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POSITIVE SOLUTIONS FOR ELLIPTIC EQUATIONS IN TWO
DIMENSIONS ARISING IN A THEORY OF THERMAL EXPLOSION

Eunkyung Ko and S. Prashanth

Abstract. In this paper we study a mathematical model of thermal explosion
which is described by the boundary value problem{ −Δu = λeuα

, x ∈ Ω,

n · ∇u+ g(u)u = 0, x ∈ ∂Ω,

where the constant α ∈ (0, 2], g : [0,∞) → (0,∞) is an nondecreasing C1

function, Ω is a bounded domain in R
2 with smooth boundary ∂Ω and λ > 0

is a bifurcation parameter. Using variational methods we show that there exists
0 < Λ <∞ such that the problem has at least two positive solutions if 0 < λ < Λ,
no solution if λ > Λ and at least one positive solution when λ = Λ.

1. INTRODUCTION AND MAIN RESULTS

A classical problem in combustion theory is a model of thermal explosion which
occurs due to a spontaneous ignition in a rapid combustion process. In this paper, we
consider a model involving a nonlinear boundary heat loss which is not a very typical
one in classical combustion theory, but is relevant to some more recent applications
(see [14] for details). The model reads as:

(T)

⎧⎪⎪⎨
⎪⎪⎩

θt − Δθ = f(θ), (t, x) ∈ (0, T )× Ω,

n · ∇θ + g(θ)θ = 0, (t, x) ∈ (0, T )× ∂Ω,

θ(0, x) = θ0, x ∈ Ω.

Here θ is the appropriately scaled temperature in a bounded smooth domain Ω in R
2

and f(θ) is the normalized reaction rate which take the form f(θ) = eθ and is called
the Frank-Kamenetskii rate [24]. More generally, throughout this paper, we consider
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the reaction term to be of the form f(θ) = eθ
α for α ∈ (0, 2]. The initial condition θ0

is assumed to be bounded and nonnegative so that a classical solution of (T) exists on
a maximal interval (0, Tm) (see [7] and Remark 2.1 in [14]). On the C2 boundary ∂Ω,
with the outward unit normal denoted by n, the heat-loss parameter g(θ) is assumed
to satisfy the following hypothesis:

(H1) g : [0,∞) → (0,∞) is a nondecreasing boundedC1 function.

Physically this assumption means that a heat loss through the boundary always exists
and increases linearly with the temperature even in the small temperature regime. We
further assume

(H2) there exists a constantm > 0 such that 0 ≤ sg′(s) + g(s) ≤ m for all s ≥ 0.

A bifurcation (or scaling) parameter λ > 0 can be associated with the size of
domain Ω in (T) which grows linearly as the measure of Ω increases. It is well known
that, after normalizing for the size of Ω, the long term behavior of solution of (T) is
close to the solution of the time-independent problem:

(Pλ)

{ −Δu = λeu
α
, x ∈ Ω,

n · ∇u+ g(u)u = 0, x ∈ ∂Ω.

As a first step in the analysis of thermal explosion described by the dynamic problem
(T), we analyze the corresponding stationary problem (Pλ).

In case of Dirichlet boundary condition, existence results for the stationary problem
have been established in [1, 11], and for discussion regarding multiplicity of solutions
to this problem we refer to [5, 18, 19].

Related existence and multiplicity results for the stationary problem with Neumann
boundary condition have been established in [4] and [20]. In these works, the au-
thors have studied the case when f(u) = up − u in R

N, N ≥ 3, 1 < p ≤ N+2
N−2 and

f(u) = eu
α −u in R

2, 0 < α ≤ 2 respectively, under the Neumann boundary condition
corresponding to the choice g(u)u = −uq where 0 < q < 1.

The main difficulty to analyse (Pλ) is that the coercive term like u is not added
to the PDE. But coercivity is induced by the boundary condition from the assumption
g(u)u is strictly positive. This motivates us to define an equivalent norm in H1(Ω)
(defined in (2.5)) with respect to which the energy functional corresponding to (Pλ)
become easier to analyse.

Finally, we state the theorem we will prove:

Theorem 1.1. There exists a Λ > 0 such that (Pλ) has at least two positive
solutions for all λ ∈ (0,Λ), at least one positive solution for λ = Λ and no positive
solution for any λ > Λ.
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Remark 1.1. Thermal explosion is understood mathematically as the absence of a
global (in time) solution for the problem (T) with an arbitrary initial data θ0 ≥ 0.

(i) We note that if uλ is a classical solution of (Pλ) then the existence of a global
solution of (T) follows immediately from the maximum principle [21]. Hence,
when λ < Λ, for any θ0 ∈ L∞(Ω) with 0 ≤ θ0 ≤ uλ the solution θ of (T) with
θ(0) = θ0 is global i.e., the phenomenon of thermal explosion is ruled out by the
model.

