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EXPONENTIAL INTEGRABILITY FOR LOGARITHMIC POTENTIALS OF
FUNCTIONS IN GENERALIZED LEBESGUE SPACES L(logL)q(·) OVER

NON-DOUBLING MEASURE SPACES

Sachihiro Kanemori, Takao Ohno and Tetsu Shimomura

Abstract. In this paper, we are concerned with exponential integrability for
logarithmic potentials of functions in generalized Lebesgue spaces L(log L)q(·)

over non-doubling measure spaces. Here q satisfies the loglog-Hölder condition.

1. INTRODUCTION

The properties of the logarithmic potentials were studied by some authors (see e.g.
[7, 8, 9, 10, 12]). Our aim in this paper is to establish exponential integrability for
logarithmic potentials of functions in generalized Lebesgue spaces L(logL)q(·) over
non-doubling measure spaces, as an extension of [11, Theorem 8.1] in the Euclidean
setting.

We denote by (X, d, μ) a metric measure spaces, where X is a bounded set, d is a
metric on X and μ is a nonnegative complete Borel regular outer measure on X which
is finite in every bounded set. For simplicity, we often write X instead of (X, d, μ).
For x ∈ X and r > 0, we denote by B(x, r) the open ball centered at x with radius r
and dX = sup{d(x, y) : x, y ∈ X}. We assume that 0 < dX < ∞,

μ({x}) = 0

for x ∈ X and μ(B(x, r)) > 0 for x ∈ X and r > 0 for simplicity. In the present
paper, we do not postulate on μ the “so called” doubling condition. Recall that a
Radon measure μ is said to be doubling if there exists a constant C > 0 such that
μ(B(x, 2r)) ≤ Cμ(B(x, r)) for all x ∈ supp(μ)(= X) and r > 0. Otherwise μ is
said to be non-doubling. Assume that there exist positive constants K0 and s such that,
for all balls B(x, r) with center x ∈ X and of radius 0 < r < dX ,

(1.1) μ(B(x, r)) ≤ K0r
s
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(see e.g. [1, 5] and [6]).
Variable exponent Lebesgue spaces and Sobolev spaces were introduced to discuss

nonlinear partial differential equations with non-standard growth conditions. For a
survey, see [3] and [4].

In this paper, following Cruz-Uribe and Fiorenza [2], we consider a variable expo-
nent q(·) : X → [0, 1) such that

(1.2) |q(x)− q(y)| ≤ Cq

log(e + log(e + 1/d(x, y)))
for all x, y ∈ X

with a constant Cq ≥ 0.
Define the norm by

‖f‖L(logL)q(·)(X) = inf

{
λ > 0 :

∫
X

∣∣∣∣f(x)
λ

∣∣∣∣
(

log
(

e +
∣∣∣∣f(x)

λ

∣∣∣∣
))q(x)

dμ(x) ≤ 1

}

and denote by L(logL)q(·)(X) the space of all measurable functions f on X with
‖f‖L(logL)q(·)(X) < ∞.

We define the logarithmic potential for a locally integrable function f on X by

Lf(x) =
∫

X

(
log+(1/d(x, y))

)
f(y) dμ(y),

where log+ r = max{0, log r}. Here it is natural to assume that

(1.3)
∫

X
(log(e + d(x0, y)))|f(y)| dμ(y) < ∞

for some x0 ∈ X since this implies∣∣∣∣
∫

X
(log(1/d(x, y)))f(y) dμ(y)

∣∣∣∣ < ∞

for μ-a.e. in X (see [7, Lemma 1] and [9, Theorem 6.1, Chapter 2]).
In [11], we studied exponential integrability for logarithmic potentials of functions

in L(logL)q(·)(RN) in the Euclidean setting. Our main aim in the present paper is to es-
tablish exponential integrability for Lf in generalized Lebesgue spaces L(logL)q(·)(X)
over non-doubling measure spaces, as an extension of [11, Theorem 8.1].

Theorem 1.1. There exist constants c1, c2 > 0 such that∫
X

exp
(
(c1Lf(x))1/(1−q(x))

)
dμ(x) ≤ c2

for all nonnegative measurable functions f on X with ‖f‖L(logL)q(·)(X) ≤ 1.
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Corollary 1.2. There exists a constant c3 > 0 such that∫
X

{
exp

(
(c3Lf(x))1/(1−q(x))

)
− 1

}
dμ(x) ≤ 1

for all nonnegative measurable functions f on X with ‖f‖L(logL)q(·)(X) ≤ 1.

Our strategy is to give an estimate of Lf by use of a logarithmic type potential∫
X

μ(B(x, 4r))−1(log(e + 1/r))−βf(y)(log(e + f(y)))q(y) dμ(y)

with β > 1, which plays a role of maximal functions.
The sharpness of the exponent will be discussed in Section 4.
In the final section, we show the continuity for logarithmic potentials of func-

tions in Lp(·)(logL)r(·)(X) over non-doubling measure spaces, as an extension of [11,
Theorem 8.4] and [9, Theorem 9.1, Section 5.9] (see Section 5 for the definition of
Lp(·)(logL)r(·)(X)). For related results, see [12].

