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ON STABILITY OF A CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS

Pham Huu Anh Ngoc

Abstract. We give some simple criteria for uniform asymptotic stability and
exponential asymptotic stability of linear Volterra-Stieltjes differential equations.
These criteria are given in terms of the matrix measure or the spectral abscissa of
certain matrices derived from the coefficient matrices. An application of obtained
results to linear integro-differential equations with delay is presented.

1. INTRODUCTION

In this paper, we are concerned with stability of linear Volterra-Stieltjes differential
equations of the form

(1) ẋ(t) = Ax(t) +
∫ t

0
d[B(s)]x(t − s), a.e. t ∈ R+ := [0,∞),

where A ∈ Rn×n is a given matrix and B(·) ∈ BVloc(R+, Rn×n), is a given matrix-
valued function of locally bounded variation on R+.
Note that (1) encompasses linear Volterra integro-differential equations

(2) ẋ(t) = Ax(t) +
∫ t

0
B(t − s)x(s)ds, t ∈ R+,

where A ∈ Rn×n and B(·) ∈ L1
loc(R+, Rn×n) and there is a considerable literature

devoted to the study of asymptotic behavior of solutions of linear Volterra integro-
differential equations (2), see [1, 2, 5, 7, 13, 15, 18, 20, 22-25] and references therein.
A comprehensive theory of stability of linear Volterra integro-differential equations (2)
can be found in [5]. In particular, the uniform asymptotic stability of (2) has been
studied in [13, 15] and the exponential asymptotic stability of (2) has been considered
in [17, 18].
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Recently, problems of stability and robust stability of linear Volterra integro-dif-
ferential equations have attracted much attention from researchers, see e.g. [1, 2, 4,
16, 19, 20, 22-25].
In general, stability problems of the linear Volterra-Stieltjes differential equation (1)

are more difficult than those of the linear Volterra integro-differential equation (2), see
[11]. This is due to the Volterra-Stieltjes integral term

∫ t
0 d[B(s)]x(t− s) which leads

one to work with Riemann-Stieltjes integrals and Laplace-Stieltjes transforms instead
of Riemann integrals and Laplace transforms.
Stability analysis of the linear Volterra-Stieltjes differential equation (1) has been

done by ourselves in very recent papers [24, 25]. The present paper is a direct con-
tinuation of the preceding studies on this issue. We will present below some simple
criteria for the uniform asymptotic stability and the exponential asymptotic stability of
the linear Volterra-Stieltjes differential equation (1). These criteria may be used easily
and quickly to show that the zero solution of (1) is uniformly asymptotically stable
or/and exponentially asymptotically stable.
Furthermore, it is worth noticing that a linear Volterra integro-differential equation

with finite delay of the form

(3) ẋ(t) = Ax(t) +
m∑

i=1

Aix(t − hi) +
∫ t

0

B(t − s)x(s)ds, t ∈ R+,

(A, Ai ∈ Rn×n (i ∈ m) and B(·) ∈ L1
loc(R+, Rn×n)) or a linear Volterra integro-

differential equation with infinite delay of the form

(4) ẋ(t) = Ax(t) +
∞∑
i=1

Aix(t − hi) +
∫ t

−∞
B(t − s)x(s)ds, t ∈ R+,

(A, Ai ∈ R
n×n, i ∈ N,

∑∞
i=1 ‖Ai‖ < ∞ and B(·) ∈ L1(R+, R

n×n)), can be converted
into a nonhomogeneous linear Volterra-Stieltjes differential equation of the form

(5) ẋ(t) = Ax(t) +
∫ t

0
d[C(s)]x(t − s) + f(t), a.e. t ∈ R+,

where C(·) ∈ BVloc(R+, Rn×n) and f ∈ L1
loc(R+, Rn). Thus, stability criteria of (1)

can be applied to (3) and (4), see for example, Example 3.14 and Section 4 of the
present paper, [25, Section 4]. Equation (4) has appeared in optimal control problems
with quadratic cost [9] and in models of nuclear reaction dynamics [8, page 307]. For
further information on applications of Volterra-Stieltjes equations, we refer to [7].
The organization of the paper is as follows. In the next section, we give some

notations and preliminary results which will be used in what follows. The main results
of the paper are presented in Section 3. We first give some simple criteria for the
uniform asymptotic stability of the linear Volterra-Stieltjes differential equation (1).
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Then combining the obtained results with a recent result in [25, Theorem 3.4], we get
explicit criteria for the exponential asymptotic stability of (1). An example is given
to illustrate the obtained results. Finally, we apply results given in Section 3 to study
asymptotic behavior of solutions of Volterra integro-differential equations with infinite
delay.