(ii) When λ > Λ, correspondingly, the solution θ of (T) blows up in finite time for
any initial data θ0 ≥ 0 resulting in the phenomenon of combustion.

(iii) The result in theorem 1.1 can be seen to be physically consistent in the following
sense. When the domain is relatively small (λ ≤ Λ), the heat loss through
the boundary dominates the chemical reaction inside the domain and hence a
stationary equilibrium temperature distribution is possible. However, when the
size of domain is large (λ > Λ), the rapid reaction inside the domain dominates
and results in the phenomenon of combustion.

(iv) In a general way, the problem (Pλ) may be thought of as an instance of convex-
concave type problems whose study was initiated in the influential work of
Ambrosetti-Brezis-Cerami [3].

The paper is organized as follows. In Section 2, we include some preliminaries. In
Section 3, we show the existence of local minimum of Iλ for small λ, and in Section 4
we prove the existence of a minimizer uλ of Iλ in C1 topology for maximal range of λ
and then that Iλ(uλ) is in fact a local minimum in H1(Ω). In this context, we refer to
the work of Brezis-Nirenberg [6]. Section 5 is devoted the existence of second solution
and the last section contains the proof of Theorem 1.1.

2. SOME PRELIMINARIES

We first extend the functions f, g from R+ to R in a continuous manner by defining
f(s) = f(0) and g(s) = g(0) for all s < 0. Let H1(Ω) = {u : u ∈ L2(Ω),∇u ∈
(L2(Ω))2} be the standard Sobolev space with the norm ‖u‖2

H1(Ω)
=
∫
Ω(|∇u|2+ |u|2).

We then have the following imbedding theorem of the Moser-Trudinger type:

Lemma 2.1. [2] Let Ω ⊂ R
2 be a bounded domain with a regular boundary.

Then, for any u ∈ H1(Ω) and k > 0

(2.1)
∫

Ω
ek|u|

2
dx <∞.

Moreover,

(2.2) sup
‖u‖H1(Ω)≤1

∫
Ω
ek|u|

2
dx <∞ if and only if k ≤ 2π.
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Let dσ denote the surface measure on ∂Ω. We define the energy functional Iλ :
H1(Ω) → R associated to the problem (Pλ) as:

(2.3) Iλ(u) =
1
2

∫
Ω
| ∇u|2 − λ

∫
Ω
F (u) +

∫
∂Ω
G(u) dσ, u ∈ H1(Ω)

where F (t) :=
∫ t
0 f(s) ds, f(s) = es

α and G(t) :=
∫ t
0 g(s)s ds.

Definition 2.1. By a weak solution of (Pλ) we mean u ∈ H1(Ω) satisfying:

(2.4)
∫

Ω
∇u · ∇v = λ

∫
Ω
f(u)v −

∫
∂Ω
g(u)uv dσ, for all v ∈ H1(Ω).

It will be more convenient for our purpose to work with the norm

(2.5) ‖u‖2
H :=

∫
Ω
|∇u|2 +m

∫
∂Ω

|u|2 dσ,

where m is defined in (H2)

Remark 2.2. Thanks to the trace imbedding and the imbedding of Cherrier (see
[8, 9, 15]), it follows that ‖ · ‖H is indeed an equivalent norm in H1(Ω). That is, there
exists cI , cII > 0 such that

(2.6) cI‖u‖H1(Ω) ≤ ‖u‖H ≤ cII‖u‖H1(Ω), ∀u ∈ H1(Ω).

We take note also of the following regularity result:

Lemma 2.2. If uλ is a weak solution of (Pλ), then uλ ∈ C2,γ(Ω) for some
γ ∈ (0, 1).

Proof. From (2.1), for any uλ ∈ H1(Ω) we obtain that f(uλ) ∈ Lp(Ω), ∀p ≥ 1.
It follows by standard elliptic regularity that uλ ∈ W 2,p(Ω), ∀p ≥ 1, which implies
that uλ ∈ C2,γ(Ω) for some γ ∈ (0, 1). Thus, by the Sobolev imbedding theorem
u ∈ C1,γ(Ω). Consequently, uλ ∈ C2,γ(Ω)∩C1,γ(Ω) is a classical solution of (Pλ).

Finally a strong comparison result:

Lemma 2.3. Let w1, w2 ∈ C2,γ(Ω) ∩ C1,γ(Ω) satisfy −Δw1 ≤ −Δw2 in Ω,
n · ∇w1 + g(w1)w1 ≤ n · ∇w2 + g(w2)w2. Then, w1 < w2 in Ω.

Proof. Let w = w2−w1. Being a super harmonic function, w cannot have a local
minimum in Ω. That is, it attains its global minimum in Ω at a point x0 ∈ ∂Ω. Note that
on the boundary, n·∇w+a(x)w ≥ 0 where a(x) := (g(w2)w2−g(w1)w1)/(w2−w1) ≥
0. Therefore we obtain a contradiction by Hopf Lemma if w(x0) ≤ 0.