2. PRELIMINARY LEMMAS

Throughout this paper, let C denote various positive constants independent of the
variables in question.

To prove Theorem 1.1, we estimate Lf by the logarithmic potential

J =
∫

X
ρ−β(d(x, y))g(y) dμ(y),

where ρ−β(r) = μ(B(x, 4r))−1(log(e+1/r))−β with β > 1 and g(y) = f(y)(log(e+
f(y)))q(y).

Lemma 2.1. Let f be a nonnegative measurable function on X with ‖f‖L(logL)q(·)(X)

≤ 1. Then there is a constant C > 0 such that

F ≡
∫

B(x,δ)
ρ−β(d(x, y))f(y) dμ(y)≤ CJ

{
(log(e + J))−q(x) + (log(e + 1/δ))−q(x)

}

for all x ∈ X and 0 < δ < dX .

Proof. Let f be a nonnegative measurable function on X with ‖f‖L(logL)q(·)(X) ≤ 1.
We have for k > 0

F ≤ k

∫
B(x,dX)

ρ−β(d(x, y)) dμ(y)

+
∫

B(x,δ)
ρ−β(d(x, y))f(y)

(
log(e + f(y))
log(e + k)

)q(y)

dμ(y).
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Since β > 1, we have
∫

B(x,dX)
ρ−β(d(x, y)) dμ(y)

=
∞∑

j=1

∫
X∩(B(x,2−j+1dX)\B(x,2−jdX))

μ(B(x, 4d(x, y)))−1(log(e+1/d(x, y)))−β dμ(y)

≤
∞∑

j=1

∫
X∩(B(x,2−j+1dX)\B(x,2−jdX))

μ(B(x, 2−j+2dX))−1(log(e+1/(2−j+1dX)))−βdμ(y)

≤
∞∑

j=1

(log(e + 1/(2−j+1dX)))−β

≤ C.

If J ≤ δ−1, then we set k = J(log(e + J))−q(x). Since δ ≤ J−1, we see from (1.2)
that

(log(e + k))−q(y) ≤ C(log(e + J))−q(x)

for y ∈ B(x, δ). Consequently it follows that

F ≤ CJ(log(e + J))−q(x).

If J > δ−1, then we set k = δ−1(log(e + 1/δ))−q(x) and obtain

F ≤ C
{

δ−1(log(e + 1/δ))−q(x) + J(log(e + 1/δ))−q(x)
}

≤ CJ(log(e + 1/δ))−q(x).

Now the result follows.

Lemma 2.2. Let f be a nonnegative measurable function on X with
‖f‖L(logL)q(·)(X) ≤ 1. Then there is a constant C > 0 such that

∫
X\B(x,δ)

log+(1/d(x, y))f(y) dμ(y) ≤ C(log(e + 1/δ))−q(x)+1

for all x ∈ X and 0 < δ < dX .

Proof. Let f be a nonnegative measurable function on X with ‖f‖L(logL)q(·)(X)

≤ 1. Let 0 < γ < s, where s is a constant appearing in (1.1). For y ∈ X \ B(x, δ)
and 0 < δ < dX , set N (x, y) = d(x, y)−γ. Let j0 be the smallest integer such that
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2j0δ ≥ dX . We have by (1.1)∫
X\B(x,δ)

log+(1/d(x, y))N (x, y)dμ(y)

=
j0∑

j=1

∫
X∩(B(x,2jδ)\B(x,2j−1δ))

log+(1/d(x, y))N(x, y) dμ(y)

≤
j0∑

j=1

∫
X∩(B(x,2jδ)\B(x,2j−1δ))

log+(1/(2j−1δ))(2j−1δ)−γdμ(y)

≤ C

j0∑
j=1

log+(1/(2j−1δ))(2j−1δ)s−γ

≤ C

since γ < s. Hence, we see from (1.2) that∫
X\B(x,δ)

log+(1/d(x, y))f(y) dμ(y)

≤
∫

X\B(x,δ)
log+(1/d(x, y))N (x, y) dμ(y)

+
∫

X\B(x,δ)
log+(1/d(x, y))f(y)

(
log(e + f(y))

log(e + N (x, y))

)q(y)

dμ(y)

≤ C

{
1 +

∫
X\B(x,δ)

(log(e + 1/d(x, y)))−q(y)+1g(y) dμ(y)

}

≤ C

{
1 + (log(e + 1/δ))−q(x)+1

∫
X\B(x,δ)

g(y) dμ(y)

}

≤ C(log(e + 1/δ))−q(x)+1,

where g(y) = f(y)(log(e + f(y)))q(y). Thus this lemma is proved.