2. PRELIMINARIES

Let N be the set of all natural numbers. For a given n ∈ N, we denote n :=
{1, 2, ..., n}. Let K = C or R where C and R denote the sets of all complex and all
real numbers, respectively. For given γ ∈ R, let us denote Cγ := {z ∈ C : �z ≥ γ}
and let C̊γ be the interior of Cγ . For an integer l, q ≥ 1, Kl denotes the l−dimensional
vector space over K and K

l×q stands for the set of all l× q-matrices with entries in K.
Inequalities between real matrices or vectors will be understood componentwise, i.e. for
two real matrices A = (aij) and B = (bij) in R

l/×q, we write A ≥ B if aij ≥ bij for
i = 1, · · · , l, j = 1, · · · , q. In particular, if aij > bij for i = 1, · · · , l, j = 1, · · · , q,

then we write A � B instead of A ≥ B. We denote by R
l×q
+ the set of all nonnegative

matrices A ≥ 0. Similar notations are adopted for vectors.
For x ∈ K

n and P ∈ K
l×q we define |x| = (|xi|) and |P | = (|pij|). A norm ‖·‖ on

Kn is said to be monotonic if ‖x‖ ≤ ‖y‖ whenever x, y ∈ Kn, |x| ≤ |y|. Every p-norm
on K

n, 1 ≤ p ≤ ∞, is monotonic. Throughout the paper, if otherwise not stated, the
norm of a matrix P ∈ K

l×q is understood as its operator norm associated with a given
pair of monotonic vector norms on Kl and Kq , that is ‖P‖ = max{‖Py‖ : ‖y‖ = 1}.
Note that, one has

(6) P ∈ K
l×q , Q ∈ R

l×q
+ , |P | ≤ Q ⇒ ‖P‖ ≤ ‖ |P | ‖ ≤ ‖Q‖,

see, e.g. [26].
For any matrix A ∈ Kn×n the spectral abscissa of A is denoted by s(A) =

max{�λ : λ ∈ σ(A)}, where σ(A) := {s ∈ C : det(sIn −A) = 0} is the spectrum of
A. For an arbitrary norm ‖ · ‖ on Rn×n, the matrix measure of A ∈ Rn×n is defined
by

(7) μ(A) := lim
t→0+

‖In + tA‖ − 1
t

,

where In ∈ R
n×n is the identity matrix. Then the following holds

(8) s(A) ≤ μ(A) ≤ ‖A‖,

(9) μ(A + B) ≤ μ(A) + μ(B) A, B ∈ R
n×n,

see e.g. [27]. Especially, for an operator norm on Rn×n associated with a given
monotonic vector norm on R

n, it follows from (6)-(7) that
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(10) A ∈ R
n×n, B ∈ R

n×n
+ |A| ≤ B ⇒ μ(A) ≤ μ(|A|) ≤ μ(B).

A matrix A ∈ R
n×n is called a Metzler matrix if all off-diagonal elements of A

are nonnegative. We now summarize some properties of Metzler matrices which will
be used in what follows.

Theorem 2.1. [26]. Suppose that A ∈ Rn×n is a Metzler matrix. Then

(i) (Perron-Frobenius) s(A) is an eigenvalue of A and there exists a nonnegative
eigenvector x 
= 0 such that Ax = s(A)x.

(ii) Given α ∈ R, there exists a nonzero vector x ≥ 0 such that Ax ≥ αx if and
only if s(A) ≥ α.

(iii) (tIn − A)−1 exists and is nonnegative if and only if t > s(A).
(iv) Given B ∈ R

n×n
+ , C ∈ Cn×n. Then

(11) |C| ≤ B =⇒ s(A + C) ≤ s(A + B).

The following is immediate from Theorem 2.1.

Theorem 2.2. Let A ∈ R
n×n be a Metzler matrix. Then the following statements

are equivalent
(i) s(A) < 0;
(ii) −A−1 exists and is nonnegative;
(iii) Ap � 0 for some p ≥ 0;

(iv) For given b ∈ Rn, b � 0, there exists x ∈ Rn
+ such that Ax + b = 0.

(v) For any x ∈ Rn
+ \ {0}, the row vector xT A has at least one negative entry.

To make the presentation self-contained we present here some basic facts on matrix-
valued functions of bounded variation.
Let K

m×n be endowed with the norm ‖ · ‖ and C([α, β], K
m×n) be the Banach space

of all continuous functions on [α, β] with values in Km×n normed by the maximum
norm ‖ϕ‖ = maxθ∈[α,β] ‖ϕ(θ)‖.
A matrix function η(·) : [α, β] → Km×n is said to be of bounded variation if

Var(η; α, β) := sup
P∈P

nP −1∑
k=0

‖η(θk+1) − η(θk)‖ < +∞,

where the supremum is taken over the set

P = {P = {θ0, . . . , θnP
}|P is a partition of [α, β]}
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of all partitions of the interval [α, β]. The set BV([α, β], Km×n) of all matrix functions
η(·) of bounded variation on [α, β] satisfying η(α) = 0 is a Banach space endowed
with the norm ‖η‖ = Var(η; α, β).
One says that η(·) ∈ BVloc(R+, R

l×q) if it is of bounded variation on any compact
interval of R+ and η(0) = 0. Then NBVloc(R+, Rl×q) is the set of functions in
BVloc(R+, R

l×q) that are continuous from the right on R+.
Let η(·) ∈ BVloc(R+, Rm×n) be given. Set Vη(T ) := Var(η; 0, T ), for T > 0. It

is clear that 0 ≤ Vη(T1) ≤ Vη(T2) < +∞, 0 < T1 < T2. If the limit limT→+∞ Vη(T )
exists and is finite then η(·) is said to be of bounded variation on R+ and Vη :=
limT→+∞ Vη(T ) is called the total variation of η(·). One often writes ∫ +∞

0 |d[η(s)]|
instead of Vη.