As a corollary, we have
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Lemma 2.4. Any solution of (Pλ) is strictly positive in Ω.

3. SMALL NORM SOLUTION AS LOCAL MINIMUM

In this section we show the existence of a local minimum for Iλ in a small neigh-
borhood of the origin in H1(Ω).

Lemma 3.1. We may find R0 ∈ (0,
√
π), λ0 > 0 and δ > 0 such that Iλ(u) ≥ δ

for all ‖u‖H1(Ω) = R0 and all λ ∈ (0, λ0).

Proof. From the simple pointwise estimate F (u) =
∫ u
0 e

sα ds ≤ e|u|eu2 , we
obtain that ∫

Ω
F (u) ≤

∫
Ω
|u|eu2

≤ ‖u‖L2(Ω)

(∫
Ω
e
2‖u‖2

H1(Ω)

(
u/‖u‖H1(Ω)

)2
)1/2

.

Now choose R0 > 0 such that R2
0 ≤ π. Then, by Moser-Trudinger inequality (2.2) and

Sobolev imbedding, from the last inequality we get,

(3.1)
∫

Ω

F (u) ≤ C1‖u‖H1(Ω), ∀ ‖u‖H1(Ω) ≤ R0, for some C1 > 0.

Also, ∫
∂Ω
G(u) dσ ≥ g(0)

2

∫
∂Ω
u2 dσ.

Thus, from (3.1) and Remark 2.2 we have for R2
0 ∈ (0, π) small enough

(3.2)
Iλ(u) ≥ c̃‖u‖2

H − λC1‖u‖H1(Ω)

≥ c̃c2I‖u‖2
H1(Ω) − λC1‖u‖H1(Ω), ∀ ‖u‖H1(Ω) = R0,

where c̃ = min{1
2 ,

g(0)
2m } and cI is defined in (2.6). We may choose and fix R2

0 ∈ (0, π)
and λ0 > 0 small enough so that δ := c̃c2IR

2
0 − λC1R0 > 0 for all λ ∈ (0, λ0). With

this choice of δ, λ0 and R0, we get the conclusion of the lemma from (3.2).

Lemma 3.2. Let λ0 be as in the previous lemma. Then, Iλ has a local minimum
close to the origin for all λ ∈ (0, λ0).

Proof. Let R0 be as in the previous lemma. For any u ∈ H1(Ω), u > 0 in Ω and
a real number t > 0,
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Iλ(tu) =
t2

2

∫
Ω
|∇u|2 − λ

∫
Ω
dx

∫ tu

0
es

α
ds +

∫
∂Ω
dσ

∫ tu

0
g(s)s ds

≤ t2

2

∫
Ω
|∇u|2 − λt

∫
Ω
u dx+

mt2

2

∫
∂Ω
u2dσ.

It follows that inf Iλ(u) < 0 in a sufficiently small neighborhood of the origin in
H1(Ω). Hence, if we show the existence of a local minimizer uλ of Iλ on the set
{u ∈ H1(Ω) : ‖u‖H1(Ω) ≤ R0} =: BR0(0), then in view of the last lemma, neces-
sarily ‖uλ‖H1(Ω) < R0 and hence it is indeed a local minimizer of Iλ in H1(Ω). Let
{un} ⊂ BR0(0) be a minimizing sequence for Iλ. Since {un} is bounded in H1(Ω),
there exists a subsequence {unk

} and a uλ such that unk
⇀ uλ in H1(Ω). Clearly,∫

Ω |∇uλ|2 ≤ lim infk→∞
∫
Ω |∇unk

|2. By Moser-Trudinger’s inequality and Vitali’s
convergence theorem we have

∫
Ω F (unk

) → ∫
Ω F (uλ) since R2

0 ∈ (0, π). By the com-
pactness of the trace imbedding, it also follows that

∫
∂ΩG(unk

)dσ → ∫
∂ΩG(uλ)dσ.

Hence, we have Iλ(uλ) ≤ lim infk→∞ Iλ(unk
) = infBR0

(0) Iλ. Since uλ ∈ BR0(0), it
must be true that Iλ(uλ) = infBR0

(0) Iλ. Therefore, uλ is a local minimizer for Iλ in
the set {u ∈ H1(Ω) : ‖u‖H1(Ω) ≤ R0}. Notice that uλ ≡ 0 since Iλ(0) = 0 > Iλ(uλ).

4. LOCAL MINIMUM FOR MAXIMAL RANGE OF λ

Lemma 4.1. (Pλ) has no solution when λ is large.

Proof. Let uλ be a (positive) solution of (Pλ). Thanks to Lemmas 2.2 and 2.4,
1/uλ is a H1(Ω) function which we can use as a test function in (Pλ). We obtain
thus,

λ

∫
Ω
f(uλ)/uλ =

∫
∂Ω
g(uλ) dσ −

∫
Ω
|∇uλ|2/u2

λ.