3. PROOF OF THEOREM 1.1

Let f be a nonnegative measurable function on X with ‖f‖L(logL)q(·)(X) ≤ 1. For
x ∈ X and 0 < δ < dX , write

Lf(x) =
∫

B(x,δ)
log+(1/d(x, y))f(y) dμ(y)+

∫
X\B(x,δ)

log+(1/d(x, y))f(y) dμ(y)

= I1 + I2.
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For β > 1, we infer from Lemma 2.1 and (1.1) that

I1 ≤ Cδs(log(e + 1/δ))1+β

∫
B(x,δ)

ρ−β(d(x, y))f(y) dμ(y)

≤ Cδs(log(e + 1/δ))1+βJ
{

(log(e + 1/δ))−q(x) + (log(e + J))−q(x)
}

.

Hence, in view of Lemma 2.2, we find

Lf(x) ≤ C

[
δs(log(e + 1/δ))1+βJ

{
(log(e + 1/δ))−q(x) + (log(e + J))−q(x)

}

+ (log(e + 1/δ))−q(x)+1

]
.

Now, considering δ = min{dX , J−1/s(log(e + J))−β/s}, we find

Lf(x) ≤ C(log(e + J))−q(x)+1.

Hence
exp

(
(c1Lf(x))1/(1−q(x))

)
≤ e + J.

By using Fubini’s theorem, we obtain∫
X

exp
(
(c1Lf(x))1/(1−q(x))

)
dμ(x)

≤
∫

X
(e + J) dμ(x)

≤
∫

X
g(y)

(∫
X

(log(e + 1/d(x, y)))−β

μ(B(x, 4d(x, y)))
dμ(x)

)
dμ(y) + C

≤
∫

X
g(y)

⎛
⎝ ∞∑

j=1

∫
X∩(B(y,2−j+1dX)\B(y,2−jdX))

(log(e+1/d(x,y)))−β

μ(B(y,2d(x,y)))
dμ(x)

⎞
⎠dμ(y)+C

≤
∫

X
g(y)

⎛
⎝ ∞∑

j=1

∫
X∩(B(y,2−j+1dX)\B(y,2−jdX))

(log(e+1/(2−j+1dX)))−β

μ(B(y,2−j+1dX))
dμ(x)

⎞
⎠dμ(y)+C

≤
∫

X
g(y)

⎛
⎝ ∞∑

j=1

(log(e + 1/(2−j+1dX)))−β

⎞
⎠ dμ(y) + C

≤ c2,

since β > 1. This completes the proof of the theorem.
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4. SHARPNESS

Let X = B(0, 1) ⊂ RN and q(·) = q. For δ > 0, consider the function

u(x) =
∫

B(0,1)
log+(1/|x− y|)f(y) dy

with
f(y) = |y|−N(log(e/|y|))δ−2 for y ∈ B(0, 1).

Then f satisfies

(4.1)
∫

B(0,1)
f(y) (log(e + f(y)))q dy < ∞

if and only if δ − 1 + q < 0. We see that

u(x) ≥ C

∫
{y∈B(0,1/2):|y|>|x|}

log+(1/|y|)f(y) dy ≥ C(log(e/|x|))δ

for |x| < 1/2. Hence, if βδ > 1, then

(4.2)
∫

B(0,1)

exp
(
u(x)β

)
dx = ∞.

If β > 1/(1− q), then we can choose δ such that

1/β < δ < 1 − q.

In this case, both (4.1) and (4.2) hold. This implies that the exponent 1/(1 − q) in
Theorem 1.1 is sharp.

5. CONTINUITY

In this section, we consider variable exponents p(·) : X → [1,∞) and r(·) : X →
(−∞,∞) such that

(5.1) −∞ < inf
x∈X

r(x) ≤ sup
x∈X

r(x) < ∞.

Define the norm by

‖f‖Lp(·)(logL)r(·)(X) = inf

{
λ>0 :

∫
X

∣∣∣∣f(x)
λ

∣∣∣∣
p(x) (

log
(

e+
∣∣∣∣f(x)

λ

∣∣∣∣
))r(x)

dμ(x)≤1

}

and denote by Lp(·)(logL)r(·)(X) the space of all measurable functions f on X with
‖f‖Lp(·)(logL)r(·)(X) < ∞.
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Theorem 5.1. (cf. [9, Theorem 9.1, Section 5.9]). Let p(·) and r(·) be two
variable exponents on X satisfying (5.1) such that

p(x) > 1 or r(x) ≥ 1

for all x ∈ X . If f is a nonnegative measurable function on X with ‖f‖Lp(·)(log L)r(·)(X)

< ∞, then Lf is continuous on X .

Proof. Let f be a nonnegative measurable function on X with ‖f‖Lp(·)(log L)r(·)(X)

< ∞. Then note that ∫
X

f(y)(log(e + f(y))) dμ(y) < ∞.

Hence, it follows from [7, Theorem 1] that Lf is continuous on X by (1.3).
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