Given η(·) ∈ BV([α, β], K
m×n) then for any continuous functions γ ∈ C([α, β], K)

and ϕ ∈ C([α, β], K
n), the integrals

∫ β
α γ(θ)d[η(θ)] and

∫ β
α d[η(θ)]ϕ(θ) exist and one

has

(12)

∥∥∥∥
∫ β

α
γ(θ)d[η(θ)]

∥∥∥∥ ≤ max
θ∈[α,β]

|γ(θ)| ‖η‖,
∥∥∥∥
∫ β

α

d[η(θ)]ϕ(θ)
∥∥∥∥ ≤ max

θ∈[α,β]
‖ϕ(θ)‖ ‖η‖,

see e.g. [3, page 49].

3. STABILITY OF LINEAR VOLTERRA-STIELTJES DIFFERENTIAL EQUATIONS

Consider a linear Volterra-Stieltjes differential equation of the form (1), where
A ∈ R

n×n and B(·) ∈ NBVloc(R+, R
n×n) are given. From the theory of integro-

differential equations (see e.g. [11, Ch. 3]), it is well-known that there exists a unique
locally absolutely continuous matrix-valued function R(·) : R+ → R

n×n such that

(13) Ṙ(t) = AR(t) +
∫ t

0
d[B(s)]R(t− s), a.e. t ∈ R+, R(0) = In.

Then R(·) is called the resolvent of (1). Moreover, for a given f ∈ L1
loc(R+, Rn), the

following nonhomogeneous equation

(14) ẋ(t) = Ax(t) +
∫ t

0

d[B(s)]x(t− s) + f(t), a.e. t ∈ R+,

has a unique solution x(·) satisfying the initial condition x(0) = x0 ∈ R
n. This solution

is locally absolutely continuous on R+ and is given by the variation of constants
formula

(15) x(t) = R(t)x0 +
∫ t

0

R(t − s)f(s)ds, t ∈ R+,

see e.g. [11, page 81].
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Definition 3.1. Let σ ∈ R+ and ϕ ∈ C([0, σ], Rn) be given. A vector-valued
function x(·) : R+ → R

n is called a solution of (1) through (σ, ϕ) if x(·) is absolutely
continuous on any compact subinterval of [σ, +∞) and satisfies (1) almost everywhere
on [σ, +∞) and x(t) = ϕ(t) ∀t ∈ [0, σ]. We denote it by x(·; σ, ϕ).

3.1. Explicit criteria for uniform asymptotic stability

First we adapt here the standard notions of stability of linear integro-differential
equations (see e.g. [5]) to (1).

Definition 3.2. The zero solution of (1) is said to be:

(i) uniformly stable (US) if for each ε > 0, there exists δ > 0 such that

ϕ ∈ C([0, σ], R
n), ‖ϕ‖ < δ ⇒ ‖x(t; σ, ϕ)‖ < ε, ∀t ≥ σ.

(ii) uniformly asymptotically stable (UAS) if it is US and if there exists δ0 > 0 such
that ∀ε > 0, ∃ T (ε) > 0 :

ϕ ∈ C([0, σ], R
n), ‖ϕ‖ < δ0 ⇒ ‖x(t; σ, ϕ)‖ < ε, ∀t ≥ T (ε) + σ.

If the zero solution of (1) is US (UAS) then we also say that (1) is US (UAS),
respectively.

Recall that the Laplace-Stieltjes transform of F (·) ∈ BVloc(R+, R
n×n), is defined

by

F̃ (z) :=
∫ +∞

0

e−zsd[F (s)],

on a set U ⊂ C where it exists, see [3, p. 56]. For example, if the total variation of
B(·) on R+ is finite, that is

(16)
∫ +∞

0
|dB(s)| < +∞,

then the Laplace-Stieltjes transform B̃(z) of B(·) is well-defined on C0. Let us define

(17) H(z) := zIn − A − B̃(z),

for appropriate z ∈ C. Then, H(·) is called the characteristic matrix of (1).
Proposition 3.3. [24]. Let (16) hold. Then the following statements are equivalent

(i) detH(z) 
= 0, ∀z ∈ C0;
(ii) the resolvent R(·) of (1) belongs to L1(R+, R

n×n);
(iii) (1) is UAS.
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We are now in the position to state the main results of this paper.