Since f(uλ) ≥ cuλ in Ω for some fixed constant c > 0 and g is a bounded function
by (H2) we obtain from the last equation that λ is bounded.

Let Λ := sup{λ > 0 : (Pλ) has a solution}. Then by Lemmas 3.2 and 4.1, it
follows that 0 < Λ <∞ .

Lemma 4.2. Iλ admits a local minimum for all λ ∈ (0,Λ) in the C1(Ω)- topology.

Proof. For a fixed λ < Λ, there exists λ̃ such that λ < λ̃ < Λ and uλ̃ a solution
of (Pλ̃). By Lemma 2.4, uλ̃ > 0 in Ω. Let vλ be the unique (thanks to Lemma 2.3)
solution of

(Sλ)

{ −Δu = λf(0), x ∈ Ω

n · ∇u+ g(u)u = 0, x ∈ ∂Ω.
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Since λf(0) < λ̃f(uλ̃), we obtain from Lemma 2.3 that uλ̃ > vλ on Ω.
Define the following cut-off nonlinearities:

(x, t) ∈ Ω × R; f̃λ(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f(vλ(x)) if t < vλ(x),

f(t) if vλ(x) ≤ t ≤ uλ̃(x),

f(uλ̃(x)) if t > uλ̃(x).

Define the primitive F̃λ(x, u) =
∫ u
0 f̃λ(x, t) dt (x ∈ Ω). Then the functional

Īλ : H1(Ω) → R given by

Ĩλ(u) =
1
2

∫
Ω
|∇u|2 − λ

∫
Ω
F̃λ(x, u) +

∫
∂Ω
G(u)dσ

is coercive and bounded from below. Let uλ be a global minimizer of Ĩλ on H1(Ω).
Then uλ satisfies{ −Δuλ = λf̃λ(x, uλ), in Ω

n · ∇uλ + g(x, uλ) = 0 on ∂Ω.

By Lemma 2.2 we have uλ ∈ C2,θ(Ω) for some θ ∈ (0, 1).Since λf(0) ≤ λf̃λ(x, uλ) ≤
λ̃f(uλ̃), from Lemma 2.3 we obtain that vλ < uλ < uλ̃ in Ω. In particular, uλ is a
solution of (Pλ). Let δ := min{minx∈Ω̄ |uλ̃(x) − uλ(x)|,minx∈Ω̄ |uλ(x) − vλ(x)|}.
Then Ĩλ = Iλ on the set {u ∈ C1(Ω) : ‖u − uλ‖C1(Ω) <

δ
2}. Hence uλ is a local

minimizer for Iλ in the C1(Ω) topology.

Lemma 4.3. Let λ ∈ (0,Λ). Then uλ obtained in Lemma 4.2 is a local minimizer
for Iλ in H1(Ω).

Proof. Suppose not. Then, for all ε > 0 there exists vε ∈ Bε(0) := {‖u‖H1(Ω) ≤
ε} such that Iλ(uλ + vε) < Iλ(uλ). Since Iλ is weakly lower semicontinuous on
H1(Ω), Iλ(uλ + ·) achieves its minimum at some point in Bε(0) which we denote
again by vε. In other words, for every ε > 0, we obtain vε such that 0 < ‖vε‖H1(Ω) ≤ ε
and

(4.1) Iλ(uλ + vε) < Iλ(uλ), Iλ(uλ + vε) = min
v∈Bε(0)

Iλ(uλ + v).

The corresponding Euler-Lagrange equation for vε involves a Lagrange multiplier με ≤
0, namely, vε satisfies∫

Ω
∇(uλ + vε) · ∇h− λ

∫
Ω
f(uλ + vε)h+

∫
∂Ω
g(uλ + vε)(uλ + ε)h

= με

∫
Ω
(vεh+ ∇vε · ∇h), ∀h ∈ H1(Ω).
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This means, in the weak sense,

(4.2)

⎧⎨
⎩
−(1 − με)Δvε − μεvε = λ(f(uλ + vε)− f(uλ)) in Ω,

(1− με) n · ∇vε + g(uλ + vε)(uλ + vε) − g(uλ)uλ = 0 on ∂Ω.

Since με ≤ 0, by Moser iteration technique (see Theorem 15.7 in [13]) we conclude
that {vε} is uniformly bounded, as ε → 0, in a Holder space. From standard elliptic
regularity ([10] and [22]) it follows that limε→0‖vε‖C1,θ(Ω̄) < ∞ for some θ ∈ (0, 1).
By Arzela-Ascoli and the fact that ‖vε‖H1(Ω) → 0 as ε → 0, it follows that vε → 0
in C1(Ω). This gives a contradiction to the fact that uλ is a local minimizer for Iλ in
C1(Ω) topology.

