3

≤C(‖u‖p+1 + ‖u‖q+1).

Hence, combining Lemma 2.1 with (2.8), we see that I is well defined on E .
Next, we prove that (2.6) holds. For any function θ : R

3 → (0, 1) and u, v ∈ E ,
using (F1) and the Hölder inequality we have

(2.9)

∫
R3

max
h∈[0,1]

|f(x, u+ θ(x)hv)v|dx

≤
∫

R3

max
h∈[0,1]

|f(x, u+ θ(x)hv)||v|dx

≤C

∫
R3

[b(x)(|u|+ |v|)p + b1(x)(|u|+ |v|)q]|v|dx

≤C

∫
R3

[b(x)(|u|p + |v|p) + b1(x)(|u|q + |v|q)]|v|dx

≤ a
−2p−1

2 C

(∫
R3

|b(x)| 2
1−pdx

)1−p
2
(∫

R3

V (x)|u|2dx
)p

2
(∫

R3

V (x)|v|2dx
)1

2

+ Ca
−(p+1)

2

(∫
R3

|b(x)| 2
1−pdx

)1−p
2
(∫

R3

V (x)v2dx

)p+1
2

+ C

(∫
R3

|b1(x)|3dx
) 1

3
(∫

R3

|u|6qdx

)1
6
(∫

R3

|v|2dx
)1

2

+ C

(∫
R3

|b1(x)|3dx
) 1

3
(∫

R3

v
3
2
(q+1)dx

)2
3

≤C(‖u‖p + ‖v‖p + ‖v‖q + ‖u‖q)‖v‖
< + ∞.

Then by (2.4), (2.9) and Lebesgue’s Dominated Convergence Theorem, we have
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(2.10)

〈Φ′
2(u), v〉 = lim

h→0+

Φ2(u+ hv) − Φ2(u)
h

= lim
h→0+

1
h

∫
R3

[F (x, u+ hv) − F (x, u)]dx

= lim
h→0+

∫
R3

[f(x, u+ θ(x)hv)vdx

=
∫

R3

f(x, u)vdx.

In addition, it is clear that Φ′
1 ∈ C1(E,R). Therefore, (2.6) holds. Let us prove now

that Φ′
2 is continuous. Let uk → u in E , then

(2.11) uk → u, in Ls(R3), s ∈ [2, 6], uk → u a.e. in R
3.

We show that

(2.12)
∫

R3

|f(x, uk)− f(x, u)|2dx→ 0, as k → +∞.

In fact, since uk → u in L2(R3) and uk → u in L6q(R3), passing to a subsequence if
necessary, there exist w ∈ L2(R3) and w′ ∈ L6q(R3) such that, for all k ∈ N,

|uk(x)| ≤ w(x) a.e. in R
3,

|uk(x)| ≤ w′(x) a.e. in R
3.

Note that, for all k ∈ N,

(2.13)

|f(x, uk(x))− f(x, u(x))|2 ≤2|f(x, uk(x))|2 + 2|f(x, u(x))|2

≤4(p+ 1)2|b(x)|2[|uk(x)|2p + |u(x)|2p]

+ 4(q + 1)2|b1(x)|2[|uk(x)|2q + |u(x)|2q]

≤C|b(x)|2[|w(x)|2p + |u(x)|2p]

+C|b1(x)|2[|w′(x)|2q + |u(x)|2q]

:=g(x), a.e in R
3

and

(2.14)

∫
R3

g(x)dx =
∫

R3

C|b(x)|2[|w|2p + |u|2p]dx

+
∫

R3

C|b1(x)|2[|w′|2q + |u|2q]dx

≤C‖b‖2
2

1−p
(‖w‖2p

2 + ‖u‖2p
2 ) +C‖b1‖2

3(‖w′‖2q
6q + ‖u‖2q

6q)

< + ∞.
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Then, by (2.11), (2.13), (2.14) and Lebesgue’s Dominated Convergence Theorem, we
know that (2.12) holds. By (2.10), (2.12) and the Hölder inequality, for all given v ∈ E
we have

|〈Φ′
2(uk) − Φ′

2(u), v〉| = |
∫

R3
[f(x, uk) − f(x, u)]vdx|

≤ C‖v‖(
∫

R3

|f(x, uk) − f(x, u)|2dx) 1
2 → 0, k → +∞,

which implies the continuity of Φ′
2. Hence, I ∈ C1(E,R). Furthermore, It can be

proved that (u, φ) ∈ E × D1,2(R3) is a solution of (SM) if and only if u ∈ E is a
critical point of the functional I , and φ = φu, see for instance [10]. The proof is
complete.