Theorem 3.4. Let A ∈ Rn×n and B(·) = (bij(·)) ∈ NBVloc(R+, Rn×n) be given.
Let ‖ · ‖ be an operator norm on R

n×n associated with a monotone vector norm on
Rn and let μ(·) be the matrix measure induced by ‖ · ‖. Assume that (16) holds and
B is defined by

(18) B :=
(∫ +∞

0

∣∣d[bij(s)]
∣∣) ∈ R

n×n.

If

(19) μ(A) + μ(B) < 0

then (1) is UAS. In particular, (1) is UAS provided

(20) μ(A) + ‖B‖ < 0.

Proof. Suppose (19) holds. We show that (1) is UAS. Since (16) holds, the
Laplace-Stieltjes transform B̃(z) of B(·) is well-defined on C0. By Proposition 3.3, it
remains to show that detH(z) 
= 0, ∀z ∈ C0. Assume on the contrary that detH(z) =
0 for some z0 ∈ C0. In particular, z0 is an eigenvalue of A +

∫ +∞
0 e−z0sd[B(s)]. It

follows that 0 ≤ �z0 ≤ s(A +
∫ +∞
0 e−z0sd[B(s)]). Taking into account the properties

(8)-(9) of the matrix measure, we get

(21)
0 ≤ s(A +

∫ +∞

0

e−z0sd[B(s)]) ≤ μ(A +
∫ +∞

0

e−z0sd[B(s)])

≤ μ(A) + μ

(∫ +∞

0
e−z0sd[B(s)]

)
.

On the other hand, since �z0 ≥ 0 and (16) holds, it follows that∣∣∣∣
∫ +∞

0

e−z0sd[bij(s)]
∣∣∣∣ ≤

∫ +∞

0

∣∣d[bij(s)]
∣∣, ∀i, j ∈ n.

Thus

(22)
∣∣∣∣
∫ +∞

0
e−z0sd[B(s)]

∣∣∣∣ ≤
(∫ +∞

0

∣∣d[bij(s)]
∣∣) = B.

By (10), we have

(23) μ

(∫ +∞

0
e−z0sd[B(s)]

)
≤ μ(B).
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Then (21)-(23) imply that μ(A) + μ(B) ≥ 0. However, this conflicts with (19).
Finally, it follows from (8) that if (20) holds, so does (19). This completes the

proof.

The following theorem gives a sharper condition for the uniform asymptotic stability
of (1).

Theorem 3.5. Let A = (aij) ∈ Rn×n and B(·) = (bij(·)) ∈ NBVloc(R+, Rn×n)
be given. Suppose that (16) holds and B is defined by (18) and

(24) Ad := diag(a11, ..., ann) ∈ R
n×n.

If

(25) s(Ad + |A − Ad| + B) < 0,

then (1) is UAS.

Remark 3.6. It is worth noticing that (25) is, in general, less conservative than (19).
For example, for the operator norm on R

n×n associated with l1-norm ‖x‖1 :=
∑n

i=1 |xi|
on Rn, the induced matrix measure μ(·) is given by

μ(A) = maxj∈n

{
ajj +

n∑
i=1,i�=j

|aij|
}
,

see e.g. [27]. This yields μ(A) = μ(Ad + |A − Ad|). Furthermore, it follows from
(8)-(9) that

μ(A)+μ(B) = μ(Ad+|A−Ad|)+μ(B) ≥ μ(Ad+|A−Ad|+B) ≥ s(Ad+|A−Ad|+B).

Proof of Theorem 3.5. Since (16) holds, the Laplace-Stieltjes transform B̃(z) of
B(·) is well-defined on C0. Suppose (25) holds. We show that

detH(z) 
= 0, ∀z ∈ C0,

and then (1) is UAS, by Proposition 3.3. Assume on the contrary that detH(z) = 0
for some z0 ∈ C0. This gives

(26) 0 ≤ �z0 ≤ s(A +
∫ +∞

0
e−z0sd[B(s)]).

We claim that

s(A +
∫ +∞

0
e−z0sd[B(s)]) ≤ s(Ad + |A − Ad|+ B).
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Let α := maxi∈n |aii|. This yields Ad + αIn ≥ 0. Let λ be an arbitrary eigenvalue of
A +

∫ +∞
0 e−z0sd[B(s)]. Then there exists a nonzero vector x ∈ Cn such that

(
A +

∫ +∞

0
e−z0sd[B(s)]

)
x = λx.

Hence,

αx +
(

A +
∫ +∞

0
e−z0sd[B(s)]

)
x

= (αIn + Ad)x + (A − Ad +
∫ +∞

0
e−z0sd[B(s)])x = (λ + α)x.

Taking (22) into account, we get

(�λ + α)|x| ≤ |(λ + α)x| ≤ |αIn+Ad||x|+|A−Ad||x|+
∣∣∫ +∞

0
e−z0sd[B(s)]

∣∣|x|
≤ (αIn+Ad)|x|+|A−Ad||x|+B|x|.