5. THE SECOND SOLUTION IS A SADDLE-POINT

We fix λ ∈ (0,Λ) and recall that uλ was obtained as the local minimizer for Iλ
in Lemma 4.3. We now show that Iλ possesses a second solution of mountain-pass or
saddle-point type. For the easy computations, it will be better to translate the functional
Iλ by uλ and consider the resulting functional which will have the origin as the local
minimum.

Define f̄λ : Ω × R → R by

f̄λ(x, s) =

⎧⎨
⎩
f(s+ uλ) − f(uλ) if s ≥ 0,

0 if s < 0,

and ḡλ : ∂Ω× R → R by

ḡλ(x, s) =

⎧⎨
⎩
g(s+ uλ)(s+ uλ)− g(uλ)uλ if s ≥ 0,

0 if s < 0.

Now we define the translated functional Īλ : H1(Ω) → R by

(5.1) Īλ(w) =
1
2

∫
Ω
|∇w|2 − λ

∫
Ω
F̄λ(x, w) +

∫
∂Ω
Ḡλ(x, w),

where F̄λ(x, t) =
∫ t
0 f̄λ(x, s) ds and Ḡλ(x, t) =

∫ t
0 ḡλ(x, s) ds.

If we show the existence of a non-trivial critical point wλ of Īλ, then wλ will be a
positive solution of the problem

(Qλ)

{ −Δwλ = λf̄λ(x, wλ), x ∈ Ω

n · ∇wλ + ḡλ(x, wλ) = 0, x ∈ ∂Ω
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and wλ + uλ will be a second solution for (Pλ).
First note that Īλ(0) = 0 and w ≡ 0 is a local minimizer for Īλ. Choose R1 > 0

so that
0 = Īλ(0) ≤ Īλ(u) for all ‖u‖H1(Ω) ≤ R1.

Since limt→∞ Īλ(tw) = −∞ for any w ∈ H1(Ω) \ {0}, we can fix e ∈ H1(Ω) \ {0}
such that Īλ(e) < 0. Necessarily, ‖e‖H1(Ω) > R1. Set

Γ = {γ : [0, 1] → H1(Ω) : γ is continuous , γ(0) = 0, γ(1) = e}
and define the mountain-pass level

(5.2) ρ = inf
γ∈Γ

sup
t∈[0,1]

Īλ(γ(t)).

Clearly, ρ ≥ 0 since Īλ(0) = 0. We distinguish the following two cases:
(P1) (Zero altitude case)

inf{Īλ(w) : w ∈ H1(Ω) and ‖w‖H1(Ω) = l} = 0 for all l < R1;

(P2) (Mountain-Pass case) there exists 0 < l1 < R1 such that

inf{Īλ(w) : w ∈ H1(Ω) and ‖w‖H1(Ω) = l1} > 0.

Note that (P2) implies ρ > 0. That is, ρ = 0 implies that (P1) holds. We recall the
definition of the Palais-Smale sequence around the closed set F :

Definition 5.1. By a Palais-Smale squence for Īλ at the level β ∈ R around F

((PS)F,β for short) we mean a sequence {wn} ⊂ H1(Ω) such that

lim
n→∞ dist(wn, F ) = 0, lim

n→∞ Īλ(wn) = β and lim
n→∞ ‖Ī ′λ(wn)‖(H1(Ω))∗ = 0.

Definition 5.2. We define the closed set F = {w ∈ H1(Ω) : ‖w‖H1(Ω) = R1
2 } if

ρ = 0, and F = H1(Ω) if ρ > 0.

In the case when F = {w ∈ H1(Ω) : ‖w‖H1(Ω) = R1
2 }, Ghoussoub and Preiss

(Theorem (1) [12]) proved the existence of such a Palais-Smale sequence around F .
They further showed in Theorem (1.bis) in the same work that there exists a critical
point of Īλ on F with critical value β provided this (PS)F,β sequence has a convergent
subsequence. We also remark that when F = H1(Ω) the above definition is same as
the usual definition of Palais-Smale squence at the level β.

In the next lemma, we show convergence properties of a (PS)F,ρ sequence for Īλ
with the above choice of F and ρ defined as in (5.2).

Lemma 5.1. Let F be as in the Definition 5.2 and {wn} ⊂ H1(Ω) be a (PS)F,ρ
sequence for Īλ. Then, wn ⇀ wλ in H1(Ω). Moreover, as n→ ∞,
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(5.3)
∫

Ω
f̄λ(x, wn) →

∫
Ω
f̄λ(x, wλ),

∫
∂Ω
ḡλ(x, wn) →

∫
∂Ω
ḡλ(x, wλ),

(5.4)
∫

Ω
F̄λ(x, wn) →

∫
Ω
F̄λ(x, wλ),

∫
∂Ω
Ḡλ(x, wn) →

∫
∂Ω
Ḡλ(x, wλ).