Definition 2.1. I ∈ C1(E,R) is said to satisfy the (PS)-condition if any sequence
{uj}j∈N

⊂ E , for which {I(uj)}j∈N
is bounded and I ′

(uj) → 0 as j → +∞,
possesses a convergent subsequence in E .

Let E be a Banach space, I ∈ C1(E,R) and c ∈ R. Set

Σ = {A ⊂ E − {0} : A is closed in E and symmetric with respect to 0},

Kc = {u ∈ E : I(u) = c, I ′(u) = 0}, Ic = {u ∈ E : I(u) ≤ c}.
Definition 2.2. ([18]). For A ∈ Σ, we say genus of A is n (denoted by γ(A) = n)

if there is an odd map ϕ ∈ C(A,Rn\{0}) and n is the smallest integer with this
property.

As a conclusion of this section, we state the following theorems which are crucial
to our arguments in Section 3.

Theorem 2.4. ([17]). Let E be a real Banach space and I ∈ C1(E,R) satisfy the
(PS)-condition. If I is bounded from below, then c = infE I is a critical value of I .

Theorem 2.5. ([22]). Let I be an even C1 functional on E and satisfy the (PS)-
condition. For any n ∈ N, set

Σn = {A ∈ Σ : γ(A) ≥ n}, cn = inf
A∈Σn

sup
u∈A

I(u).

(1) If Σn �= ∅ and cn ∈ R, then cn is a critical value of I;

(2) If there exists r ∈ N such that

cn = cn+1 = · · · = cn+r = c ∈ R,
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and c �= I(0), then γ(Kc) ≥ r + 1.

3. PROOFS OF MAIN RESULTS

In order to make use of Theorem 2.4 to prove Theorem 1.2, we need the following
Lemma.

Lemma 3.1. Under the conditions of Theorem 1.1, I is bounded from below and
satisfies the (PS)-condition.

Proof. In what follows, we first show that I is bounded from below. By (2.1),
(2.5) and the Hölder inequality, one has

(3.1)

I(u) =
1
2
‖u‖2 −

∫
R3

F (x, u)dx+
1
4

∫
R3

φuu
2dx

≥1
2
‖u‖2 −

∫
R3

b(x)|u|p+1dx−
∫

R3

b1(x)|u|q+1dx

≥1
2
‖u‖2 −

(∫
R3

|b(x)| 2
1−pdx

)1−p
2
(∫

R3

|u|2dx
)1+p

2

−
(∫

R3

|b1(x)|3dx
)1

3
(∫

R3

|u| 32 (q+1)dx

)2
3

≥1
2
‖u‖2 − ‖b‖ 2

1−p
‖u‖1+p

2 − ‖b1‖3‖u‖q+1
3
2
(q+1)

≥1
2
‖u‖2 −C(‖u‖p+1 + ‖u‖q+1).

Since 0 < p < 1, 1
3 ≤ q < 1, (3.1) implies that I(u) → +∞ as ‖u‖ → +∞.

Consequently, I is bounded from below. Next, we prove that I satisfies the (PS)-
condition. Assume that {uk}k∈N ⊂ E is a sequence such that {I(uk)}k∈N is bounded
and I ′(uk) → 0 as k → +∞. Then by (3.1), there exists a constant A > 0 such that

(3.2) ‖uk‖ ≤ A, ∀k ∈ N.

So passing to a subsequence if necessary, it can be assumed that uk ⇀ u0 in E . Hence

(3.3) uk → u0, in Ls
loc(R

3) s ∈ [2, 6).