Therefore
(Ad + |A − Ad| + B)|x| ≥ �λ |x|.

Since Ad + |A − Ad| + B is a Metzler matrix, s(Ad + |A − Ad| + B) ≥ �λ, by
Theorem 2.1 (ii). As λ is an arbitrary eigenvalue of A +

∫ +∞
0 e−z0sd[B(s)], we get

s(Ad + |A−Ad|+B) ≥ s(A+
∫ +∞
0 e−z0sd[B(s)]). Hence, s(Ad + |A−Ad|+B) ≥ 0,

by (26). However, this conflicts with (25). This completes the proof.

Corollary 3.7. Assume that (16) holds. Then (1) is UAS provided one of the
following conditions holds

(i)

(27) s(Ad + |A − Ad| + B) < 0;

(ii)

(28) (Ad + |A − Ad| + B)p � 0, for some p ∈ R
n
+;

(iii) Ad + |A − Ad|+ B is invertible and

(29) (Ad + |A − Ad| + B)−1 ≤ 0;

(iv) For given b ∈ R
n, b � 0, there exists y ∈ R

n
+ such that
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(30) (Ad + |A − Ad| + B)y + b = 0.

(v) For any x ∈ Rn
+ \ {0}, the row vector xT (Ad + |A−Ad|+B) has at least one

negative entry.

Proof. Since Ad + |A−Ad|+B is a Metzler matrix, the assertions are immediate
from Theorems 2.2 and 3.5.

Corollary 3.8. Assume that A ∈ R
n×n is a Metzler matrix and B(·) = (bij(·)) ∈

NBVloc(R+, Rn×n) is an increasing matrix function on R+ (i.e. bij(θ2) ≥ bij(θ1), 0 ≤
θ1 < θ2 for i, j ∈ n) and (16) holds. Then (1) is UAS if and only if

(31) s(A + B(∞)) < 0,

where

(32) B(∞) := lim
θ→+∞

B(θ).

Proof. Since (16) holds, the Laplace-Stieltjes transform B̃(z) of B(·) is well-
defined on C0. Since B(·) is increasing on R+ and B(0) = 0, it follows that

B :=
(∫ +∞

0

∣∣d[bij(s)]
∣∣) =

(∫ +∞

0
d[bij(s)]

)
=

(
lim

θ→+∞
bij(θ)

)
= B(∞) ∈ R

n×n
+ .

Moreover, we have A = Ad + |A − Ad|, provided A is a Metzler matrix. Then, (25)
reduces to (31). It remains to show that s(A + B(∞)) < 0 provided (16) holds and
(1) is UAS. Assume on the contrary that s(A+B(∞)) ≥ 0. Consider the real function

f(θ) = θ − s(A +
∫ +∞

0
e−θsd[B(s)]) θ ∈ [0, +∞).

Clearly, f is continuous and limθ→+∞ f(θ) = +∞. By the assumption, f(0) =
−s(A +

∫ +∞
0 d[B(s)]) = −s(A + B(∞)) ≤ 0. Then there is a θ1 ≥ 0 such that

f(θ1) = 0, or equivalently, θ1 = s(A+
∫ +∞
0 e−θ1sd[B(s)]). Consequently, by Theorem

2.1(i), we have θ1 ∈ σ(A +
∫ +∞
0 e−θ1sd[B(s))]). Hence, detH(θ1) = 0 with θ1 ≥ 0.

So (1) is not UAS, by Theorem 3.3. This is a contradiction and it completes the
proof.

Remark 3.9. In particular, if B(·) is locally absolutely continuous on R+, that is,

(33) B(t) =
∫ t

0
C(s)ds, t ≥ 0; C(·) ∈ L1

loc(R+, R
n×n)
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then (1) reduces to the linear Volterra integro-differential equation

(34) ẋ(t) = Ax(t) +
∫ t

0

C(t − s)x(s)ds, t ∈ R+.

Then (16) becomes

(35)
∫ +∞

0
‖C(s)‖ds < +∞

and B is now given by
B :=

∫ +∞

0

∣∣C(s)
∣∣ds ∈ R

n×n.

Thus (19) and (25) reduce to

(36) μ(A) + μ

(∫ +∞

0
|C(s)|ds

)
< 0,

and

(37) s(Ad + |A − Ad| +
∫ +∞

0
|C(s)|ds) < 0,

respectively. Thus, the linear Volterra integro-differential equation (34) is UAS provided
either (35) and (36) hold or (35) and (37) hold.

3.2. Explicit criteria for exponential asymptotic stability

In this subsection, we deal with the exponential asymptotic stability of the Volterra-
Stieltjes differential equation (1) which is defined as follows.

Definition 3.10. The zero solution of (1) is said to be exponentially asymptotically
stable (EAS) if there exist M, α > 0 such that

∀σ ≥ 0, ∀ϕ ∈ C([0, σ], R
n), ∀t ≥ σ : ‖x(t; σ, ϕ)‖ ≤ Me−α(t−σ)‖ϕ‖.