Proof. Since {wn} is a (PS)F,ρ sequence for Īλ, we get

(5.5)
1
2

∫
Ω
|∇wn|2 − λ

∫
Ω
F̄λ(x, wn) +

∫
∂Ω
Ḡλ(x, wn) = ρ+ on(1)

and

(5.6)

∣∣∣∣
∫

Ω
∇wn · ∇φ− λ

∫
Ω
f̄λ(x, wn)φ+

∫
∂Ω
ḡλ(x, wn)φ

∣∣∣∣
= on(1)‖φ‖H1(Ω), ∀φ ∈ H1(Ω).

Note that (5.5) implies

(5.7) c̃‖wn‖2
H ≤ ρ+ on(1) + λ

∫
Ω
F̄λ(x, wn) for some c̃ > 0.

Observing that given ε > 0 there exists tε > 0 such that F̄λ(x, t) ≤ εtf̄λ(x, t) for all
t ≥ tε, we have

c̃‖wn‖2
H ≤ ρ+ on(1) + λ

∫
Ω∩{x:|wn|≤tε}

F̄λ(x, wn) + ελ

∫
Ω∩{x:|wn|≥tε}

f̄λ(x, wn)wn

≤ ρ+ on(1) + Cε + ελ

∫
Ω
f̄λ(x, wn)wn,

where Cε → 0 as ε → 0. Now, substituting wn for φ in (5.6), since ḡλ(x, s) ≤
ms, ∀s ≥ 0, we get

λ

∫
Ω
f̄λ(x, wn)wn ≤

∫
Ω
|∇wn|2 +

∫
∂Ω
ḡλ(x, wn)wn + on(1)‖wn‖H1(Ω)

≤ C

(∫
Ω
|∇wn|2 +m

∫
∂Ω
w2
n

)
+ on(1)‖wn‖H1(Ω)

≤ C‖wn‖2
H + on(1)‖wn‖H1(Ω).

(5.8)

Hence we obtain

c̃‖wn‖2
H ≤ ρ+ on(1) +Cε + εC‖wn‖2

H + εon(1)‖wn‖H1(Ω)

≤ ρ+ on(1) +Cε + εC‖wn‖2
H + cIIεon(1)‖wn‖H(Ω).
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If we choose ε small so that c̃− εC > 0, then from the last inequality we obtain that
supn ‖wn‖H ≤ c <∞ for some c > 0, which implies that supn ‖wn‖H1(Ω) ≤ cIIc by
(2.6). Therefore, there exists wλ ∈ H1(Ω) such that wn ⇀ wλ in H1(Ω).

Next, we show that
∫
Ω f̄λ(x, wn) →

∫
Ω f̄λ(x, wλ) as n→ ∞. Notice that

C̄ := sup
n

∫
Ω
f̄λ(x, wn)wn <∞

from (5.8) and the fact that supn ‖wn‖H < ∞. Given ε > 0 we define δε :=
max

x∈Ω̄,|s|≤ C̄
ε

f̄λ(x, s). Then, for any subset E ⊂ Ω with |E| ≤ ε
δε
, we have

∫
E
|f̄λ(x, wn)| =

∫
E∩{|wn|≥ C̄

ε
}

∣∣∣∣ f̄λ(x, wn)wnwn

∣∣∣∣+
∫
E∩{|wn|≤ C̄

ε
}
|f̄λ(x, wn)|

≤ ε

C̄

∫
E

∣∣f̄λ(x, wn)wn∣∣ + δε|E| ≤ 2ε.

This shows that {f̄λ(x, wn)} is equi-absolutely continuous. By Vitali’s convergence
theorem, we get

∫
Ω f̄λ(x, wn) →

∫
Ω f̄λ(x, wλ) as n→ ∞.

Notice that for all (x, s) ∈ Ω × R
+, we can find C > 0 such that

F̄λ(x, s) ≤ Cf̄λ(x, s).

Hence, by the generalized Lebesgue dominated convergence theorem we conclude that∫
Ω
F̄λ(x, wn) →

∫
Ω
F̄λ(x, wλ).

By the compactness of the trace imbeddingH1(Ω) ↪→ L2(∂Ω),we obtain
∫
∂Ω Ḡλ(x, wn)

→ ∫
∂Ω Ḡλ(x, wλ) as well as

∫
∂Ω ḡλ(x, wn) →

∫
∂Ω ḡλ(x, wλ).

Next we show that Īλ has a critical point wλ > 0 of mountain-pass type. However,
due to the lack of compactness when α = 2, we need the following strict upper bound
of ρ.

Lemma 5.2. Let α = 2. Then ρ < π.