For any given number ε > 0, by (F1), we can choose ρ > 0 such that

(3.4)

(∫
|x|≥ρ

|b(x)| 2
1−pdx

) 1−p
2

< ε,

(∫
|x|≥ρ

|b1(x)|3dx
) 1

3

< ε.
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It follows from (2.1), (2.13), (3.2) and (3.3) that there exists k0 ∈ N such that

(3.5)

∫
|x|≤ρ

|f(x, uk) − f(x, u0)||uk − u0|dx

≤
(∫

|x|≤ρ
|f(x, uk) − f(x, u0)|2dx

)1
2
(∫

|x|≤ρ
|uk − u0|2dx

)1
2

≤ ε

(∫
|x|≤ρ

2(|f(x, uk)|2 + |f(x, u0)|2)dx
)1

2

≤ εC

(∫
|x|≤ρ

|b(x)|2[|uk|2p + |u0|2p] + |b1(x)|2[|uk|2q + |u0|2q]dx

)1
2

≤ εC[‖b‖2
2

1−p
(‖uk‖2p

2 + ‖u0‖2p
2 ) + ‖b1‖2

3(‖uk‖2q
6q + ‖u0‖2q

6q)]

≤ εC(‖b‖2
2

1−p
A2p + ‖u0‖2p

2 + ‖u0‖2q
6q +C‖b1‖2

3A
2q),

for k ≥ k0. On the other hand, it follows from (F1), (2.1), (3.2) and the Hölder
inequality that

(3.6)

∫
|x|>ρ

|f(x, uk) − f(x, u0)||uk − u0|dx

≤
∫
|x|>ρ

[(p+1)b(x)(|uk|p+|u0|p)+(q+1)b1(x)(|uk|q+|u0|q)](|uk|+|u0|)dx

≤2(p+ 1)
∫
|x|>ρ

b(x)(|uk|p+1 + |u0|p+1)dx

+ 2(q + 1)
∫
|x|>ρ

b1(x)(|uk|q+1 + |u0|q+1)dx

≤C
(∫

|x|>ρ
|b(x)| 2

1−pdx

) 1−p
2

⎡
⎣(∫

|x|>ρ
|uk|2

) 1+p
2

+

(∫
|x|>ρ

|u0|2
) 1+p

2

⎤
⎦

+C

(∫
|x|>ρ

|b1(x)|3dx
) 1

3

⎡
⎣(∫

|x|>ρ
|uk| 32 (q+1)

) 2
3

+

(∫
|x|>ρ

|u0| 32 (q+1)

) 2
3

⎤
⎦

≤ Cε[‖uk‖p+1
2 + ‖u0‖p+1

2 ] + Cε[‖uk‖q+1
3
2
(q+1)

+ ‖u0‖q+1
3
2
(q+1)

]

≤ Cε[Ap+1 + Aq+1 + ‖u0‖p+1 + ‖u0‖q+1].

Since ε is arbitrary, it follows from (3.5) and (3.6) that

(3.7)
∫

R3
|f(x, uk)− f(x, u0)||uk − u0|dx→ 0,
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as k → +∞. Since Φ′
1 is the weakly continuous by Lemma 2.2, we conclude that

(3.8)
|
∫

R3

(φuk
uk − φu0u0)(uk − u0)dx| = |〈Φ′

1(uk) − Φ′
1(u0), uk − u0〉|

≤ ‖Φ′
1(uk) − Φ′

1(u0)‖E∗‖uk − u0‖ → 0.

It follows from (2.6) that

(3.9)
〈I ′(uk)−I ′(u0), uk−u0〉 = ‖uk−u0‖2−

∫
R3

(f(x, uk)−f(x, u0))(uk−u0)dx

+
∫

R3
(φuk

uk − φu0u0)(uk − u0)dx.

Obviously, 〈I ′(uk) − I ′(u0), uk − u0〉 → 0 as k → +∞. Combining (3.7), (3.8) and
(3.9), one knows that uk → u0 in E . Hence, I satisfies (PS)-condition. The proof is
complete.

The proof of Theorem 1.2. In view of Lemma 2.3, I ∈ C1(E,R3). By Theorem
2.4 and Lemma 3.1, we get c = infE I(u) is a critical value of I , that is, there exists
a critical point u∗ ∈ E such that I(u∗) = c.
Finally, we show that u∗ �= 0. Let u0 ∈ (W 1,2

0 (Ω) ∩ E) \ {0}, then by (2.5) and
Lemma 2.1, we infer

(3.10)

I(su0) =
s2

2
‖u0‖2 +

1
4

∫
R3
φsu0(su0)2dx−

∫
R3
F (x, su0)dx

≤ s2

2
‖u0‖2 + C‖su0‖4 −

∫
Ω
η|su0|p′+1dx

≤ s2

2
‖u0‖2 + Cs4‖u0‖4 − ηsp

′+1

∫
Ω

|u0|p′+1dx, 0 < s < 1.