If the zero solution of (1) is EAS then we also say that (1) is EAS.

By definition, it is easy to see that the exponential asymptotic stability of (1) implies
its uniform asymptotic stability. However, the converse of this statement does not hold
even for linear Volterra integro-differential equations (2), see e.g. [18].
Let us introduce, for given F (·) ∈ BVloc(R+, R

�×q), a scalar function VF (·) defined
by

(38) VF : R+ → R+; s �→ VF (s) := V ar(F ; 0, s).

Then, it is easy to see that we have, for any T ≥ 0 and any g ∈ C([0, T ], R),

(39)
∥∥∥∥

∫ T

0
g(s)d[F (s)]

∥∥∥∥ ≤
∫ T

0
|g(s)|d[VF(s)].



418 Pham Huu Anh Ngoc

Proposition 3.11. [25]. If (1) is UAS and

(40) ∃α > 0 :
∫ +∞

0
eαsd[VB(s)] < +∞,

then (1) is EAS.

Remark 3.12. (i) If B(·) = (bij(·)) is increasing on R+ then (40) is equivalent to

(41) ∃α > 0 :
∣∣∣∣
∫ +∞

0
eαsd[bij(s)]

∣∣∣∣ < +∞, ∀i, j ∈ n.

(ii) In particular, if B(·) is defined by (33) then (40) reduces to

(42) ∃α > 0 :
∫ +∞

0

eαt‖C(s)‖ds < +∞.

(iii) By (39), if (40) holds then (16) holds.

The following theorem is immediate from Proposition 3.11, Theorem 3.4 and Corol-
lary 3.7.

Theorem 3.13. Let A ∈ R
n×n and B(·) ∈ NBVloc(R+, R

n×n) be given. Then
(1) is EAS provided
(a) (40) and one of the conditions (19), (20) hold
or
(b) (40) and one of the conditions (i), (ii), (iii), (iv), (v) of Corollary 3.7 hold.

We illustrate the obtained results by an example.

Example 3.14. Consider a scalar linear Volterra integro-differential equation with
delay given by

(43) ẋ(t) = ax(t) +
m∑

i=1

aix(t − hi) +
∫ t

0
e−τx(t − τ)dτ, x(t) ∈ R, t ≥ 0,

where 0 < h1 < h2 < ... < hm := h and a, ai ∈ R for i ∈ m.

For a given ϕ ∈ C([−h, 0], R), (43) has a unique solution, denoted by x(·; ϕ),
satisfying the initial condition,

(44) x(s) = ϕ(s), s ∈ [−h, 0],

see e.g. [5].
We will show that (43) is exponentially asymptotically stable provided a+

∑m
i=1 |ai| <

−1. That is, there exist M, α > 0 such that for any ϕ ∈ C([−h, 0], R),

|x(t; φ)| ≤ Me−αt‖ϕ‖, ∀t ≥ 0.
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To this end, for each ϕ ∈ C([−h, 0], R), we extend ϕ to the interval [−h,∞) by
setting ϕ(s) = 0 for any s > 0. Let us define

ηi(·) : R+ → R; s �→ ηi(s) :=

{
0 if s ∈ [0, hi)
ai if s ∈ [hi, +∞)

for every i ∈ m, and

b(s) := 1− e−s; η(s) :=
m∑

i=1

ηi(s); f(s) =
m∑

i=1

aiϕ(s− hi), s ≥ 0.

It is clear that b(·) ∈ NBV (R+, R), is increasing on R+ and η(·) ∈ NBV (R+, R),
f ∈ L1

loc(R+, R). Then x(·; ϕ) satisfies

ẋ(t) = ax(t) +
∫ t

0
d[b(τ) + η(τ)]x(t− τ) + f(t), t ≥ 0; x(0) = ϕ(0).

Furthermore, we have ∫ +∞

0

|d[b(t) + η(t)]| ≤ 1 +
m∑

i=1

|ai|

and ∫ +∞

0

eαtdVη+b(s) ≤
m∑

i=1

|ai|eαhi +
1

1− α

for any α ∈ (0, 1). By Theorem 3.13, the equation

(45) ẋ(t) = ax(t) +
∫ t

0

d[b(τ) + η(τ)]x(t− τ), t ≥ 0,

is EAS provided a +
∑m

i=1 |ai| < −1. Let R(·) be the resolvent of (45). Since (45) is
EAS, it follows that |R(t)| ≤ e−αt, t ≥ 0. By the variation of constants formula (15),

x(t; ϕ) = R(t)ϕ(0) +
∫ t

0

R(t − s)f(s)ds, t ≥ 0.