Proof. Without loss of generality we may assume that 0 ∈ ∂Ω. Let mn be the
Moser function given by

(5.9) mn(x) =
1√
2π

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

logLn√
logn

0 ≤ |x| < 1
n ,

log L
|x|√

logn
1
n ≤ |x| < L,

0 |x| > L.
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We take n large so that nL > 1. It is easy to see that ‖∇mn‖L2(R2) = 1 and
‖mn‖L2(R2) = O( 1

lognL). Let mn be the restriction of mn to Ω and define ψn =
mn

‖mn‖H
. Then ψn is constant in B 1

n
(0) ∩ Ω and supp ψn ⊂ BL(0) ∩ Ω. Observing

carefully the proof of Lemma 3.3 in [2], we also get
∫
Ω |∇mn|2 + m

∫
∂Ωm

2
n = 1

2 +
O( 1

lognL), and hence ψ2
n(x) = 1

2π
lognL

[ 1
2
+O( 1

log nL
)]

= 1
π log nL + O(1) as n → ∞ on

B 1
n
(0) ∩ Ω.
We now suppose ρ0 ≥ π and derive a contradiction. It follows from Lemma 3.1

in [17] that we can find some tn > 0 such that Īλ(tnψn) = supt>0 Īλ(tψn) ≥ π, ∀n.
That is, we have

(5.10) Īλ(tnψn) =
1
2

∫
Ω
|∇(tnψn)|2−λ

∫
Ω
F̄λ(x, tnψn)+

∫
∂Ω
Ḡλ(x, tnψn) ≥ π, ∀n.

Since ḡλ(x, s) ≤ ms, ∀s ≥ 0, we have

∫
∂Ω

Ḡλ(x, tnψn) =
∫
∂Ω

∫ tnψn

0

ḡλ(x, s) ≤ m

2
t2n

∫
∂Ω

ψ2
n.

Hence, from (5.10), we obtain

(5.11) t2n = t2n‖ψn‖2
H ≥ 2Īλ(tnψn) ≥ 2π, ∀n.

Since the maximum of the map t �→ Īλ(tψn) on (0,∞) is attained at t = tn, its
derivative must be 0 at this point. That is,

(5.12)
∫

Ω
|∇(tnψn)|2 − λ

∫
Ω
f̄λ(x, tnψn)tnψn +

∫
∂Ω
ḡλ(x, tnψn)tnψn = 0.

Note that infx∈Ω f̄λ(x, s) ≥ es
2 for s large and tnψn → ∞ on B 1

n
(0) as n → ∞.

Since
∫
∂Ω ḡλ(x, tnψn)tnψn ≤ mt2n

∫
∂Ω ψ

2
n, we obtain from (5.12)

(5.13) t2n = t2n‖ψn‖2
H ≥ λ

∫
{|x|< 1

n
}
f̄λ(x, tnψn)tnψn ≥ λ

∫
{|x|< 1

n
}
et

2
nψ

2
ntnψn.

Using the explicit value of ψn at 0, we get

(5.14)
t2n ≥ λ

√
πe

(
t2n
π
−2

)
lognL+2 logL+t2nO(1)

tn(lognL +O(1))
1
2 ,

= λ
√
πe

(
( 1

π
+ O(1)

log nL
)t2n−2

)
lognL+2 logL

tn(lognL+ O(1))
1
2 ,
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which implies that {tn} is bounded sequence since t2n ≥ 2π. Now using (5.11), we
obtain from (5.14)

t2n ≥ λ
√
πet

2
nO(1)+2 logLtn(lognL+O(1))

1
2 .

Since {tn} is bounded, we note that et2nO(1) ≥ C > 0, ∀n. Hence we have

tn ≥ λ
√
πCe2 logL(lognL +O(1))

1
2 ,

which implies that tn → ∞ as n → ∞. This contradiction shows that ρ < π when
α = 2.

Lemma 5.3. Īλ possesses a critical point wλ > 0 of mountain-pass type.

Proof. Let {wn} ⊂ H1(Ω) be (PS)F,ρ sequence for Īλ. From Lemma 5.1, {wn}
is a bounded sequence in H1(Ω). Let wλ ∈ H1(Ω) such that

(5.15) wn ⇀ wλ in H1(Ω).

Hence, from (5.3) and (5.15) and the fact that {wn} is a Palais-Smale sequence, we
obtain

(5.16)
∫

Ω
∇wλ · ∇φ − λ

∫
Ω
f̄λ(x, wλ)φ+

∫
∂Ω
ḡλ(x, wλ)φ = 0, ∀φ ∈ H1(Ω),

which implies that wλ is a weak solution for (Qλ).
Now we claim that wλ ≡ 0. Note that wn(x) → wλ(x) pointwise a.e. in Ω. By

the compactness of the trace imbedding H1(Ω) ↪→ L2(∂Ω), we obtain

(5.17)
∫
∂Ω

ḡλ(x, wn)wn →
∫
∂Ω

ḡλ(x, wλ)wλ as n→ ∞.