Since 0 < p′ < 1, it follows from (3.10) that I(su0) < 0 for s > 0 small enough. Hence
I(u∗) = c < 0, therefore u∗ is nontrivial critical point of I with I(u∗) = infE I(u)
and is a nontrivial solution of (SM). The proof is complete.

The proof of Theorem 1.3. In view of Lemma 3.1, I ∈ C1(E,R) is bounded
from below and satisfies the (PS)-condition. It is clear that I is even and I(0) = 0. In
order to apply Theorem 2.5, we now prove that for any n ∈ N there exists ε > 0 such
that

(3.11) γ(I−ε) ≥ n.

For any n ∈ N, we take n disjoint open sets Ωi such that
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n⋃
i=1

Ωi ⊂ Ω.

For each i ∈ {1, 2, · · ·, n}, let ui ∈ (W 1,2
0 (Ωi) ∩E) \ {0} and ‖ui‖ = 1, and

En = span{u1, u2, · · ·, un}, Sn = {u ∈ En : ‖u‖ = 1}.
So for any u ∈ En, there exist λi ∈ R, i = 1, 2, · · ·, n such that

(3.12) u(x) =
n∑

i=1

λiui, for x ∈ R
3.

Then, we have

(3.13) ‖u‖p′+1 =
(∫

R3

|u|p′+1dx

) 1
p′+1

=

(
n∑

i=1

|λi|p′+1

∫
Ωi

|ui(x)|p′+1dx

) 1
p′+1

,

and

(3.14)

‖u‖2 =
∫

R3
(|∇u|2 + V (x)u2)dx

=
n∑

i=1

λ2
i

∫
Ωi

(|∇ui|2 + V (x)u2
i )dx

=
n∑

i=1

λ2
i

∫
R3

(|∇ui|2 + V (x)u2
i )dx

=
n∑

i=1

λ2
i ‖ui‖2

=
n∑

i=1

λ2
i .

Since all norms of a finite dimensional normed space are equivalent, there is a constant
c′ > 0 such that
(3.15) c′‖u‖ ≤ ‖u‖p′+1, for u ∈ En.

By Lemma 2.1, (2.5), (3.13) and (3.15), we obtain

(3.16)

I(su) =
s2

2
‖u‖2 +

1
4

∫
R3

φsu(su)2dx−
∫

R3

F (x, su)dx

≤ s2

2
‖u‖2 + C‖su‖4 −

n∑
i=1

∫
Ωi

η|sλiui|p′+1dx

≤ s2

2
‖u‖2 + C‖su‖4 − ηsp

′+1
n∑

i=1

|λi|p′+1

∫
Ωi

|ui|p′+1dx

=
s2

2
‖u‖2 + C‖su‖4 − ηsp

′+1‖u‖p′+1
p′+1
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≤ s2

2
‖u‖2 + C‖su‖4 − ηsp

′+1c′p
′+1‖u‖p′+1

=
s2

2
+ s4C − ηsp

′+1c′p
′+1
, ∀u ∈ Sn, 0 < s < 1.

Hence, 0 < p′ < 1 and (3.16) imply that there exist ε > 0 and σ > 0 such that

(3.17) I(σu) < −ε for u ∈ Sn.

Let

Sσ
n = {σu : u ∈ Sn}, Ω = {(λ1, λ2, · · ·, λn) :

n∑
i=1

λ2
i < σ2}.

It follows from (3.17) that I(u) < −ε for u ∈ Sσ
n , which, together with the fact that

I ∈ C1(E,R) and is even, implies that

Sσ
n ⊂ I−ε ∈ Σ.

On the other hand, it follows from (3.12) and (3.14) that there exists an odd home-
omorphism mapping ψ ∈ C(Sσ

n , ∂Ω). By some properties of the genus (see 3◦ of
Propositions 7.5 and 7.7 in [18], we deduce

(3.18) γ(I−ε) ≥ γ(Sσ
n) = n,

so (3.11) holds. Set
cn = inf

A∈Σn

sup
u∈A

I(u).

It follows from (3.18) and the fact that I is bounded from below on E that −∞ <

cn ≤ −ε < 0, that is for any n ∈ N, cn is a real negative number. By Theorem 2.5,
I has infinitely many nontrivial critical points, and so (SM) possesses infinitely many
nontrivial negative energy solutions.
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