This implies

|x(t; ϕ)| ≤ e−αt|ϕ(0)|+
m∑

i=1

|ai|
∫ t

0
e−α(t−s)|ϕ(s − hi)|ds

= e−αt|ϕ(0)|+ e−αt
m∑

i=1

|ai|eαhi

∫ t−hi

−hi

eαs|ϕ(s)|ds

≤ e−αt|ϕ(0)|+ e−αt
m∑

i=1

|ai|eαhi

∫ 0

−hi

eαs|ϕ(s)|ds

≤ e−αt

(
1 +

m∑
i=1

|ai|
(eαhi − 1

α

))‖ϕ‖.
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4. AN APPLICATION

In this section, we apply the obtained results in the previous section to study asymp-
totic behavior of solutions of integro-differential equations with delay of the form

(46)

ẋi(t) = aiixi(t) +
n∑

j=1,j �=i

aijxj(t − τij)

+
n∑

j=1

∫ t

−∞
kij(t − s)xj(s)ds + fi(t), t ≥ 0.

Here aij (i, j ∈ n) are given real numbers, τij (i, j ∈ n, i 
= j) are given positive
numbers and kij(·), fi(·) : R+ → R (i, j ∈ n) are given continuous functions.
Let BC((−∞, 0], Rn) be the Banach space of all bounded continuous functions on

(−∞, 0], endowed with the standard supremumnorm. For given ϕ ∈ BC((−∞, 0], R
n),

we consider for (46) the initial condition
(47) x(t) = ϕ(t), t ∈ (−∞, 0].

Set
Ad := diag(a11, ..., ann) ∈ R

n×n,

and define for each i, j ∈ n, i 
= j,

Aij = (δpq) ∈ R
n×n where δpq := aij if p = i and q = j, otherwise δpq = 0,

and
K(·) = (kij(·)) ∈ L1(R+, R

n×n).
Then (46) can be rewritten as

(48) ẋ(t) = Adx(t) +
n∑

i,j=1,i�=j

Aijx(t − τij) +
∫ t

−∞
K(t − s)x(s)ds + f(t), t ≥ 0,

where x(t) := (x1(t), ..., xn(t))T ∈ Rn and f(t) := (f1(t), ..., fn(t))T ∈ Rn, for
t ≥ 0.
In what follows, we always assume that

(49)
∫ +∞

0
|kij(s)|ds < +∞, i, j ∈ n.

Note that under the assumption (49), the initial value problem (46)-(47) has a unique
solution x(·; ϕ), see e.g. [10].

Theorem 4.1. Let (49) hold and let f(·) ∈ L1(R+, R
n) be given. If there exist

nonnegative numbers p1, p2, ..., pn such that

(50) pi(−aii −
∫ +∞

0
|kii(s)|ds) >

n∑
j=1,j �=i

(|aij| +
∫ +∞

0
|kij(s)|ds)pj, ∀i ∈ n,

then x(t; ϕ) → 0 as t → +∞ for any ϕ ∈ BC((−∞, 0], R
n).
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Proof. Let us define for every i, j ∈ n, i 
= j,

ηij(·) : R+ → R
n×n; s �→ ηij(s) :=

{
0 if s ∈ [0, τij)
Aij if s ∈ [τij, +∞)

and for s ≥ 0,

γ1(s) :=
n∑

i,j=1,i�=j

ηij(s); γ2(s) :=
∫ s

0
K(τ)dτ ; γ(s) := γ1(s) + γ2(s).

Clearly, γ(·) := (γij(·)) ∈ NBVloc(R+, R
n×n). Furthermore, we have

(51)
∫ +∞

0
|d[γ(s)]| ≤

n∑
i,j=1,i�=j

‖Aij‖+
∫ +∞

0
‖K(s)‖ds < +∞.

Extending ϕ to the whole real line by setting ϕ(s) := 0, s > 0 and then we define

f1(s) :=
n∑

i,j=1,i�=j

Aijϕ(s−τij) s ≥ 0; f2(s) :=
∫ 0

−∞
K(s−τ)ϕ(τ)dτ, s ≥ 0.

Let F (s) := f1(s) + f2(s) + f(s), s ≥ 0. Then F (·) is locally integrable on R+. It
is easy to check that the solution x(·) := x(·; ϕ) of the initial value problem (48)-(47)
(so (46)-(47)) satisfies the Volterra-Stieltjes differential equation

(52) ẋ(t) = Adx(t) +
∫ t

0
d[γ(s)]x(t− s) + F (t) a.e. t ∈ R+,

and fulfills the initial condition x(0) = ϕ(0).
Let R0(·) be the resolvent of the homogeneous linear Volterra-Stieltjes differential

equation associated with (52)

(53) ẋ(t) = Adx(t) +
∫ t

0
d[γ(s)]x(t− s), a.e. t ∈ R+.