First we consider the compact case when α < 2. Note that there exists C̃ > 0 such
that eptα ≤ C̃et

2 for all p ≥ 1 and s2 ≤ C̃e(uλ+s)α for all s ≥ 0. Hence, taking
p := supn 3‖uλ + w+

n ‖αH1(Ω)
, by Moser-Trudinger inequality,∫

Ω
|f̄λ(x, wn)wn|2 =

∫
Ω∩{wn≥0}

|e(uλ+wn)α − eu
α
λ |2w2

n

≤ C̃

∫
Ω

e
3‖uλ+w+

n ‖α

(
uλ+w+

n

‖uλ+w+
n ‖

)α

≤ C̃2

∫
Ω
e

(
uλ+w+

n

‖uλ+w+
n ‖

)2

<∞.
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Again applying Vitali’s convergence theorem, we have

(5.18)
∫

Ω
f̄λ(x, wn)wn →

∫
Ω
f̄λ(x, wλ)wλ as n→ ∞.

Substituting φ by wn in (5.6) and using (5.17) and (5.18), we obtain
∫
Ω |∇wn|2 →∫

Ω |∇wλ|2 as n→ ∞, which implies that wn → wλ in H1(Ω) as well as Īλ(wλ) = ρ.

In case ρ > 0, necessarily this means wλ ≡ 0 and we are done. Consider the
case ρ = 0. Since wn → wλ in H1(Ω), from Theorem (1.bis) in [12] we have
wλ ∈ F = {‖u‖H1(Ω) = R1

2 } and hence wλ ≡ 0.
We now handle the case α = 2 with a contradiction argument. Suppose that wλ ≡ 0

on Ω. Note that ρ < π from Lemma 5.2. Since wn ⇀ 0 as n → ∞, from (5.4)-(5.5)
and the compactness of the trace imbedding we have ‖wn‖H1(Ω) < 2π − ε for some
ε > 0 small and for n large. Let us choose 0 < δ < ε

2π and fix p = 2π
(1+δ)(2π−ε) . Then

p > 1. Observing that
∫
Ω f̄λ(x, s)s ≤ C

∫
Ω e

(1+δ)s2 ∀s ∈ R for some C > 0, we have

(5.19)
∫

Ω
|f̄λ(x, wn)wn|p ≤ C

∫
Ω
e(1+δ)pw2

n ≤ C

∫
Ω
e
(1+δ)p‖wn‖2

(
wn

‖wn‖
H1(Ω)

)
.

Since (1 + δ)p‖wn‖H1(Ω) < 2π, by the Moser-Trudinger inequality we have
supn

∫
Ω |f̄λ(x, wn)wn|p < ∞. Hence again by the Vitali’s convergence theorem we

obtain
∫
Ω f̄λ(x, wn)wn → 0. Clearly,

∫
∂Ω ḡλ(x, wn)wn → 0 as n → ∞ from similar

argument leading to (5.17). Hence, taking φ = wn in (5.6) we get,

(5.20) on(1)‖wn‖H1(Ω) =
∫

Ω

|∇wn|2 + on(1).

However, since
∫
Ω F̄ (x, wn) →

∫
Ω F̄ (x, wλ) = 0 and

∫
∂Ω Ḡ(x, wn) →

∫
∂Ω Ḡ(x, wλ) =

0, from (5.5) we obtain

(5.21)
∫

Ω

|∇wn|2 → 2ρ.

From (5.20)-(5.21) we get ρ = 0. That is, wn → 0 in H1(Ω) which is a contradic-
tion to the fact that {wn} is a (PS)F,ρ sequence. Therefore, wλ ≡ 0. We obtain from
Lemma 2.3 that wλ > 0 in Ω.

6. PROOF OF THEOREM 1.1

By the definition of Λ, there is no solution if λ > Λ. When λ ∈ (0,Λ), from
Lemma 4.3 we obtain the solution uλ which is a local minimizer of Iλ(uλ). By
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Lemma 5.3 we have a mountain pass type solution of the form wλ + uλ where wλ is
a positive solution of the translated problem (Qλ). Therefore, this solution is different
from uλ.

Let {λn} be a sequence such that λn ↑ Λ. Then from Lemma 4.3 there exists
sequence of solutions {uλn} ⊂ H1(Ω) to (Pλn) satisfying

lim sup
n→∞

Iλn(uλn) < +∞, I ′λn
(uλn) = 0.

The first bound can be seen from the arguments in the proof of Lemma 4.2 where we
show that Iλ(uλ) ≤ Iλ(vλ) and noting the fact that {vλ}0≤λ≤Λ is uniformly bounded
in C1(Ω). This implies (by an argument similar to the one in the proof of Lemma 5.1)
that {uλn} is bounded in H1(Ω), and hence there exists uΛ such that uλn ⇀ uΛ in
H1(Ω). It is easy to see that uΛ is a weak solution of (PΛ).
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