Then the solution x(·; ϕ) of (48)-(47) is represented as

(54) x(t; ϕ) = R0(t)ϕ(0) +
∫ t

0
R0(t − s)F (s)ds,

by the variation of constants formula (15).
Let γ∗ := (

∫ +∞
0 |d[γij(s)]|) ∈ Rn×n. Note that

(55)
∫ +∞

0
|d[γii(s)]| =

∫ +∞

0
|kii(s)|ds, ∀i ∈ n,
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and

(56)
∫ +∞

0
|d[γij(s)]| ≤ |aij| +

∫ +∞

0
|kij(s)|ds, ∀i, j ∈ n, i 
= j.

Let p := (p1, p2, ..., pn)T ∈ Rn
+. Then (50), (55), (56) imply that

(Ad + γ∗) p � 0.

By Corollary 3.7, (53) is UAS. Thus, R0(·) ∈ L1(R+, R
n×n), by Theorem 3.3. Fur-

thermore, as shown in the beginning of the proof of Proposition 3.3, R0(t) → 0 as
t → +∞. Taking into account (54), it remains to show that

∫ t

0

R0(t − s)F (s)ds

=
∫ t

0
R0(t − s)f1(s)ds +

∫ t

0
R0(t − s)f2(s)ds +

∫ t

0
R0(t − s)f(s)ds → 0

as t → +∞. Since f(·), f1(·) ∈ L1(R+, Rn) and R0(t) → 0 as t → +∞, it follows
that

∫ t
0 R0(t− s)f1(s)ds and

∫ t
0 R0(t− s)f(s)ds tend to 0 as t → +∞, by a standard

property of the convolution, see e.g. [3, page 22]. Finally,

‖
∫ t

0
R0(t − s)f2(s)ds‖ ≤

∫ t

0
‖R0(t − s)‖

∫ 0

−∞
‖K(s − τ)‖‖ϕ(τ)‖dτds

≤ ‖ϕ‖
∫ t

0
‖R0(t − s)‖

∫ +∞

s
‖K(τ)‖dτds.

By
∫ +∞
s ‖K(τ)‖dτ → 0 as s → +∞ and ‖R0(·)‖ ∈ L1(R+, R), we have

∫ t
0 ‖R0(t−

s)‖ ∫ +∞
s ‖K(τ)‖dτds → 0, as t → +∞. This completes the proof.
Remark 4.2. The result of Theorem 4.1 has been proven in [14, Th. 2.1] by the

Lyapunov’s method under the stronger hypotheses that
∫ +∞

0
|kij(s)|ds < +∞,

∫ +∞

0
s|kij(s)|ds < +∞ ∀i, j ∈ n

and
f(·) ∈ L1(R+, R

n) ∩ BC(R+, R
n).

In Theorem 4.1, we do not assume that
∫ +∞
0 s|kij(s)|ds < +∞, ∀i, j ∈ n and

f(·) ∈ BC(R+, R
n).

We conclude the paper with a result on exponential decay of solutions of (46).
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Theorem 4.3. If there exists a real number α > 0 such that

(57)
∫ +∞

0

eαs|kij(s)|ds < +∞, ∀i, j ∈ n

and (50) holds then (46) (with fi = 0 ∀i ∈ n) is exponentially asymptotically stable.
That is, there exist K, β > 0 such that

(58) ∀ϕ ∈ BC((−∞, 0], R
n), ∀t ≥ 0 : ‖x(t; ϕ)‖ ≤ Ke−βt‖ϕ‖.

Proof. In the proof of Theorem 4.1, we have shown that (53) is UAS. Then (57)
implies that (53) is EAS, by Proposition 3.11. In particular, there exist M > 0, β > 0
such that

(59) ‖R0(t)‖ ≤ Me−βt, t ≥ 0,

where R0(·) is the resolvent of (53). It follows from (54) that

x(t; ϕ) = R0(t)ϕ(0) +
∫ t

0
R0(t − s)(f1(s) + f2(s))ds.

Without loss of generality, we assume that β < α. Taking this and (57) into account,
we have

‖x(t; ϕ)‖ ≤ Me−βt‖ϕ‖ +
∫ t

0

Me−β(t−s)(‖f1(s)‖ + ‖f2(s)‖)ds ≤ Me−βt‖ϕ‖

+Me−βt

⎛
⎝ n∑

i,j=1,i �=j

‖Aij‖
∫ τij

0

eβs‖ϕ(s−τij )‖ds + ‖ϕ‖
∫ t

0

eβs

∫ 0

−∞
‖K(s − τ )‖dτds

⎞
⎠

≤ Me−βt‖ϕ‖
⎛
⎝1+

n∑
i,j=1,i �=j

‖Aij‖
(

eβτij −1
β

)
+
∫ t

0

e−(α−β)s

∫ 0

−∞
eα(s−τ)‖K(s − τ )‖dτds

⎞
⎠

≤ Me−βt‖ϕ‖
⎛
⎝1+

n∑
i,j=1,i �=j

‖Aij‖
(

eβτij −1
β

)
+

( ∫ ∞

0

eατ‖K(τ )‖dτ

)(∫ ∞

0

e−(α−β)sds

)⎞
⎠ .

This completes the proof.
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